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Obesity represents the most prevalent metabolic disease in the world at present, posing
an important public health challenge. This circumstance has led to a better understanding
of the mechanisms that control body weight and energy homeostasis. Obesity elevates the
risk of developing type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease,
and certain types of cancer, among other conditions, which translates into a shortened life
expectancy [1].

The pillars of the therapeutic approach for patients living with obesity are a reduction
in caloric intake and an increase in energy expenditure. Even a modest weight loss is
associated with notable improvements in obesity-associated comorbidities. However,
when lifestyle modification fails, before resorting to bariatric surgery, pharmacological
intervention should be considered as an important alternative or adjunct therapy for weight
loss. In this sense, achieving weight normalization by undergoing long-term drug therapy
with sufficient tolerability and safety remained an unattainable challenge until recently [2].

The endocannabinoid (eCB) system is an endogenous signaling pathway formed by
lipid-derived endogenous mediators (endocannabinoids), their receptors (cannabinoid
type 1 and type 2 (CB1 and CB2)), and the enzymes involved in their synthesis and degra-
dation [3]. The endocannabinoid receptor CB1R in the brain is involved in the regulation of
food intake and energy homeostasis. Selective antagonism or inverse agonism of this recep-
tor in the brain using drugs such as rimonabant reduced appetite, enhanced thermogenesis
and diminished lipogenesis in several human trials, but important psychiatric side-effects
precluded its approval for the treatment of obesity by the FDA and forced its withdrawal
from the European markets [2]. However, the peripheral antagonism of this receptor with
drugs that do not cross the blood–brain barrier has been proposed as an interesting strategy
for the management of many obesity-associated metabolic alterations [4].

In an excellent review article published in Nutrients, DiPatrizio summarizes the avail-
able evidence, suggesting that the eCB in the upper gastrointestinal tract is involved in
the control of the gut–brain neurotransmission through the vagus nerve regulating food
intake [5]. The author describes the indirect and direct mechanisms controlling the in-
take of palatable food and the impact of diet-induced obesity (DIO) on those signaling
pathways. Tasting dietary fats, specifically unsaturated fats, trigger the production of
eCBs, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide in the upper small-intestinal
epithelium, eliciting positive feedback to the brain that promotes the intake of fatty foods
in rodents [5–7]. Humans prefer fatty and sweet foods, and their consumption increases
blood levels of eCBs, which are also increased in patients with obesity. However, whether
circulating eCBs influence dietary choices in humans remains to be determined [5].

Among the indirect mechanisms involved in the regulation of food intake by gut eCB,
DiPatrizio extensively details the nutrient-induced blocking of the release of cholecystokinin
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(CCK), a satiating peptide, after CB1R activation in rodents. The ability of nutrients to
induce CCK release is restored after the pharmacological inhibition of peripheral CB1Rs
in mice with DIO, reducing food intake [5]. Moreover, studies suggest that CB1R is also
involved in the production of ghrelin, an orexigenic peptide, by the stomach. Future studies
will confirm if the regulation of the release of peptides involved in food intake control by
eCB is also altered in patients with obesity and the specific intracellular signaling pathways
that are implicated.

Food-related signals released from the gut may directly regulate the activity of vagal
afferent neurons through the activation of CB1Rs. Moreover, vagal efferent neurons drive
the production of 2-AG and local CB1Rs activation in the intestine during fasting via the
activation of parasympathetic m3 acetylcholine receptors. In addition, there are further
interactions between the eCB system and sympathetic neurotransmission in the control of
food intake and, in this sense, the review describes how this interaction is important in the
metabolic benefits of Roux-en-Y gastric bypass, a type of metabolic surgery, in mice [5,8].

Rodent and human studies evidence that the eCB system is a relevant branch of the
gut–brain axis that participates in the regulation of food intake and is altered in obesity [5].
As has been mentioned above, the use of CB1R antagonists or inverse agonists, such as
rimonabant, exert anti-obesity actions but have undesirable psychiatric side-effects. In
recent years, it has become evident that the peripheral eCB system plays an important role
in both food intake regulation [9] and glucose and lipid homeostasis, with major actions
in the liver and adipose tissue [3,10], thereby representing an emerging target for the
development of new pharmacologic tools to fight against metabolic diseases. In addition,
DiPatrizio also highlights the potential of new CB1R antagonists with low brain penetrance,
which may be effective and safe therapeutic options for the treatment of obesity and related
conditions [4,11]. Finally, the author underlines the importance of future studies aiming to
disentangle the molecular and cellular mechanisms in the interactions between the eCB
system and the gut microbiota on energy homeostasis [5,12].
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