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Abstract: Prostate cancer (PCa) is the second most diagnosed cancer in men. Patients with PCa
often develop metastases, with more than 80% of this metastases occurring in bone. The most
common imaging technique used for screening, diagnosis and follow-up of disease evolution is bone
scintigraphy, due to its high sensitivity and widespread availability at nuclear medicine facilities.
To date, the assessment of bone scans relies solely on the interpretation of an expert physician who
visually assesses the scan. Besides this being a time consuming task, it is also subjective, as there is
no absolute criteria neither to identify bone metastases neither to quantify them by a straightforward
and universally accepted procedure. In this paper, a new algorithm for the false positives reduction
of automatically detected hotspots in bone scintigraphy images is proposed. The motivation relies in
the difficulty of building a fully annotated database. In this way, our algorithm is a semisupervised
method that works in an iterative way. The ultimate goal is to provide the physician with a fast,
precise and reliable tool to quantify bone scans and evaluate disease progression and response to
treatment. The algorithm is tested in a set of bone scans manually labeled according to the patient’s
medical record. The achieved classification sensitivity, specificity and false negative rate were 63%,
58% and 37%, respectively. Comparison with other state-of-the-art classification algorithms shows
superiority of the proposed method.

Keywords: bone scintigraphy; prostate cancer; machine learning; semisupervised classification; false
positives reduction

1. Introduction

According to the World Health Organization, prostate cancer (PCa) is the second
most commonly diagnosed cancer in men, accounting for more than 1.4 million new cases
and more than 375,000 deaths worldwide in 2020. Patients with advanced prostate cancer
often develop metastases, which are caused by primary tumor cells that escape from the
prostate gland and spread through the lymphatic system or the bloodstream to other
areas of the body. The most frequent site for metastatic growth of prostate cancer is the
bone, and almost all patients with advanced prostate cancer show histological skeletal
involvement, being estimated that 84% to 90% of patients with metastatic disease had bone
metastases [1–3]. Even though the bone metastases are seldom the cause of death, they
are the leading cause of morbidity and a major challenge in the management of patients,
leading to a diminished quality of life. The presence of bone metastases, specially in higher
extents, is an indicator of progression of the disease and typically correlates with a poor
prognosis [4,5]. Currently there is no cure for metastatic prostate cancer, but it can often
still be treated to slow down its growth. A precise detection and up-take quantification of
bone metastases is essential to provide the physicians the accurate staging they require to
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choose the appropriate treatment for an individual patient, to monitor the evolution of the
disease and to evaluate the treatment efficiency.

The most common diagnostic procedure used for screening, assessment of treatment
and follow-up of patients with bone metastases is whole-body bone scintigraphy (BS) [6],
due to its relatively high sensivity, ranging from 70% to 78% [7–9], and widespread avail-
ability at relatively low cost. Bone scintigraphy, also known as bone scan, is a nuclear
medicine imaging technique used in screening for several skeleton related pathological
conditions, including bone metastases. In a bone scintigraphy, a bone-seek radioisotope,
that is, a substance that collects in the bones following the normal physiological processes,
is injected intravenously into the patient. The radioactive isotope will flow through the
body and will have a tendency to accumulate in areas of high bone metabolic activity. Fol-
lowing the radiopharmaceutical administration, a time period of 2 to 4 h [10] is observed
to allow biodistribution and up-take and then a simultaneous image of the anterior (AP)
and posterior (PA) views is acquired in a gamma-camera. Because the radioisotope has
accumulated in the regions of bone, the scans will reveal brighter areas, which indicate an
increased rate of bone metabolic activity such as abnormal growth caused by metastases.
These areas are referred to as hotspots, and may indicate not only the presence of bone
metastases, but also other conditions such as trauma, microarthritis, benign degeneration,
or bone infections [11]. The biggest disadvantage in the use of bone scintigraphy to detect
bone metastases is, therefore, its low specificity. Because it evaluates the distribution of
active bone formation in the skeleton and identifies the sites where metabolic reactions
are occurring, it detects several suspicious uptakes of nonmetastatic origin, which lead to
high a false positive rate of BS to detect bone metastases. To date, the assessment of bone
scans relies solely on the interpretation of an expert physician who visually assesses the
scan. Besides this being a time consuming task, it is also extremely subjective, as there is
no absolute and clear criteria neither to differentiate bone metastases from benign bone
lesions, neither to quantity them. This means that, up to this date, the disease stage as
well as the response to treatment is subjected to a certain degree of uncertainty, implying
that the process of determining whether or not the patient condition is regressing is some-
times subjective. Given the high occurrence of metastatic PCa, there should be by now a
more practical and, most importantly, more objective criteria to evaluate quantitatively a
bone scintigraphy.

This work aims to create an algorithm capable of classifying hotspots from bone
scintigraphy images, and is manly motivated by the call for a method whose development
does not require a fully labeled database. A labeled data set of hotspots is rare and
most likely unavailable for most researchers, and therefore one propose a semisupervised
method that only requires knowledge about the type of bone scan the hotspot is extracted
from. Comparison with other state-of-the-art classification algorithms shows superiority
of the proposed method, achieving a sensitivity of 0.63, a specificity of 0.58 and a false
negative rate of 0.37. This algorithm was able to decrease the false positive rate from 0.73
after detection to almost half, 0.42 after the false positive attenuation.

The main contributions of the present work include:

• The proposal of a new, iterative, semisupervised algorithm for attenuation of false
positive metastases;

• Extensive experiments on a real dataset of scintigraphies from 102 patients with
prostate cancer;

• A suggestion for a hotspots detection technique;
• Comparison with nonsupervised and one-class classifiers.
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The remaining of this paper is organised as follows: Section 2 reviews the state of the
art; Section 3 gives a detailed description of the here proposed semisupervised iterative
algorithm; Section 4 gives the materials and methods, including the database, the hotspots
detection technique, the extracted features, the competing classification algorithms for
false positives reduction and the evaluation methodology; Section 5 presents the results,
and Section 6 presents a discussion of these results. The document finishes with some
conclusions and directions for future work in Section 7.

2. Related Work

The literature found on this topic shows there has been some effort to develop a
computer-aided diagnosis system capable of automatically detecting and quantifying bone
metastases in bone scintigraphies.

Brown et al. [12] developed a computer-aided system to automatically segment and
quantify bone scan lesions. The bone lesion segmentation was accomplished by doing an
atlas-based anatomic segmentation to divide the body into 6 different regions, followed by
the application of region specific threshold to detect the hotspots. The method achieved a
median sensitivity of 94.1%, specificity of 89.2% and accuracy of 89.4%. After the detection
of the hotspots, the resulting images were reviewed by a nuclear medicine physician who
removed false positive lesions; the hotspots classified as malign could then be used to
assess the severity of the disease and disease response to treatment. Despite the good
results, this algorithm is not fully automatic, as it requires the intervention of a physician
to remove false positives (nonmetastases related bone uptakes) from the scans. This is
a huge downside as the automatic differentiation between malignant and nonmalignant
bone uptakes is an essential requirement in a bone metastases evaluation algorithm, as it
is a task that is not trivial even for the most experienced physician and thus brings a lot
of subjectivity to the final assessment. A classification algorithm capable of automatically
distinguish metastases from benign lesion is thus needed.

Sadik et al. [13,14] developed a fully automated classification system for the detection
of metastases that used artificial neural networks. Both works intended to classify the
whole-body bone scan as a whole, regarding the presence or absence of bone metastases,
and not the hotspots individually. The final classifier would return a value between 0 and
1, that reflected the probability of the patients having metastases. The algorithm proposed
in [13] achieved sensitivity of 90% and a specificity of 74%, while the one proposed in [14]
achieved a higher specificity of 89%, keeping the same sensitivity of 90%.

Papandrianos and his team [15–17] have published three papers describing the work
they have made on this field, devoted to the development of Convolutional Neural Net-
works (CNN) models for automatic classification of whole-body scans from patients with
bone metastases. Just like Sadik et al., the authors intended to classify the body scans as
a whole, and not the hotspots individually. In [15,16] they were dealing with a two-class
classification problem regarding the presence (malignant scan) or absence (healthy scan) of
bone metastases in patients with breast and prostate cancer, respectively. The best CNN
architectures in [15,16] achieved an accuracy of 92.0/97.4%, a sensitivity of 94.0/96.5% and
a specificity of 92.0/96.8%. The major problem with these models is that in the clinical
practice the division of the bone scans into healthy or malign is oversimplified, as it ignores
the fact that some patients suffer from benign conditions which will reveal several suspi-
cious uptakes of nonmetastatic origin in the final images. As they aimed to cope with a
two-class classification problem, all scans from patients containing degenerative lesions
and other nonmalignant bone uptakes were removed in a manual preselection process.
This is a major drawback, as a fully automatic algorithm to assess whole body scintigraphy
should also be able to classify false positive bone uptakes as benign lesions. In [17] the same
authors investigated a way to partial solve this problem, by developing a similar CNN
based algorithm to classify bone scintigraphy images as healthy, malignant or degenerative,
leading to a three-class classification problem. The best CNN architecture achieved a
sensitivity of 92.7% and a specificity of 96.0%. Although the automatic distinction between
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malignant and nonmalignant images is an improvement over the previous models, it does
not offer a solution for the cases in which one patient has bone uptakes with both malignant
and nonmalignant origins, which is one of the major problems in visual bone scintigraphy
assessment. In fact, neither of the papers proposed by Papandrianos et al. or Sadik et al.
present an algorithm that is capable of quantifying the bone lesions individually, which is
essential when an objective assessment of the disease staging is needed. It is not enough to
build an algorithm that is able to distinguish images that present solely malignant lesions
from those that present solely benign lesions. A suitable algorithm must be able to quantify
and classify each lesion individually.

The only algorithms developed to classify bone lesions individually are the ones found
in the Master theses of Dang [18] and Belcher [19]. In both works, a CNN was developed to
classify hotspots in bone scintigraphy images for prostate cancer, by determining whether
they had a high or low risk of being bone metastases from PCa metastatic cancer. The final
CNN from [18] had an accuracy, true positive rate and AUC (Area Under the ROC Curve)
of 89.0%, 98.0% and 0.96, respectively. To measure the CNN performance, [19] only used
the area of the ROC curve, for which was obtained a score of 0.974. Despite appearing
to be a promising approach to the classification of hotspots in bone scintigraphy images,
the previously described works use supervised techniques, which rely on an extensive
number of labeled data. The access to such a large data set was only possible due to EXINI
Diagnostic AB, which is a Sweden based company that uses artificial intelligence to develop
automated analysis platforms for medical images like cardiac, brain and bone scans [20]. It
has shown to be quite popular among researchers working in the quantification of bone
metastases. EXINI has developed the aBSI (automated Bone Scan Index), a software only
medical device that provides a fully quantitative assessment of a patient’s skeletal disease
on a bone scan, as the fraction of the total skeleton weight [21]. As it is a closed-source
software, little is known about its operating principles, except that it was trained to classify
hotspots as lesions using a collection of more than 40,000 hotspots derived from bone scans
of patients with a variety of metastatic cancers. It is able to segment the skeleton, identify
hotspots, quantify their intensity and classify them as lesions [22].), which provided them
with a database composed by more than ten thousand labeled hotspots from bone scans.
Such large scale annotated data sets are, however, rare in the medical context. Training
a CNN from scratch to perform bone lesion classification would require thousands of
labeled images, a task that would not only be extremely complex and time consuming, but
also dependent on the availability of experienced physicians. Furthermore, the labelling
would be subject to the subjectivity inherent in the classification of lesions detected in
bone scintigraphy.

The algorithms developed so far for the assessment of whole-body bone scans ei-
ther use fully supervised learning algorithms, which require access to a (big) labeled
data set, or rely on some sort of manual removal of false positives. Here, we propose a
semisupervised method for the classification of automatically detected hotspots in bone
scintigraphy images.

3. hotBSI: Semisupervised Iterative Algorithm for Hotspots Classification

The core and main contribution of the present paper is the hotBSI (hotspots on Bone
Scintigraphy Images) algorithm. This algorithm was derived from the need of hotspots
false positive reduction scintigraphy images, in the presence of not completely labeled
database. Section 3.1 explains the workings of hotBSI, wihch can be used with any classifier
of choice. The classifiers used in the present work are listed in Section 3.2.
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3.1. hotBSI Description

An initial classifier C0 was first trained, in the presence of noise, to distinguish between
malign from nonmalign hotspots. It should be pointed out that this classifier is trained
under a lot of noise, as it was assumed that every detection in a bone scan belonging the
malign category belonged to malign class, which is not true, as the majority of the detections
in these scans are actually nonmalign. The next stage involves an iterative process through
the following steps:

1. The last trained classifier, Ci−1, is used to classify the detections on the scans belonging
to the malign class. For each detected region, the classifier returns the likelihood that
the region comes from the malign or nonmalign class;

2. For each patient in the malign category:

(a) The detection with the highest likelihood of being malignant is selected;
(b) All other detections with likelihood of being malignant higher than a predeter-

mined threshold (if any) are also selected.

3. A new training data set is created, so that detections made on nonmalign scans are
considered as false positives (and labeled as 0) and the above selected regions are
considered as true-positives (or malign hotspots, labeled as 1);

4. Train a new classifier Ci with the new training data set.

The algorithm runs during a predetermined number of iterations (set as 100 in the
current experiments). Other stopping criteria will be pursued in the future. A schematic
description of hotBSI is given in Algorithm 1 and Figure 1. The value of the threshold was
set to 0.8.

Algorithm 1 hotBSI algorithm
Inputs:
NM - feature set from all the hotspots extracted from the nonmalign images
M - feature set from all the hotspots extracted from the malign images
T - threshold (default as 0.8)
NrIt - number of iterations (default as 100)

Output:
C - a classifier to classify new hotspots as nonmalign or malign

1: Train an initial classifier, C0, with the input features (NM ∪M)
2: for i = 1:NrIt do
3: Empty M
4: for each patient in the malign set do
5: Use Ci−1 to predict the probabilities of the detections to be a metastases (Pmet)
6: Identify the hotspot with the highest likelihood of being a metastasis (Pmax)
7: for d = 1 : number of detected hotspots for the current patient do
8: if Pmet(d) == Pmax || Pmet(d) > T then
9: Add the hotspot to M

10: Create a new training set, NM ∪M
11: Train a new classifier Ci with the new training data set
12: return CNrIt
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Figure 1. hotBSI algorithm. NM stands for detections labeled as nonmalignant, while M stands for
detections labeled for training in a given iteration as malignant.

3.2. Learning Algorithms

The classifiers were trained using four different supervised learning algorithms: (i) a
support vector machine (SVM) trained with a linear kernel with scale 1, where the values
obtained with the linear SVM score function (bias = 1.08) were transformed into posterior
probabilities using the sigmoid function with slope −1.40 and intercept 0.06; (ii) k-nearest
neighbors (KNN), trained with five nearest neighbors with uniform weighting and the
Euclidean distance function as the distance metric; (iii) decision trees (DTs), trained with
a minimum of 10 samples per branch node, a maximum number of splits equal to the
number of samples minus one and the Gini’s diversity index as the split criterion and (iv)
linear discriminant analysis (LDA) with ’Delta’ (linear coefficient threshold) and ’Gamma’
(amount of regularization) both equal to 0.

4. Materials and Methods

This section encompasses several details related with the implementation and evalu-
ation. The database is described in Section 4.1. The methodology is given in Section 4.2,
including the method for the detection of hotspots, the list of extracted features, and the
state of the art classification techniques used for comparison with the proposed iterative
method. Lastly, the evaluation methodology is presented in Section 4.3.

4.1. Database

The database consists of 195 bone scintigraphy images from 102 patients with prostate
cancer with suspected bone metastatic disease. The equipment used for scanning patients
was either a Millennium MG (GE Medical Systems), which digitally record anterior and
posterior scans with a resolution of 1024× 256 pixels, or a BrightView (Philips Healthcare),
which digitally records anterior and posterior scans with a resolution of 1024× 512 pixels.
The pixel depth (maximum number of counts which could be stored in a pixel) is 16-bits
for every image. For each bone scan, a medical report describing the condition of the
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patient in question written by a nuclear medicine physician is available. All data was
provided by Instituto Português de Oncologia do Porto Francisco Gentil (IPO Porto).
The data was collected and held anonymously and the developed algorithms did not
contain information concerning the patients, but rather information extracted from the data
during the algorithm development. This project was authorized by IPO-Porto Healthcare
Ethics Committee.

The scans were organized into three categories: (i) healthy, if no suspicious bone
uptake was detected, (ii) benign, if bone hotspots with no metastatic origin are present or
(iii) malign, if bone metastases exist. Table 1 summarizes the available database, including
the number of bone scans per category. It is important to point out that images from the
malign category can also present benign hotspots.

Table 1. Database summary. The database consists of a total of 195 bone scans divided into one of
three categories: healthy, if no suspicious bone uptakes were detected, benign if bone hotspots with
benign origins are present, or malign, if the images have bone metastases.

Bone Scan Type No of Bone Scans

Healthy 37
Benign 72
Malign 86

Total 195

4.2. Methodology

The methodology proposed in this paper for the automatic false positives reduction
of hotspots in bone scintigraphy images involves a three step process (Figure 2): detection
of the hotspots, extraction of features from the detected hotspots and training an algorithm
for the classification of the detected regions.

Hotspots detection Features
Extraction Classification

Bayesian
Surprise

Shape and
Intensity

Learnt

hotBSI

One-class
Classifier

Clustering

Figure 2. Methodology overview.

4.2.1. Hotspots Detection

Although a customised hotspots detection algorithm was developed, we note that the
here proposed algorithm, hotBSI, is independent of the detection algorithm and can be
used with any detector of choice.
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The present detector is based on the approach proposed in [23], where a technique
based on Bayesian surprise is used to detect calcifications in mammogram images. The
algorithm takes advantage of the fact that the hotspots are bright regions (that is, regions
with higher grey levels) surrounded by pixels with lower grey values. The first step of the
algorithm consists in applying a mask to the original image to exclude the background
and keep solely the body of the patient. The mask was obtained by binarizing the original
grayscale image by thresholding using the Otsu’s method [24] Then, the hotspots were
detected through the following steps (Figure 3):

1. Consider a square patch of the masked image with half-radius rin;
2. Consider the region surrounding the patch described in 1, defined by a radius

rout =
√

2 · rin and with centre coinciding with that of the inner patch;
3. Calculate the mean grey level of both the inner patch and the surrounding region;
4. Compare the mean grey levels: if the absolute difference of the two values is higher

than a certain threshold δ, the inner patch is considered a hotspot.

Figure 3. Detection illustration. Note that for illustration purposes, only one region is being tested in the current image.
In the full detection algorithm, all of the regions within the mask are evaluated.

The steps were repeated for every patch in the masked image with the following
empirically obtained values: rin = 5 cm and δ = 20. The final threshold δ was chosen to
obtain as few false positives as possible, while at the same time not losing any malignant
hotspot. In this way, a considerable amount of hotspots not related to bone metastases
are detected with this algorithm. These hotspots can be due to some kind of benign bone
condition or can be due to normal and healthy physiological processes. Since the patient
condition is determined through the assessment of the malign bone lesions, the number of
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false positive detections should be reduced. This was achieved through the development of
classification algorithms, which require the extraction of features from the detected regions.

4.2.2. Feature Extraction

The detection algorithm is followed by a feature extraction stage which obtains the
features from the hotspots that will serve as input to a classification algorithm. Two types
of features were extracted: handcrafted low-level features and learnt high-level features.

Sixteen (16) shape and four (4) intensity handcrafted features were first extracted from
each automatically detected region. The list of the handcrafted features can be found in
Table A1 in the Appendix A.

High-level features were extracted using the convolutional base of a pretrained CNN.
Since the used CNN requires input images of size n× n× 3, each automatically detected
patch was converted into RGB by replicating the grey image in each channel. The detections
were also resized so that their size matched the one required by the input layer of the
network in question, 224× 224× 3. Next, a pretrained ResNet18 network was used to
extract features from the regions (we refer to [25] for a review of deep learning). The “pool5”
layer was used as the output layer to extract a 512-dimensional vector for each possible
hotspot (see Figure A1 of Appendix B).

4.2.3. Methods Used for Comparison

Two state-of-the-art methods were used as a comparison with the hotBSI algorithm
here proposed. Given the lack of a fully annotated database, which precluded the use of
supervised learning methods, an unsupervised and a semisupervised learning algorithms
were used.

For the unsupervised method, a clustering technique with the k-means clustering
algorithm was used. A k-means clustering algorithm with two clusters was initially applied
to the training set, and a model for the classification of new data was built by assuming
that each final cluster represented a class and by assigning each hotspot from the test set to
the nearest cluster centroid. By choosing two clusters, it was expected that the data could
be partitioned into a cluster of nonmalign data and a cluster of malign data (metastases).
The distance metric used for defining the initial clusters, as well as to assign new data to
these clusters, was the square Euclidean distance.

The semisupervised method was a one-class classification (OCC) algorithm.
The hotspots extracted from the nonmalign set (false positives) were used to train an
one-class support vector machine algorithm (OC-SVM), and a model which classified new
hotspots as nonmalign or as outliers (here considered to be metastases—true positives)
was obtained. The OC-SVM algorithm used was the one proposed by [26] and was trained
with an outlier fraction of 5%, a Gaussian kernel function with a Kernel scale parameter of
1.81 and a Sequential Minimal Optimization (SMO) as an optimization routine.

4.3. Evaluation Methodology

In the present work, detections automatically made in scans from the bone scan cate-
gory Healthy and Benign were considered as false positives, whereas detections extracted
made in scans with the bone scan category Malign were considered as true positives.

A test set was created with the detections extracted from scans of 30 patients randomly
chosen from the Healthy, Benign and Malign bone scan categories (10 patients per category).
This test data set (and only this test data set) was manually labeled, identifying the true
detections (malign) and the false positive ones (nonmalign). The number of patients
and detections per class for the training and the test set are presented in Table 2. We do
acknowledge the imbalanced nature of the data set and intend to experiment on ways to
deal with this issue in the future [27,28].
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Table 2. Split of the dataset.

Bone Scan Category No. of Patients No. of Detections
Training Test Training Test

Nonmalign 89 20 1941 393
Malign 76 10 5620 918

Total 65 30 7561 1311

The algorithms were evaluated using common performance metrics such as sensitivity,
specificity, accuracy, precision, false positive rate (FPR), F1-score and AUC (area under
the ROC curve). In addiction, the false negative rate (FNR) is also calculated, as it was
considered that a low FNR was of special importance for this particular classifier.

Since the goal of this algorithm is to be used in the clinical practice to aid physicians in
the diagnose and follow-up of patients with metastatic cancer, it is important that the final
algorithm has a FNR as low as possible. A high FNR would mean that the algorithm was
classifying a lot of malign hotspots as nonmalign, which could be dangerous to the patient,
as it was failing to diagnose them with the disease and preventing them from having access
to an early treatment.

5. Results

In this section, the results are reported. The performance of the detection algorithm
is firstly shown (Section 5.1), followed by the analysis of the efficiency of the different
classification algorithms to remove false positive detections (Section 5.2). For each classifi-
cation model, the results obtained when using both handcrafted and high-level features
are presented.

5.1. Detection Results

The algorithm described in Section 4.2.1 successfully detected all the hotspots cor-
responding to metastases (see Table 3). Figure 4 illustrates the detection algorithm in
bone scintigraphy images from the nonmalign set, while Figure 5 illustrates the detection
algorithm in bone scintigraphy images from the malign set. Comparing the results with
the respective patient’s medical reports, it can be concluded that the algorithm successfully
detected all the hotspots corresponding to metastases. On the other hand, this algorithm
presents a high rate of false positive detections: approximately 73% of the detected hotspots
were not metastases. Observing the figures, it can be seen that most of the detected hotspots
are healthy or benign (that is, nonmalign), while only a small percentage of the detected
hotspots are actually metastases.

Table 3. Results of the detection phase.

TP 1.00
FN 0.00
FP 0.73

Sensitivity 0.00
FNR 0.00

Precision 0.58
F1 0.73

FPPI 32
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Figure 4. Results of the detection algorithm in bone scintigraphy images from the nonmalign set. The
colours of the bounding boxes were manually chosen for the purposes of illustration, according to
the respective medical report of the patient: red represents metastases, green represents benign bone
lesions and yellow represents false positives (hotspots that are neither malign nor benign lesions).

Figure 5. Results of the detection algorithm in bone scintigraphy images from the malign set.
The colours of the bounding boxes were manually chosen for the purposes of illustration, according to
the respective medical report of the patient: red represents metastases, green represents benign bone
lesions and yellow represents false positives (hotspots that are neither malign nor benign lesions).

5.2. False Positive Attenuation Results

The proposed algorithm, hotBSI, was used to classify the hotspots from the test set.
Tables 4 and 5 gather the performance results for the hotBSI trained with SVM/KNN and
DTs/DLA, respectively. Results obtained with the k-means and one-class classification
algorithms are shown in Table 6. In all tables, results for both handcrafted (HC) and
ResNet18 (RN18) features are presented.
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The confusion matrices obtained with all the algorithms can be found in Figures A2–A7
of Appendix C.

Table 4. Results with the hotBSI trained with support vector machine and k-nearest neighbors.

Classifier SVM KNN

HC RN18 HC RN18
Sensitivity 0.13 0.63 0.85 0.67
Specificity 0.83 0.58 0.17 0.51
Accuracy 0.65 0.59 0.35 0.55

FNR 0.86 0.37 0.15 0.32
FPR 0.18 0.42 0.83 0.49

Precision 0.23 0.35 0.27 0.34
F1 0.17 0.46 0.41 0.45

AUC 0.50 0.66 0.52 0.62

Table 5. Results with the hotBSI trained with decision trees and linear discriminant analysis.

Classifier DTs LDA

HC RN18 HC RN18
Sensitivity 0.92 0.80 0.83 0.70
Specificity 0.14 0.33 0.19 0.43
Accuracy 0.35 0.46 0.36 0.51

FNR 0.08 0.20 0.17 0.30
FPR 0.86 0.66 0.81 0.56

Precision 0.28 0.31 0.28 0.31
F1 0.43 0.44 0.41 0.43

AUC 0.46 0.57 0.44 0.59

Table 6. Results with OCC and Kmeans.

Classifier k-Means OCC

HC RN18 HC RN18
Sensitivity 0.17 0.08 0.08 0.26
Specificity 0.86 0.92 0.90 0.72
Accuracy 0.67 0.70 0.68 0.60

FNR 0.83 0.92 0.92 0.74
FPR 0.14 0.92 0.10 0.28

Precision 0.30 0.28 0.23 0.26
F1 0.22 0.13 0.12 0.14

AUC – – 0.51 0.50

6. Discussion

This work had as main goal the development of an algorithm capable of automatically
identifying metastases in bone scintigraphy images from patients with prostate cancer.
If successful, this algorithm could be used in the clinical practice to quantify bone scans
and work as an aiding tool for the diagnosis and follow-up of patients with bone metas-
tases. Despite consensus on the need for such an algorithm, and despite efforts of the
scientific community to develop one, such a diagnosis tool is currently unavailable in the
medical community.

The current work differs from the ones developed so far in the same topic in the sense
that it does not resort to a fully supervised data set to train the classifier. An algorithm
that proves to be successful even without the access to a labeled data set can be extremely
useful in the clinical context, where access to a labeled database is often difficult to achieve.
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Here, an algorithm for the automatic detection of hotspots in bone scans was sug-
gested, followed by the development of an algorithm capable of classifying the detected
hotspots as malign or nonmalign. The detection algorithm proved to be successful on a
database of patients with prostate cancer, as all malign hotspots were correctly identified.
This was guaranteed by choosing a threshold value that would ensure that no metastases
candidates were left undetected. This came at the cost of a high false positive detec-
tion rate, meaning that most of the hotspots detected by the algorithm were nonmalign.
As the patient condition is determined through the assessment of the malign bone lesions,
an algorithm for the attenuation of the false positive was developed. The evaluation metrics
considered the most relevant for the current classifier and the respective values obtained
for the proposed algorithm are now discussed.

6.1. Area under the ROC Curve (AUC)

The AUC values, usually close or equal to 0.50, translate the low to none capacity of
most classifiers to distinguish between nonmalign and malign hotspots. The highest AUC
score was obtained with the hotBSI trained with SVM and ResNet18 features (AUC = 0.66).

6.2. Sensitivity and Specificity

High values of sensitivity and specificity were only obtained when the classifier
was biased toward one class: high sensitivity scores (>0.85) were always accompanied
by a low specificity score, which meant that it was considering almost every hotspot to
belong to the positive (malign) class; on the other hand, high specificity scores (>0.85)
were always accompanied by a low sensitivity score, meaning that it was assigning the
majority of hotspots to the negative (nonmalign) class. Neither situation is desirable
for the final algorithm. The classifiers with more balanced scores in terms of sensitivity
and specificity were (i) the hotBSI trained with SVM and ResNet18 features (sensitivity
= 0.63, specificity = 0.58) and (ii) the hotBSI trained with KNN and ResNet18 features
(sensitivity = 0.67, specificity = 0.51).

6.3. False Negative Rate (FNR)

An important evaluation metric for an algorithm whose goal is to classify hotspots
in patients who might have bone metastases is the false negative rate. It is desirable that
this value is as low as possible, as a low FNR would mean that the classifier was incor-
rectly labelling a lot of malign hotspots (metastases) as nonmalign; this would result in
an algorithm that would label patients with metastatic cancer as healthy, which would be
dangerous is the clinical context. Very low FNR only happened with classifiers that were
assigning almost every hotspot to the malign class: taking a look at the hotBSI trained
with decision trees it can be observed that a FNR rate of 0.08 was obtained. Although at
first glance this may seem like an almost perfect result, further analysis on the remaining
metrics lead us to conclude that this FNR only happens because the classifier is assign-
ing almost every hotspot to the malign class and, therefore, it had a low probability of
missing metastases (sensitivity = 0.92, specificity = 0.14). Such a classifier is obviously not
acceptable, as it has no discriminatory power. Classifiers that obtained lower FNR while
keeping more acceptable values for the other metrics include (i) the hotBSI trained with
discriminant analysis and ResNet18 features (FNR = 0.30), (ii) the hotBSI trained with KNN
and ResNet18 features (FNR = 0.33) and (iii) the hotBSI trained with SVM and ResNet18
features (FNR = 0.37).

6.4. False Positive Rate Reduction

As mentioned in Section 5.1, the detection algorithm presented a false positive rate
of 73.07%. After applying the classifiers to these detections, the lowest FPR scores were
obtained with (i) the hotBSI trained with SVM and handcrafted features (FPR = 0.18),
(ii) the OCC trained with handcrafted and ResNet18 features (FPR = 0.10 and FPR = 0.28,
respectively) and (iii) k-means with handcrafted features (FPR = 0.14). This low values are,



J. Imaging 2021, 7, 148 14 of 21

however, only due the fact that these algorithms were classifying most of the metastases
as nonmalign, which is not desirable, as it will lead to a high FNR. The classifier that
presented the lowest FPR while keeping an acceptable value for the FNR was the hotBSI
trained with SVM and ResNet18 features (FPR = 0.42). This represents a decrease of 30.59%
compared to the FPR score obtained with initial detection algorithm, when no classifiers
had been yet applied.

6.5. Comparison with the State-of-the-Art Algorithms

Table 7 gathers the best results obtained with the hotBSI algorithm, as well as the
best results obtained with the k-means and one-class classifier. The best hotBSI algorithm
was considered to be the one trained with SVM and ResNet18 features; the best k-means
and one-class algorithms were considered to be the ones trained with handcrafted and
ResNet18 features, respectively. The proposed algorithm shows superiority in almost every
metric, in particular in the AUC (0.66 compared to 0.50 from the OCC classifier), sensitivity
(0.63 compared with 0.17 and 0.26 from the k-means and OCC classifiers, respectively)
and the false negative rate (0.37 compared with 0.83 and 0.74 from the k-means and OCC
classifiers, respectively). It should be noted that the only two metrics in which the state-of-
the-art algorithms performed better were accuracy and specificity. This is clearly explained
by noting that this happens since these algorithms are classifying most of the hotspots
as nonmalign (note the low sensitivity from the same classifiers); as a consequence, they
will present a high specificity, as if most of the hotspots are being classified as nonmalign
there is a better chance that the algorithm will correctly classify nonmalign hotspots as
nonmalign. Besides the low specificity, this comes with a cost of a high false negative rate,
as a lot of malign hotspots are being incorrectly classified as nonmalign. The better scores
in accuracy are also easily explained by looking at the percentage of nonmalign and malign
hotspots present in the test set: 73% of these hotspots were from the nonmalign category,
while only 27% were from the malign category. Because the k-means and OCC classifiers
are manly assigning hotspots to the negative (nonmalign) class, and because most of the
test set is composed by hotspots from this class, they will get a high accuracy score, even if
most of the data is wrongly classified. Having all of this into account, it can be concluded
that the proposed algorithm performs better than the state-of-the-art algorithms at the task
of hotspots classification and, therefore, at the task of false positive attenuation.

Table 7. Comparison of the best hotBSI with the best state-of-the-art algorithms.

hotBSI (RN18) k-Means (HC) OCC (RN18)

Sensitivity 0.63 0.17 0.26
Specificity 0.58 0.86 0.72
Accuracy 0.59 0.67 0.60

FNR 0.37 0.83 0.74
FPR 0.42 0.14 0.28

Precision 0.35 0.30 0.26
F1 0.46 0.22 0.14

AUC 0.66 – 0.50
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7. Conclusions

An algorithm for the classification of automatically detected hotspots in bone scintig-
raphy images of patients with prostate cancer was proposed. Such an algorithm can be
used in combination with computer-assisted PCa detection approaches such as the one
described in [29], making it extremely useful in the medical community, as it provides
the physicians with an aiding tool to quantify whole-body bone scans from patients with
bone metastases.

The biggest challenge when building such an algorithm is the lack of a labeled data
set. Here, we tried to overcome that problem by developing an algorithm that only
requires knowledge about the type of bone scan from which the hotspot is extracted from.
Comparison with state-of-the-art algorithms shows superiority of the proposed method.
However, analysis of the performance metrics obtained for the hotBSI shows that this
algorithm is still not ready to be used in the clinical practice: the not so high scores for
sensitivity, specificity and AUC are still a concern; the false negative rate, despite clearly
inferior to the state-of-the-art algorithms, is also still high. Improvements on the algorithm
are therefore need. These include:

• Finding features that are more discriminative, for instance, by using a different pre-
trained network, by extracting features from different layers or by extracting features
from autoencoders;

• Using other classifiers to train the hotBSI;
• Apply variations in the hotBSI, for example, by choosing a stopping criteria in the

iteration that is not the number of iterations;
• Retrain the algorithm with a more balanced data set.

Once an algorithm with a performance that is considered good enough to be used in
the clinical practice is obtained, a quantitative image biomarker can be used to automatically
quantify a bone scintigraphy of new patients with prostate cancer. Literature shows that
the most adequate image biomarker for quantifying a bone scan is the Bone Scan Index
(BSI) [22,30–33].

The final goal is to build a software that can be used in the clinical context, that is
capable of not only quantifying a given bone scintigraphy of a patient with prostate cancer,
but also give information about disease progression, response to treatment and disease
prognosis. Such a software will make the process of assessing a bone scan more objective,
simpler and faster, and will for sure be an asset in the medical community.
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Appendix A. Handcrafted Features

The full list of handcrafted features is given in Table A1.

Table A1. Name and description of the handcrafted features. Top part of the table corresponds to
shape measurements, while the bottom half are pixel value measurements.

Property Description

Area No. of pixels in the region
AxisLengthRatio Ratio between MajoraxisLength and MinoraxisLength
BoundingBox Position and size of the smallest box containing the region
Centroid Center of mass of the region
ConvexArea Number of pixels in ConvexImage 1

Eccentricity Eccentricity of the ellipse ε 2

EquivDiameter Diameter of a circle with the same area as the region

EulerNumber No. of objects in the region minus the no. of holes
in those objects

Extent Ratio of pixels in the region to pixels in the total bounding box
FilledArea Number of on pixels in FilledImage 3

InvCircularity Inverse of the roundness 4 of the object
MajoraxisLength Length (in pixels) of the major axis of ε̂ 5

MinoraxisLength Length (in pixels) of the minor axis of ε̂
Orientation Angle between the x-axis and the major axis of ε̂
Perimeter Distance around the boundary of the region

Solidity Proportion of the pixels in the convex hull that are
also in the region

MaxIntensity Value of the pixel with the greatest intensity in the region
MeanIntensity Mean of all the intensity values in the region
MinIntensity Value of the pixel with the lowest intensity in the region
WeightedCentroid Center of the region based on location and intensity value

1 ConvexImage: Image that specifies the ConvexHull 6, with all pixels within the hull filled in (binary image). 2 ε:
ellipse that has the same second-moments as the region. 3 FilledImage Image the same size as the bounding box
of the region, returned as a binary. 4 The roundness of an object is defined as 4·Area·π

Perimeter2 . 5 ε̂: ellipse that has the
same normalized second central moments as the region. 6 ConvexHull: Smallest convex polygon that can contain
the region.
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Appendix B. Learnt Features

A schematic representation of the architecture of the ResNet18 network is given in
Figure A1.

Figure A1. Diagram of ResNet18 with highlighted “pool5” layer.
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Appendix C. Confusion Matrixes

The confusion matrices obtained during the false positive attenuation phase (Section 5.2)
are given in Figures A2–A7.

Figure A2. Confusion matrices for the hotBSI-SVM trained with handcrafted (left) and ResNet18
(right) features.

Figure A3. Confusion matrices for the hotBSI-KNN trained with handcrafted (left) and ResNet18
(right) features.

Figure A4. Confusion matrices for the hotBSI-DTs trained with handcrafted (left) and ResNet18
(right) features.
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Figure A5. Confusion matrices for the hotBSI-DA trained with handcrafted (left) and ResNet18
(right) features.

Figure A6. Confusion matrices for the k-means algorithm trained with handcrafted (left) and
ResNet18 (right) features.

Figure A7. Confusion matrices for the OCC algorithm trained with handcrafted (left) and ResNet18
(right) features.
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