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Abstract

Although the simple diffusion model can effectively describe the movement of eukaryotic

cells on a culture surface observed at relatively low sampling frequency, at higher sampling

rates more complex models are often necessary to better fit the experimental data. Currently

available models can describe motion paths by involving additional parameters, such as lin-

earity or directional persistence in time. However sometimes difficulties arise as it is not

easy to effectively evaluate persistence in presence of a directional bias. Here we present a

procedure which helps solve this problem, based on a model which describes displacement

as the vectorial sum of three components: diffusion, persistence and directional bias. The

described model has been tested by analysing the migratory behaviour of simulated cell

populations and used to analyse a collection of experimental datasets, obtained by observ-

ing cell cultures in time lapse microscopy. Overall, the method produces a good description

of migration behaviour as it appears to capture the expected increase in the directional bias

in presence of wound without a large concomitant increase in the persistence module, allow-

ing it to remain as a physically meaningful quantity in the presence of a directional stimulus.

Introduction

Eukaryotic cells growing on culture plates in standard conditions move in all possible direc-

tions travelling smaller or larger distances, depending on cell type. Cell movement is usually

described by using numerical parameters and mathematical models provide powerful options

to better understand cell behaviour and to test hypotheses. The diffusive model is possibly the

simplest model used to describe cell movement and is based on the assumption that cells move

freely without a preferential direction and the probability of changing direction is the same at

sampling each time. The diffusive model also implies that each movement is independent

from that of the previous time steps, and that mean squared displacement (MSD) is

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0272259 August 2, 2022 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Toscano E, Sepe L, del Giudice G, Tufano

R, Paolella G (2022) A three component model for

superdiffusive motion effectively describes

migration of eukaryotic cells moving freely or

under a directional stimulus. PLoS ONE 17(8):

e0272259. https://doi.org/10.1371/journal.

pone.0272259

Editor: Alejandra Clark, PLOS, UNITED KINGDOM

Received: August 5, 2021

Accepted: July 15, 2022

Published: August 2, 2022

Copyright: © 2022 Toscano et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: E.T., L.S, R.T. were partially founded by

PON01_00486 Programma Operativo Nazionale

“Ricerca e Competitività 2007-2013” by MIUR

(https://www.miur.gov.it). R.T was the recipient of

a PhD fellowship by University Federico II (www.

unina.it). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

https://orcid.org/0000-0001-5013-5198
https://orcid.org/0000-0002-1836-5281
https://doi.org/10.1371/journal.pone.0272259
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272259&domain=pdf&date_stamp=2022-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272259&domain=pdf&date_stamp=2022-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272259&domain=pdf&date_stamp=2022-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272259&domain=pdf&date_stamp=2022-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272259&domain=pdf&date_stamp=2022-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272259&domain=pdf&date_stamp=2022-08-02
https://doi.org/10.1371/journal.pone.0272259
https://doi.org/10.1371/journal.pone.0272259
http://creativecommons.org/licenses/by/4.0/
https://www.miur.gov.it
http://www.unina.it
http://www.unina.it


proportional to elapsed time, according to a diffusion coefficient (D). This model is mostly

accurate when suitably long observation times are used [1, 2]. The diffusive model may be

extended to include additional motion patterns by introducing an α exponent (MSD = ktα)

which, for a purely diffusive movement, is equal to 1. The k parameter assumes different mean-

ings for different α values, specifically for α = 1 k = 2dD, where d is the number of dimensions,

while for α = 2 k = v2 as in uniform linear motion, where v represents the speed. Values of α
ranging between 1 and 2, define various types of superdiffusive movements, such as those pro-

duced by the presence of directional bias and/or persistence [3, 4]. Directionally biased move-

ment is typically observed in presence of a molecular gradient, such as that generated by a

nutrient source, an attractant factor, or even a wound inflicted to the cell layer, and may be

modelled as a factor able to alter diffusive movement such as that produced by a random walk

[5] by using the equation:

MSD ¼ u2t2 þ 2dDt ð1Þ

where u is the speed increase over the purely random movement. Persistent migration, such as

that similarly produced by limiting the direction change in a random walk [5], had been

already observed in cultured cells in the seventies, when mouse fibroblasts have been found to

persist in their direction for about 2–3 hours [2]. Years later, Selmeczi et al., by evaluating the

parameters obtained from the model for both human fibroblasts and keratinocytes, proved

that these cells maintain memory of the past movement [6]. Persistence is especially observed

when movement is sampled at relatively short time periods, and appears as a sort of resistance

to a change of direction, possibly deriving from the need for membrane/cytoskeletal reorgani-

sation. Both directional bias and persistence produce a superdiffusive movement with a ten-

dency to persist in the direction of motion. However, in the case of persistence, the followed

path remains globally unbiased, meaning that there is no overall preferred direction if move-

ment is not otherwise biased. This feature, which generates a tendency to maintain, at each

time step, the direction of the previous one, has been variably referred to as persistence, linear-

ity or sometimes also directionality, and differently measured in time units, i.e. how long the

current direction influences the movement in subsequent time periods, or in terms of ratio

between net displacement and length of the followed path [7, 8]. In the model initially pro-

posed by Fürth et al. in 1920 [9]and described by Alt et al. in 1990 [10], the relation between

MDS and time (t) is given by the following equation:

MSD ¼ 2S2P t � P 1 � e� tP
� �� �

ð2Þ

where S is the root mean squared speed and P is the directional persistence time, i.e. the time

in which cell movement tends to persist in the same direction. For t<< P, the displacement is

determined by purely unidirectional motion and MSD ~ S2t2; whereas for t >> P, the move-

ment is described by a normal diffusion and MSD ~ 2S2Pt [11]. This model is particularly

effective in interpreting a wide range of superdiffusive motion patterns, starting from purely

diffusive movement, with MSD proportional to time, up to movement along an almost straight

line with MSD proportional to squared time as for uniform linear motion.

Several computational tools and methods have been developed over time, aimed to evaluate

cell movement features including speed, persistence and directionality. Almost all tools quan-

tify the length of displacements and calculate average speed; in some cases, cell persistence and

directionality are also evaluated. However, there are differences in the way the different tools

express, also in terms of units, and calculate these parameters: cAveMap [7] and iTrack4U [8]

derive persistence from relation of end-to-end distance of a cell trajectory and its total length,

while MotoCell [12, 13] and CellMissy single-cell module [14], calculate the same quantity but
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refer to it as linearity and end-point directionality ratio respectively. Pathfinder [15] describes

persistence in terms of the absolute angle of deflection, while in Cell_motility [16] and Moto-

Cell persistence is expressed in time units and is calculated by fitting the persistent model,

reported in Formula (2), to MSDs.

This apparent confusion reflects the tight connection between directional persistence and

directional bias: as both increase path linearity and each may influence the evaluation of the

other one, wrong quantifications and misinterpretation of cell behaviour may easily occur

when, for example, cells move under a strong directional stimulus and both movement fea-

tures are present at the same time.

The model proposed in this study improves on that, by describing cell displacement as the

vectorial sum of three vectors, corresponding to random, persistence and bias components. It

was successfully tested on a large set of data from simulated and experimental cells. The proce-

dure developed on the basis of that model can effectively analyze complex cell movement and

was shown to be effective in resolving the various motion features in different combinations.

Materials and methods

Cell culture

Cells were grown in 100 mm diameter Petri plates in Dulbecco’s Modified Eagle’s Medium

(DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (10 U/ml), streptomy-

cin (10 ng/ml) and L-Glutamine (2mM) and maintained in incubator at 37˚C and with atmo-

sphere made up to 95% air and 5% CO2. Cell propagation was performed by detaching cells

with a solution of trypsin/EDTA (trypsin 0.05% and 0.53 mM EDTA) and collecting them

with complete culture medium. After centrifugation at 1200 rpm for 5 minutes, pellets were

suspended in fresh medium, properly diluted, and plated again.

The cell lines used for time lapse acquisitions include murine fibroblasts NIH-3T3 [17] and

NIH-Ras produced by transfecting RasV12 into NIH-3T3 as also reported in previous articles

[18], and human immortalized cell lines HeLa from cervical cancer [19], T24 from bladder car-

cinoma [20] and MDA-MB-231 from breast cancer [21].

Motility assay

To investigate the random movement ability, 25000 cells/well were seeded in 12 well plates

and maintained in complete medium at 37˚C in an incubator with 5% CO2. After 16–18

hours, the plate was placed in the incubator chamber of the microscope. For wound healing

assays, cells were seeded in confluent monolayers by plating 250000 cell/well in 12 well plates

in complete medium; 24 hours after plating the cell layer was scratched with sterile pipette tip.

Data acquisition

Phase contrast images (objective 10x) of different samples have been acquired every 10 min-

utes for 24 hours by using the Zeiss Cell Observer system composed by an inverted microscope

(Axiovert 200M), an incubator chamber that maintains the temperature at 37˚C and CO2

pressure at 5%, and a digital camera (Axiocam H/R). A motorised stage along the three axes

permits prolonged automatic acquisitions at different positions. For this work, digital frames

were acquired as 8 bit images of 650x514 pixels. The pixel scale of the acquired images is 0.767

pixel/μm, obtained by acquiring with the same system an image of a Burker chamber with

known measures.

Cell displacements have been tracked by using a semi-automated procedure available

within MotoCell [12]. The tracking procedure allows to collect cell positions (in terms of x/y
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coordinates) at different times (frames) to construct the entire path of each cell that is charac-

terised by an origin (start, newborn, found, gone in) and a destiny (split, dead, lost, gone out).

The registered data are written and stored in a text file that can be read by MotoCell to perform

the quantitative analysis.

Data analysis

Mathematical, statistical and graphical analyses have been carried out within the R environ-

ment [22], using the core functions as well as the following packages: graphics and stats from

the basic configuration and ggplot2 [23]. Functions provided within the R environment were

used either directly through the RStudio development environment [24] or by calling them

within MotoCell analysers through the Rserve [25]. Curve fitting by R function nls (non-linear

least squared) was done either by using the provided models or others described by a custom

equation, as reported in text.

Diffusive behaviour was quantified, within MotoCell, on the basis of mean squared dis-

placement (MSD) and time, by using the “Diffusion” module which fits the function MSD =

ktα to data, assigning to each value a weight proportional to the number of averaged squared

displacements. Persistence analysis was carried out by using the “Persistence” module, based

on Formula (2). The mean squared displacements were calculated by collecting and squaring

for each path the displacements corresponding to all time intervals between 40 minutes and

the full path duration, and then by averaging the squared displacements for each interval.

Time course analyses were performed by separately analysing overlapping time windows of

different length, each spanning a fraction of the total duration of the experiment. Most analy-

ses were automated by writing PHP scripts and executing them within the MotoCell

environment.

Generation of simulated cell populations

Simulated datasets used to test the developed procedure were generated by using an in silico
simulation system developed for internal uses and not yet published. Briefly, the tool is

accessed through a web application used to provide input data, including cell parameters and

general features of the experiment, through a dialog box; output data are collected in a text file

which records an “experiment” as the results of the simulation of each cell of a given “plate” at

each time point. The simulation system mimics the behaviour of a cell population by individu-

ally simulating each cell as a stochastic entity acting according to defined models representing

the main cellular processes, such as growth, proliferation, migration and death. The datasets

used in the present work were produced by only using and taking into account movement-

related features. For each simulated moving population, a bias vector and/or a persistence

module are defined, thus producing cell migration patterns ranging between completely diffu-

sive, persistent or biased, in various combinations. A cell displacement in a given time interval

(typically 40 minutes) is simulated as the resultant of a random vector, a persistence vector

with a user defined module and the same direction as the previous cell displacement, and a

user defined bias vector. No directionally biased and zero persistence movement was obtained

by zeroing the corresponding vector. The random component was obtained from a brief ran-

dom walk of n random direction sub-steps with duration corresponding to 1/nth of the time

interval and MSD equal to 1/nth of the requested MSD; for the datasets used in the present

work, the chosen value (n = 10) was selected as a good compromise between computation time

and even distribution of step lengths thus avoiding synthetic paths to be composed by random

vectors identical in module and differing only for direction. The simulation procedure with

the steps involved has been provided as pseudocode in S2 File.
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Results

1. Persistence and bias conflict in cell movement analysis

The movement of five different cell lines was followed while growing under standard culture

conditions and in wound healing experiments, i.e. while recovering from a wound inflicted to

the cell layer, a condition usually associated with directional motion, stimulated by the

inflicted wound. The selected cell lines represent a spectrum of mammalian cell types with a

range of growth features and migration patterns and include HeLa, MDA-MB-231 and T24,

which are human transformed cell lines isolated from tumours with high metastatic power,

NIH-3T3 an established untransformed cell line from murine embryonal fibroblasts and

NIH-Ras, a cell line strongly tumorigenic in nude mice with high dissemination potential,

obtained by overexpressing in NIH-3T3 the same oncogene (a constitutively active form of

Ras) known to be present in T24 cells. Images of each cell culture were acquired by time-lapse

microscopy and cell movement was characterised in terms of average displacement length per

40 minute interval, diffusion parameters α and k, persistence parameters s and p and direc-

tional bias vector module and angle (Table 1) using the procedures described under methods.

Average distance was determined by simply averaging the lengths of all cell displacements

observed during each 40 minute interval and varies between 5 and 18 μm according to cell

type and experimental conditions. When tested for diffusive motion, all cell lines exhibited a

superdiffusive behaviour, with an α coefficient well above 1, which becomes higher, often close

to 2 in presence of a wound. The observed superdiffusive movement is typical of most adher-

ent cell lines and it may usually be explained by a combination of directional persistence,

related to focal contacts between cell and culture surface [2, 26, 27], and a directional bias (raw

bias), typical of wound healing experiments. Persistence analysis in Table 1 shows that a degree

of persistence (expressed in time units) is always present, with the highest values observed dur-

ing wound healing. The raw bias, calculated by averaging all cell displacement vectors, has a

very low module (typically up to around 10% of the average distance) in randomly moving

populations and becomes much larger after a wound. In wounded populations, all cells were

observed to move towards the empty space, as indicated in column δ, where the difference is

reported between the direction of the raw bias vector and the angle expected from the position

of analyzed cells in relation to the wound (0 or 360 degrees for cells located on the left side of a

Table 1. Superdiffusion of different cell lines in different culture conditions.

cell population average distance (μm) per 40’ diffusion persistence raw bias

condition line k (μm2/minα) α s (μm/min) p (min) module (μm) δ (degrees)

random NIH-3T3 11.3 5.8 ± 2.0 1.14 ± 0.06 0.42 ± 0.06 46 ± 14 0.4 -

NIH-Ras 14.8 4.6 ± 1.7 1.25 ± 0.04 0.47 ± 0.07 58 ± 20 1.6

T24 17.9 4.2 ± 0.7 1.32 ± 0.03 0.52 ± 0.05 65 ± 14 0.8

HeLa 6.8 0.4 ± 0.07 1.37 ± 0.03 0.23 ± 0.05 40 ± 19 0.4

MDA-MB-231 5.3 0.2 ± 0.1 1.56 ± 0.09 0.22 ± 0.04 75 ± 36 0.4

wound NIH-3T3 9.5 0.1 ± 0.0 1.81 ± 0.05 0.28 ± 0.02 307 ± 85 6.0 13

NIH-Ras 14.9 0.5 ± 0.1 1.76 ± 0.04 0.40 ± 0.01 479 ± 64 10.8 19

T24 9.7 0.4 ± 0.1 1.61 ± 0.04 0.33 ± 0.03 134 ± 33 6.0 11

HeLa 6.6 0.02 ± 0.01 2.00 ± 0.10 0.23 ± 0.05 133 ± 90 4.0 6

MDA-MB-231 6.4 0.7 ± 0.1 1.33 ± 0.03 0.24 ± 0.03 55 ± 16 1.2 43

persistent simulated NIH-3T3 11.8 4.8 ± 0.7 1.18 ± 0.02 0.37 ± 0.01 64 ± 3 1.2 -

biased 11.3 0.1 ± 0.0 1.88 ± 0.01 0.33 ± 0.05 143 ± 55 7.7 1

pers.+ biased 16.8 0.2 ± 0.0 1.94 ± 0.01 0.46 ± 0.04 641 ± 356 14.0 0

https://doi.org/10.1371/journal.pone.0272259.t001
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vertically oriented wound, 180 degrees for cells on the right side of it); for randomly moving

populations, delta (δ) was not calculated because no expected angle may be defined for these

samples. Analysis of bias and persistence parameters in wound healing experiments shows that

cell populations with high raw bias also had high persistence, suggesting a possible interfer-

ence. To confirm this interpretation with more controlled data, three datasets were produced

from simulated cell populations corresponding to different experimental situations, where per-

sistence and bias contributions to overall migration were set a priori. For each simulated popu-

lation, cell paths were generated according to a purely diffusive pattern, modified by adding a

fixed amount of persistence and/or directional bias (see materials and methods). Under these

conditions, the input values used to simulate movement, were assumed to be the expected val-

ues when examining the output results. To generate movement patterns in the same range as

the experimental ones, the simulation was carried out using an MSD of 100 μm2, expected to

produce an average displacement similar to that observed for NIH-3T3 fibroblasts, while the

directional bias was set to 8 μm. Regarding persistence, an 8 μm value was chosen by trial and

error, as it was shown to produce, in directionally unbiased populations, a level of persistence

corresponding to about 65 minutes, i.e. well within the range of values observed for the experi-

mental populations. The results are reported in the last three rows of Table 1: cells simulated

with no directional bias (p = 8 μm and b = 0 μm, marked as persistent in the Table 1), showed,

as expected, a persistence time (p) of 64 minutes and an almost null raw bias vector; for cells

following zero persistence motion (p = 0 μm and b = 8 μm, marked as biased)), a raw bias vec-

tor was detectable as expected, but the obtained persistence time was much higher than the

expected null value. For more complex movements, when both bias and persistence were pres-

ent at the same time (line pers.+ biased, p = 8 μm and b = 8 μm), raw bias module and persis-

tence time were both substantially higher than the expected 8 μm (bias) and 65 minutes

(persistence).

It appears that by following this approach, bias and persistence cannot always be clearly dis-

tinguished and, in the case of combined bias and persistence, both tend to be overestimated.

2. A combined model to study movement of cultured cells

To address the previously described issue, cell motion was modelled as a combination of three

vectors: random (r), persistence (p) and bias (b), which can vary according to cell line and cul-

ture conditions, ranging from simple to more complex combinations, where all the three vec-

tors contribute to the overall migration (Fig 1). In a purely random movement (Fig 1A), each

displacement d consists of a random vector which can take all possible orientations; in the case

of persistent movement (Fig 1B), the final displacement d derives from a persistence vector

having the same direction as the previous movement (prev d), added to the previously

described random vector; a biased displacement is modelled as the sum of a random and a bias

vector, which, for all cells, is assumed to be oriented along the same direction, for example

towards an attractant or according to a directional stimulus (Fig 1C). Under experimental con-

ditions, all three vectors are usually present (Fig 1D): in this case, displacement (d) is the vecto-

rial sum of the bias (b), random (r) and persistence (p) vectors. Given two different

displacements, d1 and d2, with the corresponding previous ones (prev d1 and prev d2), and a

bias direction, for each of them, the displacement along the bias direction (db) is the sum of

the whole bias module (b) and the random and persistence contributions (rb and pb), i.e., the

projections of random and persistence vectors onto the bias direction. Random contributions

(rb) to db differ among the steps of a path as well as among cells and should be considered as

"noise" which tends to zero for a large number of displacements. Persistence contribution (pb)
depends instead on the difference between bias and persistence angle (α angle) according to
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the formula:

pb ¼ p � cosðaÞ ð3Þ

which means that the smaller the α angle, the higher is the contribution of persistence to direc-

tionality. We graphically explain this relation in Fig 1D where displacements d1 and d2, pro-

jected on the bias direction, differ for pb1 and pb2 lengths that depend in turn on α1 and α2

angles. Thus, the directional component of cell movement as a function of persistence and bias

may be defined according to the following function:

db ¼ bþ p � cosðaÞ ð4Þ

According to the model, longer db values are obtained for α angles closer to zero, because

they include a higher persistence portion. To test whether this relation may be detected in sim-

ulated NIH-3T3 cells, different pairs of p and b parameters were used to produce simulated

populations and analysed by plotting, for all displacements, directional component lengths

against α angles. Results in Fig 2 show that for random movement, obtained with p = 0 μm

and b = 0 μm (Fig 2A), α angles are homogeneously distributed between -π and +π, while db
values are symmetrically distributed around zero for all angle values. This is also observed

when cell movement is simulated with no bias component, i.e. p = 8 μm and b = 0 μm (Fig 2B),

but in this case db values appear to follow a cosine curve, with maximal values for α = 0 and

minimal ones for α = ± π. When bias is present, with p = 0 μm and b = 8 μm (Fig 2C), displace-

ment angles are concentrated around the bias direction (α = 0) but, for all angles, db values are

Fig 1. A three component model for single cell movement. In the case of purely diffusive motion (A), cell

displacement is modelled as a random vector of radius r. Persistent and biased movement (B and C), respectively add a

persistence (p) or bias (b) vector to the random one. In the general case of combined movement (D), displacements are

a combination of the three vectors and the directional component (db) consists of the whole bias module with the

addition of random and persistence contributions (respectively rb and pb). The persistence contribution depends on

the difference between bias and persistence angle (α angle); its length increases, according to the cosine function, when

the α angles decreases.

https://doi.org/10.1371/journal.pone.0272259.g001
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on average offset by a factor corresponding to the bias module. When both bias and persis-

tence are added to the motion, p = 8 μm and b = 8 μm (Fig 2D), the effects are independently

visible as db values follow the cosine function and are at the same time offset according to the

bias. The previously described Formula (4) was used to fit the data in all cases; the curves,

reported as continuous lines in each graph, were produced by using the calculated persistence

and bias parameters (shown on the top/right for each panel).

On the basis of these results, the proposed model was considered a good candidate to gener-

ically describe any migratory behaviour and the procedure schematically synthesized in Fig 3,

was set up. First, the raw bias vector calculated as the vector sum of all displacement vectors

observed in a given time interval is used to obtain the raw bias direction β. After that, for each

displacement, the projection onto the raw bias direction (db) is determined, as well as the dis-

placement to raw bias angle (α), i.e. the difference between previous displacement and bias

direction. The previously defined model (formula 4) is used to fit the directional component

lengths (db) as function of α, to obtain bias (b) and persistence (p) modules. Finally, having

defined bias and persistence modules, bias and persistence vectors are subtracted from each

displacement, to obtain the random vectors.

3. Validation of the model

The described procedure was validated by analyzing cell displacements from datasets obtained

by simulating cell populations characterized by different pre-defined values of bias, persistence

Fig 2. Persistence and bias effect on directional component of cell movement. The directional components of cell

displacements from cell populations are plotted (y axis) against their α angles (x axis); (A, B) correspond to populations

generated by simulating random (p = 0 μm; b = 0 μm), persistent (p = 8 μm; b = 0 μm), biased (p = 0 μm; b = 8 μm) and

mixed movements (p = 8 μm; b = 8 μm). The continuous line corresponds to curves identified by fitting the described model

to the data; the numerical parameters are shown on the top of each graph.

https://doi.org/10.1371/journal.pone.0272259.g002
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and random module. The datasets include the paths followed by 30 cells generated by using

bias and persistence values ranging between 0 and 16 μm as indicated in the header row and

column of Table 2. Bias (b) and persistence (p) values evaluated by the described procedure

show that in the case of movement with zero persistence (first row) or no directional bias (first

column) calculated bias and persistence modules are very close to the expected values.

A similarly good correspondence between expected and measured values was also observed

when persistence and bias vectors were both present in combination. The random vectors, cal-

culated for each population, also produced an average module close to the 9 μm/40 min value

used as input to the simulation (S1 Table). The same combinations of persistence and bias

Fig 3. Schematic representation of the procedure for parameters evaluation. This figure schematically reports the

procedure that, starting from displacement vectors, leads to the calculation of the bias vector, the persistence module

and the list of the random vectors deprived of bias and persistence components.

https://doi.org/10.1371/journal.pone.0272259.g003
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vectors were also tested for a second simulated set of populations characterized by a larger

value of random module (12.5 μm/40 min) and also in this case the obtained values show good

correspondence with the expected ones, thus proving that the efficacy of the analysis method is

not impaired by changes in the random module (S2 Table). Calculated random vectors pro-

duced for each population an average module close to the one used as input (S3 Table).

In order to evaluate the performance of the model in relation to cell population size, the

previous analysis was repeated using datasets of size ranging between 10 and 100 cells. The

results (S2 Fig) show that for both bias and persistence values, calculated/expected ratios are

within ± 0.4 for datasets of 10 to 20 cells but quickly go down to smaller ones for 30–50 cells

and are reduced to within ± 0.1 for bigger datasets (100 cells). In addition, median values,

which are very variable for 10 and 20 cells, starting from 30 cells, i.e. the population sizes used

in our evaluations, become less variable and closer to the expected values.

The model was also used to evaluate the datasets reported in Table 1, to assess its effective-

ness in separating bias and persistence components also with experimental populations. The

results are reported in Table 3 as random, persistence and bias vector modules for a 40 minute

time interval; for wound healing experiments, angle δ, i.e. the angle between bias vector and

expected migration direction, is also reported. For all cell lines, in absence of wound stimulus,

the detected bias has values close to zero and movement, as might be expected, is essentially

determined by random and persistence module. Cells with larger average distances show cor-

respondingly higher values for both the random and the persistence module. For all cell lines,

the introduction of a wound stimulus results in a modified movement pattern, characterized

by a bias vector of considerably higher module than that observed in absence of wound for the

same cell lines and oriented along the expected direction, i.e. towards the empty space left by

the wound, as indicated by δ angle values ranging between 2 and 43 degrees.

Table 2. Bias and persistence estimated from simulated cell populations.

Persistence (μm) bias (μm)

0 8 12 16

b p b p b p b p
0 0.4 ± 0.3 -0.4 ± 0.5 7.8 ± 0.5 -0.2 ± 0.6 12.3 ± 0.9 -0.2 ± 1.0 16.6 ± 1.2 -1.1 ± 1.4

8 0.3 ± 0.3 9.2 ± 0.5 7.8 ± 0.8 7.9 ± 0.9 12.0 ± 2.1 8.3 ± 2.3 13.3 ± 3.8 10.5 ± 4.1

12 0.0 ± 0.3 12.1 ± 0.5 6.5 ± 1.4 13.1 ± 1.6 15.3 ± 4.0 9.4 ± 4.0 16.7 ± 4.4 11.3 ± 4.6

16 0.2 ± 0.3 16.2 ± 0.4 8.2 ± 2.2 15.7 ± 2.4 11.8 ± 4.3 16.4 ± 4.5 15.4 ± 7.9 16.3 ± 8.1

https://doi.org/10.1371/journal.pone.0272259.t002

Table 3. Characterization of movement of different cell lines in different experimental conditions.

cell population average distance (μm) per 40’ random module (μm) persistence module (μm) bias

condition line module (μm) δ (degrees)

random NIH-3T3 11.3 10.4 4.9 ± 0.6 0.3 ± 0.4 -

NIH-Ras 14.8 13.2 8.2 ± 0.9 1.1 ± 0.7

T24 17.9 15.6 10.7 ± 1.2 1.1 ± 0.9

HeLa 6.8 6.7 1.6 ± 0.4 0.5 ± 0.2

MDA-MB-231 5.3 5.5 2.0 ± 0.5 0.0 ± 0.3

wound NIH-3T3 9.5 7.8 1.5 ± 0.7 5.7 ± 0.6 22.47

NIH-Ras 14.9 11.1 7.0 ± 2.1 6.1 ± 1.8 19.21

T24 9.7 7.4 3.3 ± 0.7 4.3 ± 0.6 2.40

HeLa 6.6 5.9 1.5 ± 0.7 2.9 ± 0.6 5.68

MDA-MB-231 6.4 6.8 2.8 ± 0.4 1.4 ± 0.3 42.73

https://doi.org/10.1371/journal.pone.0272259.t003
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It should be noted that the present model, unlike others which typically express persistence

as a time, uses a persistence vector which, combined with a random one, produces the final

displacement. This difference in expressing persistence makes it not immediate to compare

results, as both values are in some way affected by the used time interval or the distance cov-

ered during it. To better understand the relationship between the two methods, persistence

expressed as time and as vector module were plotted compared with each other, after normal-

izing both by dividing the first by the time interval (40 minutes in this case) and the second by

the module of the calculated random vector. When persistence values from simulated datasets

are plotted in this way, the relation appears to follow a quadratic trend (Fig 4A) which remains

the same with datasets of different numerosity and different levels of persistence (0, 4, 8, 12,

16 μm). By using a simple quadratic equation for curve fitting, the resulting curve closely fol-

lows the data points with a determination coefficient R2 very close to 1. Similar results are

obtained (Fig 4B), when “time” vs “space” persistence values are calculated for experimental

datasets, obtained from cells moving in absence of known directional stimuli: also in this case

the relation appears to follow a quadratic curve very close to the one determined from the sim-

ulated data, and characterized by a second power coefficient very close to 2.0 as before,

although with a lower R2 value.

Using as a reference the curve calculated in Fig 4A, the persistence values calculated for

experimental populations and reported in Tables 1 and 3 were plotted against each other after

the normalisation step described above, to comparatively evaluate the two methods. All the

data points from unstimulated populations (Fig 4C) remain close to the reference curve, much

more than data points obtained from wounded cells (Fig 4D), which are consistently away

from and above the reference curve, thus confirming the previous assumption that the pres-

ence of a directional bias is significantly altering the calculated values of time persistence. Simi-

lar results are obtained when the same analysis is carried out on a much larger number of

experimental populations, as shown in Fig 4E and 4F.

4. Experimental dataset analysis

The described model was used to study movement trends in time and the evolution of its com-

ponents in HeLa cell populations moving in standard cultures as well as after a wound stimu-

lus. In absence of directional stimulus (Fig 5A–5D), all values were essentially stable over time,

with movement mainly characterized by random and persistence, while bias remains very low

during the whole time. In presence of a wound, higher average distance values were observed

(Fig 5E), especially in the time windows immediately following the wound stimulus. At later

times, the observed distances tend to be reduced, probably because of the concomitant pro-

gressive closure of the wound space, clearly visible in the images acquired at different time

points during the experiment (an example is reported in S1 Fig). The wounded populations

showed strong bias, with the highest values at the beginning of the observation time; as time

goes by, the bias module tends to be reduced following a trend similar to that observed for the

average distance (Fig 5H); the random module does not appear to change accordingly (Fig

5F). As shown in other parts of this work, the persistence component measured by the new

procedure is also not affected by the wound stimulus, even in presence of an increased bias

component, and remains within levels close to about half the random module, both in pres-

ence (Fig 5G) and in absence (Fig 5C) of wound; it is also not changed when, during the obser-

vation time, the wound starts to close.

In Fig 6, the presented method was used to comparatively study the motion properties of

HeLa cells as well as four additional cell lines, NIH-3T3, NIH-Ras, T24 and MDA-MB-231.

Average distance (Fig 6A) and random component (Fig 6B) are separately reported for each
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Fig 4. Relation between persistence evaluated as time or as vector length. Persistence values calculated by using

Formula (2) or the proposed model: results are compared by plotting, for each dataset, the resulting persistence times,

normalized against the time interval (40 minutes), versus the persistence module, normalized against the corresponding

random module. (A) Persistence values calculated for datasets containing 10 (circle), 20 (triangle), 30 (plus), 50 (cross) or

100 (diamond) cells simulated at different persistence levels (0, 4, 8, 12 and 16 μm) and reported in the plot as symbols of

increasing sizes. For each persistence level, three replicated datasets were produced for each cell number. Fitting the

indicated quadratic function to the data produced the “a” parameter value and the R2 determination coefficient reported

at the top. The black line represents the curve defined by the calculated “a” parameter. (B) Persistence values calculated as

in (A) from NIH-3T3 (red), NIH-Ras (blue), T24 (green), HeLa (violet) and MDA-MB-231 (orange) cells moving in

absence of a wound stimulus. The black line corresponds to the curve calculated by fitting the quadratic function to the

experimental data as in (A). (C, D) Persistence values of unwounded (C) and wounded (D) experimental populations of

Tables 1 and 3, plotted after the described normalization step and using as a reference the curve calculated in (A); the

crossed bars indicate means and standard deviations of the values used to produce the curve. (E, F) The same as in (C, D)

for a larger number of experimental populations.

https://doi.org/10.1371/journal.pone.0272259.g004
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Fig 5. Movement components of HeLa populations over time. HeLa cell movement on a culture plate was evaluated both in

absence (A-D) and in presence (E-H) of a wound stimulus. The line plots correspond to independent cell populations; for each of

them, the plots report average displacements modules measured over 40 minute steps (A and E), as well as random (B and F)

persistence (C and G), and bias (D and H) values, calculated from the observed displacements. Persistence and bias modules were

normalized to the corresponding random module. All the values were evaluated at 40 minute intervals using the data from

overlapping four hour windows.

https://doi.org/10.1371/journal.pone.0272259.g005
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cell population, as well as persistence (Fig 6C) and bias (Fig 6D). Random components vary

between different cell lines, being higher for NIH-Ras and T24 cell populations which also

show higher average cell displacement modules. All cell lines respond to the wound stimulus

with movement characterized by a strong bias component, clearly higher than that observed in

its absence; in contrast, persistence is always present with values ranging between 0.4 and 0.8

times the random module and is not significantly modified in presence of a wound stimulus.

Discussion

Eukaryotic cells in culture move according to migratory patterns that can often be described as

a superdiffusive movement, typically associated with a degree of persistence and/or directional

bias. These contributions to movement may be individually detected [5, 10, 28], but, at the best

of our knowledge, the relative contribution of persistence and directionality to movement can-

not be independently assessed by commonly used methods. The persistence model of Formula

2, for example, which is one of the most used, is particularly effective in interpreting superdif-

fusive motion patterns and allows for different degrees of persistence, with the preceding step

influencing in different measure the direction taken in the next one. However, this straighten-

ing is always assumed to depend on the previous movement, rather than other external influ-

ences and therefore it is difficult to separate from similar effects, such as those induced by a

global uniform directional bias. This happens, for example, when analysing cells moving

under a wound stimulus and leads to inflated persistence values, as easily confirmed by analy-

sis of migration patterns obtained from simulated cell populations (see Table 1, where datasets

Fig 6. Movement of different cell lines in wound healing experiments. NIH-3T3 (orange), NIH-Ras (blue), HeLa (green),

T24 (violet) and MDA-MB-231 (magenta) cell lines were grown on a culture plate and their movement was followed in both

standard condition (no wound) and after stimulation (wound) by a wound inflicted to the cell layer. (A) Average distance

and (B) random module, (C) persistence and (D) bias. Values reported in (C) and (D) have been normalized against the

corresponding random modules. For each cell line, coloured points correspond to independent cultures analysed over a 4

hour time window, while their median value is reported as a small horizontal black trait.

https://doi.org/10.1371/journal.pone.0272259.g006
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simulated with zero persistence show a measurable amount of persistence, and much larger

values are seen if persistence is higher than zero). Similarly, independent bias evaluation

makes the bias components appears larger than that used to generate movement, if persistence

is introduced at the same time.

The method described here derives from attempts to analyse cell movement in terms of ran-

dom, persistence and bias components, summed up into a vector that corresponds to the

observed cell displacement; in this way, the ability of a cell to move (random), maintain motion

direction (persistence) and respond to a directional stimulus (bias), may be independently

assessed. When used to analyse cell populations, both wounded and unwounded, as well as in
silico generated datasets, the method clearly distinguishes bias and persistence components

within overall movement. Persistence evaluated in this way behaves as a feature of a given cell

line and is not affected by directional bias as it remains relatively stable even when directional

movement is stimulated in presence of a wound.

Although clearly improved if compared with simpler models, this approach has of course

features which could limit its use in specific cases. When bias and persistence modules, are

evaluated in this way, they include a scale component which depends on the length of cell dis-

placement and may result in a more difficult comparison between cells with different motion

features. This may be eased by making them independent of displacement length, by normaliz-

ing bias and persistence modules against the corresponding random module, as in Figs 4–6.

An additional feature is that bias component, at least in principle, is assumed to be constant

for all cells in different parts of the culture surface and during the analysis time. Adding sup-

port for other bias models would certainly be possible, although it would of course complicate

the procedure.

The model proposed in this work assumes the random module to be the same for all steps

and cells, while it could of course have different values for each path or cell. Analysis of the ran-

dom modules of the tested populations showed a right long tail distribution, with median val-

ues close to, but lower than, the calculated mean random module of the population, as

expected for this type of distribution. However, when aggregated by cell path, random modules

showed a distribution similar to that of unaggregated ones, with average and median random

modules typically differing by only a few units percent from those estimated on the unaggre-

gated modules, as seen in S3 Fig.

Comparative analysis of motion paths followed by five different cell lines (Fig 6) reveals in

all cases random and persistence vectors, with no or very low bias in unwounded cultures, that

increases when a directional stimulus is introduced. Random and persistence components

vary in the different cell lines, being higher for NIH-Ras and T24 cell populations, which show

larger cell displacements. The contribution of each component to overall movement may vary

in time, possibly reflecting the culture conditions, and changes in any component end up by

affecting overall displacement. This may be useful to highlight movement trends within a

given cell population: for example, in HeLa cells observed in wound healing experiments (Fig

5E–5H), average displacement tends to reduce in time. Since random and persistence compo-

nents remain basically constant, this shortening is due to a progressive reduction of the bias

module, which in turn is possibly related to the attenuated directional stimulus, determined by

the disappearing empty space.

The method well supported the study of cell migration in experimental setups suitable to

mimic wound repair in vitro and is promising to also be effective in other situations where

migration is primed by stimuli such as local nutrient availability or presence of chemoattrac-

tants/chemorepellents. In principle, the model could be applied in all situations in which mov-

ing objects are detectable by imaging and tracked to obtain paths; embryogenesis, neuronal

crest cell migration, chemotaxis, immune cell trafficking, tissue and wound repair, epithelial-
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mesenchymal transition, tumour invasion and metastasis are some of the areas where using

the presented method could be helpful to better understand and predict migrating cell

behaviour.

Finally, as for other mathematical models [28], the presented one may turn out to be useful

in other fields of study, such as following animal migration and their response to environmen-

tal changes.

Supporting information

S1 Table. Random modules of simulated cell populations of Table 3. Random modules are

measured for each simulated cell population reported in Table 3 of the Results, where the ran-

dom input value is set to 9 μm/40min.

(TIF)

S2 Table. Bias and persistence of synthetic cell populations. For each synthetic cell popula-

tion, whose movement was simulated starting from a random module of 12.5 μm/40 min, the

measured values of bias (b) and persistence (p) are compared with those expected (reported in

header row and header column, respectively), i.e. those used as input data to generate the syn-

thetic cell movement.

(TIF)

S3 Table. Random modules of simulated cell populations of S2 Table. Random modules are

measured for each simulated cell population reported in S2 Table, where the random input

value is set to 12.5 μm/40min.

(TIF)

S1 Fig. Time course of wound closure of HeLa cells. Phase contrast images represent the pro-

gression of empty space occupancy by HeLa cells at the time 0 and 6, 12 and 24 hours after

wound.

(TIF)

S2 Fig. Population size effect on the analysis with the proposed model. For simulated data-

sets of size ranging between 10 and 100 cells the estimated parameters are reported as ratio

between calculated and expected values, the latter are indicated in each graph with distinct col-

ours.

(TIF)

S3 Fig. Density analysis of random module of analysed cell populations. Density analysis is

applied on random modules from populations randomly moving (A-E) and under wound

stimulus (F-J). (K-T) The same evaluation is performed on mean cell random modules.

(TIF)

S1 File. Datasets used for cell population analyses and model testing. Text files containing

information about displacements of experimental and simulated populations used for both

preliminary analyses, in “datasets used for preliminary evaluation of cell movement (Tables 1

and 2)”, and further characterization of cell movement, in “further datasets used for cell move-

ment characterization (Figs 2, 4–6; Table 2; S1–S3 Tables; S2 and S3 Figs)”.

(ZIP)

S2 File. Pseudocode describing simulation steps. The file describes the steps followed at each

time for each cell to simulated displacement.

(TXT)
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