
INTERNATIONAL JOURNAL OF ONCOLOGY  56:  193-205,  2020

Abstract. Lung cancer is one of the most common types of 
cancer worldwide. Understanding the molecular mechanisms 
underlying the development and progression of lung cancer 
may improve early diagnosis, treatment and prognosis. The 
aim of the present study was to examine the pathogenesis of 
lung cancer and to identify potentially novel biomarkers. Gene 
expression datasets of patients with lung cancer were obtained 
from the Gene Expression Omnibus. Genes which were most 
closely associated with lung cancer (core genes) were screened 
by weighted gene co-expression network analysis. In vitro cell 
based experiments were further utilized to verify the effects of 
the core genes on the proliferation of lung cancer cells, adhe-
sion between cells and the matrix, and the associated metabolic 
pathways. Based on WGCNA screening, two gene modules 
and five core genes closely associated with lung cancer, 
including immunoglobulin superfamily member 10 (IGSF10) 
from the turquoise module, and ribonucleotide reductase regu-
latory subunit M2, protein regulator of cytokinesis 1, kinesin 
family member (KIF)14 and KIF2C from the brown module 
were identified as relevant. Survival analysis and differential 
gene expression analysis showed that there were significant 
differences in IGSF10 expression levels between the healthy 
controls and patients with lung cancer. In patients with lung 
cancer, IGSF10 expression was decreased, and the overall 
survival time of patients with lung cancer was significantly 
shortened. An MTT and colony formation assay showed that 
IGSF10‑knockout significantly increased proliferation of lung 

cancer cells, and Transwell assays and adhesion experiments 
further suggested that the adhesion between cells and the 
matrix was significantly increased in IGSF10‑knockout cells. 
Gene Set Enrichment Analysis showed that the expression 
level of IGSF10 was significantly associated with the activa-
tion of the integrin-β1/focal adhesion kinase (FAK) pathway. 
Western blotting revealed that knockout of IGSF10 resulted in 
the activation of the integrin-β1/FAK pathway, as the protein 
expression levels of integrin-β1, phosphorylated (p)-FAK 
and p‑AKT were significantly upregulated. Activation of the 
integrin-β1/FAK pathway, following knockout of IGSF10, 
affected the proliferation and adhesion of lung cancer cells. 
Therefore, IGSF10 my serve as a potential prognostic marker 
of lung cancer.

Introduction

Lung cancer is a common malignant tumour of the respira-
tory system and the morbidity and mortality rates rank among 
the highest worldwide. Lung cancer is a disease with multiple 
complex molecular networks underlying its development 
and progression (1). In recent years, there have been notable 
advancements in the understanding of the molecular mecha-
nisms involved in lung adenocarcinoma, which has resulted in 
the identification of numerous targeted drug therapies, which 
exhibit notably improved survival and prognosis in patients 
with lung cancer (2‑4). Gefitinib, erlotinib and bevacizumab 
are the most frequently used drugs for treatment of lung 
cancer (5-7). However, patients may exhibit adverse reac-
tions, drug resistance and other complications when assigned 
regimens containing these drugs (8-10). Understanding the 
molecular mechanisms underlying the development and 
progression of lung cancer may assist in the development of 
treatment measures with enhanced efficacy and improved 
outcomes, and improve early detection in patients with lung 
cancer.

The various stages of lung cancer are associated with 
up- and downregulation of various genes. Wang et al (11) 
demonstrated that microRNA (miR)-513b regulates the effects 
of high mobility group box 3 on cell proliferation, apoptosis, 
invasion and migration by regulating the mTOR signalling 
pathway in non-small cell lung cancer (NSCLC). Qiu et al (12) 
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demonstrated that circFGFR3 increases the expression of 
galetin-1, phosphorylated (p)-AKT and p-ERK1/2 through 
competitive binding with miR-22-3p, thus promoting the inva-
sion and proliferation of NSCLC. Upregulated expression of 
circFGFR3 is associated with a poor prognosis in patients with 
lung cancer (13). However, studies based on individual gene 
expression are insufficient for the investigation of the mecha-
nism of lung cancer. Interactions between genes influence gene 
expression and a comprehensive understanding of the direct 
and indirect interactions between genes will greatly assist in 
developing a comprehensive description of cell mechanisms 
and functions both in physiologically healthy cells and in 
cancerous cells.

Advances in genomics, transcriptomics and sequencing 
technology, and the used of gene co-expression networks has 
developed and been expanded in biological research (14-16). 
Gene co-expression networks are widely used in the analysis 
of high-throughput chip data, RNA sequencing, DNA methyla-
tion and other types of genome data analyses (17-19). The most 
representative gene co-expression network is the weighted gene 
co-expression network analysis (WGCNA) (20). WGCNA 
has provided meaningful advances in our understanding of 
multi-species gene analysis, such as in humans and mice, 
and has become a widely used network analysis tool (21). In 
addition, the core genes obtained by network screening can 
be supplemented and verified by biological experiments to 
further explore and verify the identified mechanisms. This 
strategy avoids a potentially blind approach in experimental 
research and confirms the validity or highlights potential 
flaws of network analyses. Sun et al (22) identified CD36 as a 
core gene based on WGCNA screening. Differential expres-
sion and increased methylation of CD36 in lung cancer were 
confirmed by reverse transcription-quantitative PCR and 
western blotting, confirming the inhibitory effect of CD36 in 
the development of lung cancer (22). An et al (23) used Gene 
Set Enrichment Analysis (GSEA) and WGCNA to identify 
potential metabolic pathways associated with the core gene 
KIBRA, which is involved in regulation of lung cancer. 
KIBRA reduced proliferation and invasion of lung cancer 
cells and induced apoptosis, and this was verified in in vitro 
experiments (23).

The aim of the present study was to identify core genes 
associated with lung cancer and construct a WGCNA network 
based on data obtained from Gene Expression Omnibus (GEO) 
and analyse the data in regards to the clinical information and 
survival information of the patients. Additionally, the effects of 
immunoglobulin superfamily member 10 (IGSF10) on prolif-
eration of lung cancer cells, cell-cell and cell-extracellular 
matrix adhesions, and associated metabolic pathways were 
determined in vitro. The mechanisms of the identified core 
genes were further explored highlighting potential biomarkers 
for the diagnosis of patients with lung cancer.

Materials and methods

Selection criteria and acquisition of the data. The 
GSE19804 lung cancer dataset (24) was obtained from GEO 
(https://www.ncbi.nlm.nih.gov/geo/). The dataset contained 
information from non-smoking women with NSCLC. NSCLC 
accounts for 85% of all lung cancer cases (25), and the 

majority of cases of lung cancer in male patients are associ-
ated with smoking, whereas the majority of lung cancer cases 
in females are not associated with smoking (26,27). In the 
present study, biomarkers associated NSCLC in non-smoking 
female patients were examined. A total of 120 samples were 
analysed, and the information did not include normal tissue 
from patients with pneumonia, but did contain information 
from the normal adjacent lung tissue samples (60 tumour 
tissues and 60 adjacent tissues). The Affymetrix Human 
Genome U133 Plus 2.0 Array (Affymetrix; Thermo Fisher 
Scientific, Inc.) annotation platform was utilized to match 
probes with gene names. Relevant clinical information was 
used for WGCNA.

Construction of a gene co‑expression network. The 
gene co-expression network was constructed using the 
WGCNA package in R (https://horvath.genetics.ucla.
edu/html/CoexpressionNetwork/Rpackages/WGCNA/). The 
top 25% of genes showing the highest levels of variance were 
screened for the construction of a weighted co-expression 
network. The power value was calculated through the pickSoft-
Threshold function of WGCNA package. The dynamic tree 
cutting algorithm of WGCNA package was used to segment 
the network module.

Identification of important clinical modules. The correlation 
between modules and clinical features was evaluated using 
Pearson's correlation coefficient analysis. Clinical information 
included age and stage. The correlation between the eigen-
genes of the module and the clinical features were assessed 
to identify key modules. Gene significance (GS) was defined 
as the linear relationship between gene expression and clinical 
information. Module significance was defined as the average 
GS, screening for all genes in each module to identify key 
modules.

Gene Ontology (GO) and Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) enrichment analysis. 
GO enr ichment ana lysis  and KEGG enr ichment 
analysis were performed on key modules using the R 
package clusterProfiler 3.14.0 (http://www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html). P<0.05 
was defined as a meaningful enrichment analysis result.

Identification of hub genes. Genes exhibited high levels of 
connectivity to nodes in a module were considered to have 
important functions. A key module network diagram was 
created using Cytoscape 3.72 (https://cytoscape.org) to screen 
for the top 30 genes with the highest levels of connectivity in 
the module network.

Survival analysis. GEPIA (http://gepia.cancer-pku.cn/) is 
a website used to analyse RNA expression data of tumours 
and normal samples in The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/). GEPIA was used 
to perform survival analysis of the previously identified hub 
genes. The gene expression was stratified into high and low 
expression according to the median values, and the signifi-
cance of expression of these genes on survival was determined 
using a log-rank test.
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Dataset validation. GEPIA contains RNA sequencing 
expression data from 9,736 tumor samples and 8,587 normal 
samples from 33 malignant tumors of TCGA and GTEx (28). 
In the present study, lung adenocarcinoma and lung squa-
mous cell carcinoma data from TCGA database were used 
to validate gene expression data for selected key genes, and 
the function of ‘BoxPlots’ was run to analyze whether the 
hub gene was differentially expressed between lung adeno-
carcinoma and lung squamous cell carcinoma and normal 
samples.

Oncomine analysis. Oncomine (https://www.oncomine.org/) is 
a database and integrated data mining platform based on gene 
chip, in which the data can be screened and mined according 
to determinable requirements. In the present study, the 
following conditions were set: i) Cancer Type, ‘Lung Cancer’; 
ii) Gene, ‘IGSF10’; iii) Analysis Type, ‘Cancer vs. Normal 
Analysis’; iv) critical value setting conditions ‘(P value<1E‑4, 
fold change>2, gene rank=top 10%)’. Hou et al (29) and 
Okayama et al (30) lung datasets were determined to meet the 
selection criterion.

Reagents. RPMI-1640 medium was purchased from Gibco; 
Thermo Fisher Scientific, Inc. FBS was purchased from 
Biological Industries. Integrin-β1 (catalog no. 9699S), p-FAK 
(catalog no. 8556S), FAK (catalog no. 71433S), p-AKT (catalog 
no. 4060S) and AKT (catalog no. 4691S) primary antibodies 
were purchased from Cell Signalling Technology, Inc. The 
IGSF10 antibody was purchased from Novus Biologicals, 
Ltd. (catalog no. H00285313-A01). The β-actin antibody 
(catalog no. sc-47778), secondary goat anti-rabbit antibody 
(horseradish peroxidase-conjugated; catalog no. sc-2004) 
and secondary goat anti-mouse antibody (horseradish perox-
idase-conjugated; catalog no. sc-2005) were purchased from 
Santa Cruz Biotechnology, Inc.

Cell culture. Human lung adenocarcinoma cell lines H1299, 
HCC827, A549 and PC9 were cultured in RPMI-1640 medium 
supplemented with 10% FBS, and incubated at 37˚C with 
5% CO2. Cells in the logarithmic growth phase were used for 
subsequent experiments.

Reverse transcription‑quantitative (RT‑q)PCR. Cell culture 
dishes were placed on ice, culture medium was removed 
and cells were washed three times with PBS. Total RNA 
was extracted using a Trizol® kit (Invitrogen; Thermo 
Fisher Scientific, Inc.). The extracted RNA was reverse 
transcribed into cDNA using a PrimeScript® RT Reagent 
kit with DNA Eraser (Takara Bio Inc.) according to the 
manufacturer's instructions. qPCR was performed using 
SYBR® Premix EX TaqTM II (Tli RNaseH Plus, Takara 
Bio, Inc.) on an Applied Biosystems® 7500 Real-Time PCR 
System (Thermo Fisher Scientific, USA), and 18s was used 
as the internal reference gene. The qPCR conditions were 
10 min at 95˚C followed by 45 cycles at 95˚C for 15 sec and 
58˚C for 34 sec. The sequences of the primers used were: 
IGSF10 forward, 5'-CTGGGGAGTCCAATTGCTGT-3' and 
reverse, 5'-GCTGCCTTTGCTGACATC-3'; and 18S forward, 
5'-GGTGAAGGTCGGAGTCAACGG-3' and reverse, 
5'-GAGGTCAATGAAGGGGTCATTG-3'.

Western blotting. Protein samples were lysed at 4˚C using 
RIPA lysis buffer (1% Triton X-100, 50 mM Tris-HCl 
pH 7.4, 150 mM NaCl, 10 mM EDTA, 100 mM NaF, 
1 mM Na3VO4, 1 mM PMSF and 2 µg/ml aprotinin) for 
40 min. The samples were centrifuged at 18,620 x g for 
25 min at 4˚C. The supernatants were obtained, and the 
protein concentration was quantified using the Coomassie 
Brilliant Blue method (31). Samples were mixed with 
3x sample buffer solution and boiled for 5 min. Protein 
samples were loaded on a 12% SDS-gel (30-50 µg/lane) and 
resolved using SDS-PAGE for 3 h. Resolved proteins were 
transferred to a nitrocellulose membrane (voltage, 2 mV/cm2 
for 120 min). Membranes were blocked with 5% skimmed 
milk for 1 h at room temperature, and the membrane was 
cut according to the molecular weight of the protein of 
interest based on a pre-stained protein ladder. Subsequently, 
the membranes were incubated with the primary antibody 
overnight at 4˚C. The primary antibody dilutions were 
prepared as follows: Integrin-β1, 1:1,000; p-FAK, 1:500; 
FAK, 1:1,000; p-AKT, 1:1,000; AKT, 1,000; IGSF10, 1:1000; 
and β-actin, 1:500. The following day, the membranes 
were washed four times with TBST buffer (10 mM Tris-Cl 
pH 7.4, 150 mM NaCl, 0.1% Tween-20) and incubated with 
the appropriate secondary antibody (1:2,000) for 30 min 
at room temperature. Membranes were washed again four 
times again with TBST and signals were visualized using 
enhanced chemiluminescence reagent (SuperSignal Western 
Pico Chemiluminescent Substrate; Pierce; Thermo Fisher 
Scientific, Inc.). Densitometry analysis was performed using 
ImageJ Pro Plus 6.0 (National Institutes of Health).

Liposome‑mediated cell transfection. Healthy cells in the 
logarithmic growth phase were trypsinized to a single cell 
suspension, plated in a 6-well plate at a density of 2x105/well 
and incubated overnight. Once the cells had adhered, they were 
transfected with 5 µl IGSF10-small interfering (si)RNA or 
negative control (NC)-siRNA from Santa Cruz Biotechnology, 
Inc. The sequences of the IGSF10-specific siRNA and 
NC-siRNA were 5'-AGGUGUUUCCCAGAUUACCdTdt-3' 
and 5'-UUCUCCGAACGUGUCACGUTT-3', respectively. 
Lipofectamine® 2000 (5 µl) was mixed with RPMI-1640 
medium and left to stand for 5 min at room temperature. 
Subsequently, 10 µl siRNA was added to 240 µl RPMI-1640 
medium and mixed with the Lipofectamine® 2000 and 
RPMI-1640 mixture prepared above. The 6-well plates 
containing the cells were incubated for 20 min, after which 
the medium was removed and 1.5 ml RPMI-1640 medium 
was added, and the transfection solution prepared above was 
added. Cells were incubated with the transfection mixture for 
6-8 h, after which the medium was replaced with supplemented 
RPMI-1640 medium.

Cell viability. To determine cell viability, cells were prepared 
and transfected as described above. The absorbance values 
were measured after transfection to evaluate the effect of 
IGSF10-knockdown on cell viability. To measure viability, 
20 µl MTT solution (5 mg/ml) was added to each well and 
incubated for another 4 h. Subsequently, the supernatant was 
removed, 200 µl DMSO was added to each well the plate was 
gently agitated until the formazan crystals were completely 
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dissolved. Absorbance was measured at 570 nm with a micro-
plate reader at 0, 24, 48, 72 and 96 h after MTT was added.

Colony formation assay. A total of 48 h after transfection, 
500 cells were plated in a 12-well culture plate and incubated. 
The growth status of the cells was observed every 3 days. 
After 2 weeks, the colonies were fixed with formaldehyde for 
10 min at room temperature and stained with 0.5% crystal 
violet solution for 40 min at room temperature. Three fields 
were randomly counted under a light microscope (magnifica-
tion, x40). The number of colonies was calculated.

Transwell migration and invasion assays. Cells were trypsin-
ized, and the samples were centrifuged at 300 x g for 5 min 
at room temperature. After discarding the supernatant, the 
samples were resuspended in RPMI-1640 medium, centrifuged 
at 300 x g for 5 min at room temperature to wash cells with 
PBS. Cells were resuspended in 200 µl RPMI-1640 medium 
and the density of cells was determined by hemocytometer. 
For the invasion assays, Transwell membranes were coated 
with Matrigel (BD Biosciences). A total of 1x104 cells were 
placed in the upper chamber of a microporous (8-µm pores) 
Transwell insert. In the lower chamber, 500 µl RPMI-1640 
supplemented with 10% FBS was added and the cells were 
incubated. Migration and invasion was determined by counting 
the number of cells that had successfully migrated through the 
membrane (migration) or invaded through the Matrigel matrix 
(invasion). After 24 h, the chamber was removed, cells which 
had not migrated or invaded were removed using a cotton 
swab, and the insert was dried at room temperature. Cells were 
subsequently fixed with 4% paraformaldehyde for 10 min at 
room temperature and dyed for 1 min using the Wright Stain 
Method (32) at room temperature. Cells were incubated with 
diluted Giemsa and re-dyed for 40 min at room temperature. 
The filter membrane was dried with a cotton swab, and the 
sample was photographed.

Wound healing assay. The cells were selected, digested and 
counted, and then inoculated into 6-well culture plates and incu-
bated overnight. The next day, IGSF10-siRNA and NC-siRNA 
were used for transfection. A total of 48 h after transfection, 
when the confluence was close to 100%, a monolayer of the 
cells was scratched with a 200-µl pipette tip and photographed 
using an inverted microscope at x200. The 6-well culture plate 
was placed in the incubator and photographed again 24 h later. 
The areas of the scratches in the two photos were compared.

Adhesion experiment. Cells were plated in 96-well plates, 
which were precoated with 10 µg/ml Matrigel, overnight 
at 37˚C, at a density of 2x104 cells/well with serum-free 
RPMI‑1640. Following incubation at 37˚C for 30 min, cells 
that did not adhere to the plates were washed off with PBS. 
Adherent cells were fixed in 4% paraformaldehyde for 10 min 
at room temperature, stained with Wright-Giemsa for 40 min 
at room temperature, counted in five random fields under a 
light microscope (magnification, x200) and analyzed statisti-
cally.

Flow cytometry. The effect of IGSF10-siRNA on apoptosis 
was detected. The cells to be treated were digested with 

trypsin, centrifuged at 300 x g for 5 min at room temperature, 
washed in PBS and suspended in 200 µl buffer solution. 
Subsequently, 5 µl Annexin V-FITC (BD Biosciences) was 
added to the 195-µl cell suspension. After full mixing and 
incubation at room temperature for 10 min, the cells were 
washed with 200 µl buffer solution and resuspended in 190 µl 
buffer solution. Then, 10 µl propidium iodide (20 µg/ml) was 
added for 30 min at 37˚C. The samples were analysed using am 
Accuri C6 flow cytometer with CFlow Plus analysis software 
version 1.5 (BD Biosciences)

Statistical analysis. All data were the results of three inde-
pendent experiments, and expressed as the mean ± standard 
deviation. SPSS 22.0 (IBM Corp.) was used for statis-
tical analysis. Multiple comparisons of the means were 
performed using one-way analysis of variance followed by 

Figure 1. Weighted gene co-expression network construction and gene 
module recognition. (A) A clustering diagram of gene expression data based 
on GSE19804, which contains 60 lung cancer samples and 60 normal sam-
ples. The darker the corresponding colour block below the cluster diagram, 
the larger value of the corresponding clinical information of the sample. 
(B) The scale‑free fitting index of soft threshold power (β), and 14 is the 
most suitable power value. (C) A tree map of GSE19804 gene cluster. Each 
branch in the figure represents a gene, and each colour below represents a 
co-expression module.
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Student‑Newman‑Keuls post hoc test. P<0.05 was considered 
to indicate a statically significant difference.

Results

Acquisition of microarray data. GSE19804 raw data were 
downloaded from the GEO database. The Affymetrix Human 
Genome U133 Plus 2.0 Array platform annotation informa-
tion was used to match probes and gene names. Ultimately, 
the present study obtained a total of 120 samples, including 
the expression data of 60 normal samples and 60 lung cancer 
samples, as well as their related clinical information (Table SI).

WGCNA construction and gene module recognition. The first 
25% of variance genes in the GSE19804 chip data were used for 
cluster analysis through the WGCNA package. To ensure the reli-
ability of the network structure, no outlier samples were included 
after calculation (Fig. 1A). The first 25% of the gene expression 
data were used to construct a WGCNA. The power value of 14 
was selected (Fig. 1B), and 14 modules were generated (Fig. 1C), 
where the grey module was a gene that was not co-expressed.

The interaction between the 14 modules was analysed 
and a network heat map was generated, which demonstrated 
the relative independence between the modules (Fig. 2A). As 
presented in Fig. 2B, compared with other modules, the black, 
yellow, yellow-green and turquoise modules were positively 
correlated with tissue (having cancer or not) and negatively 
correlated with stage (cancer development stage). The purple 
and brown modules were negatively correlated with tissue 
(having cancer or not) and positively correlated with stage 

(stage of cancer development). In addition, the present study 
calculated the eigengenes of the module and clustered them 
according to their correlation with tissue. Among them, the 
brown module was most closely related to stage. Similar 
results were demonstrated by heat maps based on adjacencies 
(Fig. 2C and D). Therefore, it was determined that the turquoise 
module and the brown module were the modules most relevant 
to lung cancer. Fig. 2E and F illustrate the associations between 
the brown and turquoise modules and the genetic significance.

GO enrichment analysis and KEGG pathway analysis. The 
GO enrichment analysis and KEGG enrichment analysis of 
the brown module and turquoise module were performed 
using the R package clusterProfiler. P<0.05 was defined as a 
significant result of enrichment analysis. The results of the 
enrichment analysis were closely associated with lung cancer, 
which demonstrated the correctness of the present analysis 
results, as presented in Fig. 3A-D and Tables SII-V.

Network analysis identifies hub nodes. The present study 
conducted a visualized analysis of all the modules in 
Cytoscape, as presented in Fig. 4A, where the interrelation-
ships between the modules are shown. The turquoise module 
and brown module were imported into Cytoscape for topology 
analysis. The topological parameters of all nodes in the two 
module networks (Tables SVI and SVII) were calculated and 
the top 30 nodes of each module were screened (33), which 
were selected to draw the network diagram, as presented in 
Fig. 4B and C. A total of 60 nodes were used as candidate key 
nodes for subsequent analysis.

Figure 2. Screening hub modules related to clinical traits in lung cancer. (A) A relationship analysis diagram of the interaction of co-expressed genes. The 
different colours of the horizontal and vertical axes represent different modules. The yellow brightness in the middle indicates the degree of connection 
between the different modules. (B) A heat map of the correlation between module features and clinical information of lung cancer. The number above in each 
colour block is the correlation coefficient, and the P‑value is in parentheses below. The colour of the colour block reflects the size of the correlation coefficient, 
referring to the legend on the right. (C) A hierarchical clustering diagram of modules. The brown module is most closely related to stage. (D) A hierarchical 
clustering diagram of modules. The turquoise module is most closely related to tissue. (E) The scatter plot of the brown module eigengenes. (F) A scatter plot 
of the turquoise module eigengenes.
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Survival analysis of the hub genes. GEPIA was used to analyse 
the overall survival and P<0.05 was considered to be statisti-
cally significant. Further survival analysis was performed on 
a total of 60 key genes selected above. A total of 5 genes were 
significantly associated with the prognosis of patients (P<0.05), 
including the IGSF10 gene of the turquoise module, and the 
ribonucleotide reductase regulatory subunit M2 (RRM2), 
protein regulator of cytokinesis 1 (PRC1), kinesin family 
member (KIF)14 and KIF2C genes of the brown module 
(Fig. 5). As the expression levels of RRM2, PRC1, KIF14 and 
KIF2C in the brown module increased, the total survival time 

was significantly reduced. By contrast, as the expression of 
IGSF10 in the turquoise module decreased, the total survival 
time was significantly decreased.

Dataset validation. Lung adenocarcinoma and lung squa-
mous cell carcinoma data from TCGA database were used to 
validate the screened key genes, as presented in Fig. 6. The 
expression of IGSF10 from the turquoise module was signifi-
cantly lower in patients compared with normal controls. The 
expression levels of RRM2, PRC1, KIF14 and KIF2C from 
the brown module were higher in patients compared with 

Figure 3. GO enrichment analysis and KEGG pathway analysis of modular genes. (A) A GO enrichment analysis diagram of genes in the brown module. 
(B) A GO enrichment analysis map of genes in the turquoise module. (C) KEGG analysis of genes in the brown module. (D) KEGG analysis of genes in the 
turquoise module. The x-axis represents the number of genes, and the y-axis represents the GO term or KEGG pathway. GO, Gene Ontology; KEGG, Kyoto 
Encyclopaedia of Genes and Genomes.

Figure 4. Screening hub nodes in the network module. (A) A co-expression network diagram based on GSE19804 data. The colour of the nodes represents 
the module to which they belong. The grey connection is the co-expression relationship between the nodes. (B) In the brown module, the brown nodes are the 
top 30 nodes and the red nodes are the core nodes. The brown connections are the co-expression relationships between the nodes. (C) The turquoise nodes are 
the top 30 nodes, and the red node is the core node. The turquoise connections are the co-expression relationships between the nodes.
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normal controls. These results were consistent with those of 
the survival analysis, except that no significant difference was 

identified in KIF14 expression between patients with lung 
adenocarcinoma and normal controls.

Figure 5. Survival analysis of the core genes. (A) The survival curve of IGSF10. (B) The survival curve of RRM2. (C) The survival curve of PRC1. (D) The 
survival curve of KIF1. (E) The survival curve of KIF2C. HR, hazard ratio; IGSF10, immunoglobulin superfamily member 10; RRM2, ribonucleotide 
reductase regulatory subunit M2; PRC1, protein regulator of cytokinesis 1; KIF, kinesin family member.

Figure 6. Analysis of differential expression in normal controls and patients with cancer based on core genes of The Cancer Genome Atlas database. (A) The 
differential expression of IGSF10. (B) The differential expression of RRM2. (C) The differential expression of PRC1. (D) The differential expression of KIF14. 
(E) The differential expression of KIF2C. Red indicates high expression and grey indicates low expression. *P<0.05. LUSC, lung squamous cell carcinoma; 
LUAD, lung adenocarcinoma; IGSF10, immunoglobulin superfamily member 10; RRM2, ribonucleotide reductase regulatory subunit M2; PRC1, protein 
regulator of cytokinesis 1; KIF, kinesin family member.
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Expression of IGSF10 in different types of cancer in the 
Oncomine database. The expression of IGSF10 in normal 
controls and in different types of lung cancer was compared in 
the Oncomine database. As presented in Fig. 7A, the expres-
sion of IGSF10 was low in brain and CNS cancer, breast 
cancer, colorectal cancer, head and neck cancer, lung cancer 
and lymphoma, The expression of IGSF10 in the Hou Lung 
and Okayama Lung datasets was downregulated, as presented 
in Fig. 7B-E.

Knockdown of IGSF10 in vitro can promote the proliferation 
of lung cancer cells. To select the appropriate cell model for 
the following experiments, the present study first compared 
the expression levels of IGSF10 in lung adenocarcinoma cells 
(A549, H1299, HCC827 and PC9) (Fig. 8). A549 and PC9 
cell lines were selected for further analysis as the expres-
sion levels of IGSF10 in these cells were the highest. The 

reduction efficiency was evaluated by siRNA knockdown of 
IGSF10, followed by RT-qPCR and western blotting (Fig. 9). 
MTT experiments revealed that the proliferative ability of 
A549 and PC9 cells was significantly increased following 
IGSF10-knockdown (Fig. 10A). The colony formation 
experiments demonstrated that the number of colonies in the 
IGSF10‑siRNA transfection group was significantly higher 
compared with that in the NC-siRNA group (Fig. 10B). 
Ultimately, the effect of IGSF10 on apoptosis was evaluated by 
flow cytometry analysis. As shown in Fig. 10C, there was no 
significant difference in apoptosis between the IGSF10‑siRNA 
transfection group and the NC-siRNA group. These results 
suggest that knockdown of IGSF10 significantly promoted the 
proliferation of lung cancer cells.

Knockdown of IGSF10 in vitro enhances the invasion, 
migration and adhesion of lung cancer cells. In addition, it 

Figure 7. Expression of IGSF10 in different types of cancer in the Oncomine database. (A) Expression of IGSF10 in different cancer types based on the 
Oncomine platform. (B) Expression of IGSF10 in samples of normal and large cell carcinoma in the Hou Lung dataset. (C) Expression of IGSF10 in samples 
of normal and adenocarcinoma in the Hou Lung dataset. (D) Expression of IGSF10 in samples of normal and squamous cell lung carcinoma in the Hou Lung 
dataset. (E) Expression of IGSF10 in samples of normal and lung adenocarcinoma in the Okayama Lung dataset. IGSF10, immunoglobulin superfamily 
member 10.

Figure 8. RT-qPCR and western blotting validation of the expression level of IGSF10 in lung cancer cell lines. (A) RT-qPCR detection of mRNA expression of 
IGSF10 in four NSCLC cell lines. (B) Western blotting verified the protein expression level of IGSF10 in four NSCLC cell lines. *P<0.05. IGSF10, immuno-
globulin superfamily member 10; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; NSCLC, non-small cell lung cancer.
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was investigated whether IGSF10 can affect the invasion and 
migration of lung cancer cells. Wound healing experiments 
revealed that the knockdown of IGSF10 significantly increased 
the migration ability of A549 and PC9 cells (Fig. 11A). 
This result was further validated by Transwell and Matrigel 
experiments in which the migration and invasion ability of the 
IGSF10 siRNA transfection group was significantly enhanced 

(Fig. 11B). In Fig. 11C, the adhesion experiment confirmed that 
the adhesion between cells and the matrix was significantly 
enhanced following IGSF10-knockdown.

Integrin‑β1/FAK pathway is activated following knockout of 
IGSF10 in vitro. GSEA demonstrated that IGSF10 was signifi-
cantly associated with ‘ECM receptor interaction’ and ‘Focal 

Figure 9. RT‑qPCR and western blotting validation of the knockdown efficiency of IGSF10 siRNA. (A) RT‑qPCR and (B) western blotting verified 
siRNA-mediated inhibition of IGSF10 expression in A549 and PC9 cells. ***P<0.001. RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction; 
IGSF10, immunoglobulin superfamily member 10; si, small interfering; NC, negative control.

Figure 10. Effect of IGSF10-knockdown on the proliferation of lung cancer cells. (A) MTT assay and (B) colony formation experiment detected the changes 
in proliferation ability of A549 and PC9 cells after IGSF10‑siRNA transfection. Magnification, x40. (C) Apoptosis was detected by flow cytometry. **P<0.01, 
***P<0.001 vs. NC. ns, not significant; NC, negative control; IGSF10, immunoglobulin superfamily member 10; si, small interfering; PI, propidium iodide; OD, 
optical density.
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Figure 11. Effects of IGSF10 on invasion, migration and adhesion of lung cancer cells. (A) Scratch test showed that the knockdown of IGSF10 could increase 
the migration ability of A549 and PC9 cells. (B) Transwell experiment was performed 48 h after IGSF10-siRNA transfection. The number of cells on the 
Transwell membrane was compared. The results showed that the ability of migration and invasion was significantly upregulated. (C) The adhesion capacity 
between A549 and PC9 cells and the matrix significantly increased following knockdown of IGSF10. Magnification, x200. *P<0.05, **P<0.01, ***P<0.001. NC, 
negative control; IGSF10, immunoglobulin superfamily member 10; si, small interfering;

Figure 12. Activation of the integrin-β1/FAK pathway after IGSF10-knockdown. (A) KEGG_ECM_RECEPTOR_INTERACTION. (B) KEGG_FOCAL_
ADHESION. (C) The protein expression level changes of integrin-β1, p-FAK, p-AKT, FAK and AKT were detected by western blotting. FAK, focal adhesion 
kinase; p, phosphorylated; si, small interfering; NC, negative control; IGSF10, immunoglobulin superfamily member 10.
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adhesion’. Therefore, these results were verified by western 
blotting.

Integrins are located on the surface of the cell membrane 
and are cross-membrane receptors that promote the adhesion 
of the cell-extracellular matrix. The integrin family plays an 
important role in cell adhesion (34,35). The present study 
aimed to investigate the relationship between IGSF10 and the 
integrin pathway in lung cancer. As presented in Fig. 12, the 
protein expression levels of integrin-β1, p-FAK and p-AKT 
were significantly upregulated following the knockout of 
IGSF10 in A549 and PC9 cells. The protein expression levels 
of FAK and AKT did not change significantly. These results 
showed that after knocking out IGSF10, the activation of the 
integrin-β1/FAK pathway in NSCLC cells may promote the 
malignant phenotype of tumour cells (Fig. 12).

Discussion

The occurrence and development of lung cancer is similar 
to that of most tumours, which is a multi-stage development 
process with multiple genes and multiple factors (36,37). An 
in-depth understanding of the molecular mechanism of the 
occurrence and development of lung cancer is conducive to 
developing effective targeted therapies, while also providing 
clues for the early diagnosis of lung cancer (38). The present 
study used WGCNA to investigate biomarkers associated with 
the pathogenesis of lung cancer. A total of 14 gene modules 
were divided in the WGCNA network based on the GSE19804 
dataset, of which two modules were significantly correlated 
with lung cancer (both P<0.001). Five core genes, including 
IGSF10, RRM2, PRC1, KIF14 and KIF2C, were obtained 
from these two modules. Among them, there have been reports 
on the mechanisms of RRM2, PRC1, KIF14 and KIF2C in 
lung cancer.

RRM2 is often highly active in lung cancer cells (39), and 
its expression level is associated with tumour cell invasion, 
tumour angiogenesis, tumour metastasis and the prognosis 
of patients (40-43). Therefore, RRM2 is closely related to the 
biological behaviour and metastasis potential of malignant 
tumours.

The PRC1 gene causes disorders in the body in a specific 
carcinogenic pattern that is associated with the occurrence of a 
variety of human cancer types (44). The results of gene expres-
sion analysis have demonstrated that the expression of PRC1 
is upregulated in numerous types of clinical cancer, including 
colon cancer, non-small cell lung cancer, pancreatic cancer 
and breast cancer (45-47). This suggests that PRC1 may be an 
important tumour-promoting gene, playing an important role 
in the occurrence and development of numerous malignant 
tumours. Chen et al (48) found that the high expression of 
PRC1 can promote the proliferation and metastasis of hepa-
tocellular carcinoma (HCC) cells through a mutual regulation 
of the Wnt/β-catenin signalling pathway, thus promoting the 
early recurrence and poor prognosis of HCC. Tang et al (49) 
suggested that PRC1 may be associated with poor prognosis 
in non-small cell lung cancer. At the same time, the expression 
level of PRC1 in the cancer tissues of patients with non-small 
cell lung cancer after chemotherapy was lower than that before 
chemotherapy. This suggests that under certain conditions, the 
mRNA level of PRC1 can not only predict the prognosis of 

patients but may also be used as an important reference index 
to evaluate the effect of tumour treatment.

Hung et al (50) studied the expression levels of KIF14 in 
122 cases of lung adenocarcinoma and found that ~30% of 
patients with lung adenocarcinoma exhibited a downregula-
tion of KIF14 expression. In addition, the decreased expression 
of KIF14 was significantly correlated with the overall survival 
rate of patients with lung cancer. Corson et al (51) found that 
the expression level of KIF14 is significantly associated with 
the disease-free survival rate and overall survival rate, and can 
be used as a prognostic marker of lung cancer.

Bai et al (52) analysed the microarray data of GSE31210 
containing lung adenocarcinoma (n=226) and normal lung 
tissue (n=20) samples and found that the high expression of 
KIF2C was closely associated with the recurrence of lung 
adenocarcinoma and tumour stage. The overall survival rate 
of patients with lung adenocarcinoma with a high expression 
of KIF2C was significantly decreased.

Song et al (53) also obtained similar conclusions based on 
a differential gene expression analysis in GEO datasets.

At present, there are few studies on IGSF10 in the litera-
ture, and the mechanism related to lung cancer is unclear, 
warranting further study (54,55). The present study used the 
Oncomine database to investigate the expression of IGSF10 
in different cancer types, which revealed that the expression 
of IGSF10 was low in numerous types of cancer. In addition 
to low expression of IGSF10 in lung cancer, low expression 
was found in breast cancer, colon cancer and head and neck 
cancer. To clarify the mechanism of IGSF10 in lung cancer, 
the present study further examined the effect of IGSF10 on the 
proliferation of lung cancer cells, the adhesion between cells 
and the matrix, and the related metabolic pathways through 
cell biology experiments. The experimental results showed 
that knockout of IGSF10 significantly promoted the prolifera-
tion of lung cancer cells, enhanced the adhesion between cells 
and the matrix, and activated the integrin-β1/FAK pathway, 
as demonstrated by an increase in the protein expression of 
integrin-β1, p-FAK and p-AKT. Integrin-β1 is one of the 
subunits of integrin. The FAK-mediated signal transduc-
tion activated by integrin-β1 plays an important role in this 
process. It regulates a variety of cellular functions, including 
apoptosis, cell proliferation, cell adhesion and migration by 
mediating tumour and basal membranes, tumour and host 
cell adhesion as well as signal transduction (56). Therefore, 
it plays an important role in the occurrence and metastasis of 
tumour cells (57). FAK is the mediator connecting integrin 
and downstream signal molecules in the integrin-β1/FAK 
signalling pathway, which is at the intersection of multiple 
signal pathways. Activated FAK can further activate the 
FAK-AKT pathway, FAK-Ras-MAPK pathway, FAK-PI3K 
pathway, FAK-STAT pathway and other signalling pathways, 
thus controlling transcription, translation, the cell cycle, apop-
tosis and other biological effects (58,59). Therefore, activation 
of the integrin-β1/FAK pathway following IGSF10-knockout 
may be responsible for the promotion of cell proliferation, 
enhancement of adhesion between cells and the matrix, and 
the affect on the survival rate of patients.

In conclusion, the present study revealed that the 
biomarker IGSF10 is closely associated with lung cancer 
based on WGCNA. The possible mechanism and effects of 
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IGSF10 on tumour cells were preliminarily investigated 
through biological experiments. Currently, there are a 
number or further analyses that are required. For example, 
the use of mRNA data to analyse lung cancer with high 
heterogeneity is inadequate, and combining these data with 
genome, proteome, methylation data and other multi-omics 
data for more in-depth research is necessary. In addition, with 
the advent of the high-throughput era, the construction of a 
more comprehensive bioinformatics database on lung cancer 
coupled with the expansion of the sample size will help to 
improve the accuracy of screening to explore potential gene 
biomarkers.
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