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ABSTRACT

Homozygosity mapping is a common method
for mapping recessive traits in consanguineous
families. In most studies, applications for multipoint
linkage analyses are applied to determine the geno-
mic region linked to the disease. Unfortunately,
these are neither suited for very large families
nor for the inclusion of tens of thousands of SNPs.
Even if less than 10 000 markers are employed, such
an analysis may easily last hours if not days. Here
we present a web-based approach to homozygosity
mapping. Our application stores marker data in a
database into which users can directly upload their
own SNP genotype files. Within a few minutes, the
database analyses the data, detects homozygous
stretches and provides an intuitive graphical inter-
face to the results. The homozygosity in affected
individuals is visualized genome-wide with the
ability to zoom into single chromosomes and user-
defined chromosomal regions. The software also
displays the underlying genotypes in all samples.
It is integrated with our candidate gene search
engine, GeneDistiller, so that users can interactively
determine the most promising gene. They can at any
point restrict access to their data or make it public,
allowing HomozygosityMapper to be used as a
data repository for homozygosity-mapping studies.
HomozygosityMapper is available at http://www.
homozygositymapper.org/.

INTRODUCTION

Homozygosity mapping, also called autozygosity map-
ping, is a common method for mapping recessive traits
in consanguineous families. It is powerful because it
does not require DNA of other family members than the

affected offspring (1,2). The normal workflow consists of
a genome-wide linkage analysis with microsatellites or,
increasingly, SNPs (3). Especially for SNP markers,
owing to their low informativity and hence the usually
small number of informative meioses, this is mostly
carried out with multipoint linkage analysis with software
such as GENEHUNTER (4) or derivatives (5,6), Allegro
(7), SIMWALK2 (8) or Merlin (9) under a recessive
disease model. This is followed by the preparation of
haplotypes either manually or by the software used for
the analysis. Haplotypes are then manually inspected
and searched for homozygous regions shared by all
affected individuals who are homozygous by descent (if
genotypes from ancestors are available) and are not
homozygous in unaffected family members.
Currently, in some cases, when affected persons are

known to be distant offspring of a consanguineous
couple, the consanguineous marriage is introduced arbi-
trarily into a ‘virtual pedigree’. Unfortunately, wrong
specification of the level of inbreeding has dramatic influ-
ence on the LOD scores obtained (10). This issue can
be addressed by the inbreeding coefficient to reveal the
pedigree structure and eventually permit the calculation
of LOD scores (11,12). Other researchers prefer to arbi-
trarily introduce first or second cousin consanguinity into
the pedigrees when there is evidence for inbreeding
but details are not known (13). While such an approach
renders the absolute value of the LOD score meaningless,
it will nevertheless detect the correct genomic region when
enough affected individuals (optionally supplemented by
healthy siblings) are studied, albeit without any reliable
measure of significance.
Computation of multipoint LOD scores and generation

of haplotypes pose high demands on computational
resources, are time consuming and largely depend on
correct allele frequencies (14). The proper assessment of
haplotypes becomes even more error-prone when no DNA
from relatives is available because phase information is
unknown and type I errors cannot be corrected (15).
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Beside heuristic approaches, most multipoint linkage
applications use the Lander–Green algorithm (16) which
scales linearly with the number of markers analysed
and due to time constraints often only a subset (i.e.
about 10 000) of the total SNPs is studied. Another draw-
back is that large families, especially those with a high
level of inbreeding, have to be split because computational
time increases drastically (17) or because the family size
may simply become too large for the computational
resources. Splitting pedigrees can however significantly
reduce the information obtainable from them (18).
If studies comprise unrelated families with only one or

few affected individuals, it may occur that they do not
share a disease haplotype rare or long enough to be detect-
able even if they carry the same founder mutation [see the
hypomagnesia example (19) on our website]. However, in
consanguineous families with a rare recessive disease, it is
very likely that the same disease allele has been inherited
from both parents (1). Therefore, as long as the same locus
is responsible for the phenotype, the proportion of homo-
zygosity in the mutation’s vicinity among individuals from
different families should still be substantially higher
than expected by chance. This is even the case when
there is no common haplotype among different families
due to ancient or even different mutations at the same
locus. Especially in populations in which consanguinity
is common, apparently unrelated individuals with the
same phenotype are often found to be distantly related
(20) and might hence share the same founder mutation
albeit with only short shared disease haplotypes between
families. Additionally to its presence in consanguineous
families, autozygosity occurs also by chance and without
known inbreeding (3,21–23) but the use of many non-
related families makes it very unlikely that affected indi-
viduals from different families share the same autozygous
region accidentally. It might hence even be possible to find
disease genes in families with a more distant inbreeding
background (13).
Several researchers have suggested methods to cir-

cumvent the problems posed by using linkage analysis
software for autozygosity mappings. A simple approach
is the genotyping of pooled DNA samples from affected
individuals and the search for markers where only one
allele is present or at least predominant (24). However,
this method will fail in case of genetic heterogeneity (i.e.
different homozygous genotypes), because no correlation
between a single sample and a genotype is possible.
A computational solution is ExcludeAR (25), a

Microsoft Excel spreadsheet, which searches for contigu-
ous homozygous SNPs in the individuals included in the
analysis. Due to its use within the spreadsheet application,
the number of SNPs to be studied is limited to the number
of rows supported by the version of Excel being used.
Moreover, ExcludeAR can only handle data from up
to four samples and copying and pasting of data is poten-
tially error-prone and requires a manual effort for every
operation making this solution suitable for small analyses
but rather unfeasible for large studies and different models
within one project. This approach was extended by
AutoSNPa (26), a dedicated software designed to visualize
homozygosity genome-wide in all patients and hence find

regions of high homozygosity which may harbour the
disease gene. Another method that avoids the generation
of LOD scores is the detection of homozygous segments
implemented in PLINK (27).

None of the alternatives to classic linkage analysis has
yet become the common choice for homozygosity map-
pings. We believe that this is partly due to the researchers’
unwillingness to ‘risk’ the use of novel methods which
might possibly be challenged by conservative reviewers.
On the other hand, the software approaches mentioned
above require at least some effort concerning installation,
data preparation and familiarization.

To overcome the restraints posed by linkage software
and the present applications for homozygosity mapping
described above, we have developed a web-based
approach to homozygosity mapping. In our tests with
real and simulated genotypes, it always identified
the same genomic regions as conventional linkage
analyses. It does not require any installation or data
preparation at all. All interfaces are well known HTML
pages, so it is very easy and intuitive to use. Most of all, it
is by orders of magnitudes faster than conventional link-
age analysis. Data upload into our database and analysis
of a typical project with six affected individuals with
50 000 genotypes each is completed in less than 5min.
A similar project on a 1M array takes less than 30min
to upload and analyse the data. Benchmarks can be found
on our website (http://www.homozygositymapper.org/
documentation.html).

THE WEBSITE

Access

There is no login requirement to use Homozygosity
Mapper. However, while non-registered users can upload
and analyse data, everyone else can access and also delete
their data. Users wanting private access to their data or to
store them, should therefore create themselves an account
for HomozygosityMapper on the website. Access to a
certain project can then be granted to (or revoked from,
respectively) the public as well as to other registered users
at will so that cooperation partners can participate in the
analysis of one project without even seeing the other pro-
jects. Access permissions can be changed at any time.
Also, complete projects or single analyses can be deleted
by their owner at will.

HomozygosityMapper can thus be used to make the
underlying data of a published study available, which is
a common requirement in other fields such as gene expres-
sion studies.

Upload

Users can directly upload their genotype files to the
database. In case of genotypes generated on Affymetrix
platforms in which the SNP is identified by a proprietary
Affymetrix ID, they must also choose the appropriate gen-
otyping chip. The application offers the possibility to add
new genotypes to existing projects. Despite the later sup-
plement with recently genotyped samples, this also frees
the users from combining different genotyping files
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(e.g. from the Affymetrix 100K set) into one. The users
can also decide whether their data shall initially be kept
confidential or made public. This setting can be changed
later at any time.

During the data import, HomozygosityMapper screens
all samples for blocks of homozygous genotypes in con-
tiguous markers and stores the actual genotype together
with the length of the block it resides in. To avoid false
negative results, unknown genotypes are counted as
homozygous here but stored as not determined. Marker
positions are derived from dbSNP (28) and dubious mar-
kers are ignored.

Analysis

On the second interface, users can select one of their gen-
otyping projects to be analysed. Here, some samples can
be specified as cases (i.e. affected individuals) which will
be used to calculate homozygosity scores. Other samples
can be marked as controls; their genotypes are later shown
in the genotype view to allow the exclusion of regions
due to homozygosity in non-affected siblings and can be
also used to calculate control allele frequencies. Users
can decide whether they are interested in control
frequencies of homozygous genotypes for the markers.
These can be obtained from the HapMap project (29)

for the correct population or calculated from the
controls. Users can also select whether they want to
restrict the maximum length of homozygous blocks con-
sidered for the determination of homozygosity scores
(see below).
When the analysis starts, HomozygosityMapper reads

the length of homozygous blocks in all affected samples
for every marker and adds them to a homozygosity score
for the respective marker. To prevent the inflation of this
score by very long blocks in single individuals, any added
block length is limited to an optimal value for each chip
unless another length limit is specified by the users. This
procedure yields homozygosity scores for each SNP which
are stored in the database and can be searched for peaks.
As a further measure, the observed frequency of homozy-
gous genotypes in the affected individuals is calculated
for each marker and compared with the homozygosity
frequency in the controls.
Details on the analysis procedure can be found on our

website.

Browsing the results

In a first step, HomozygosityMapper plots the genome-
wide homozygosity (Figure 1) as bar charts together with
the surplus or the shortfall of the homozygosity in affected

Figure 1. Genome-wide homozygosity. This screen shots show the genome-wide homozygosity scores produced by HomozygosityMapper. These are
plotted as a bar chart with red bars indicating the most promising genomic regions. Clicking on a bar will zoom into the chromosome harbouring the
score. Above the bar chart, the excess or shortage of homozygous genotypes in cases versus controls is depicted. Below the figure, direct links to the
most interesting regions are given. All figures depict the Carpenter syndrome study (31).
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individuals compared with the control genotypes.
To emphasize interesting regions, any score higher than
80% of the maximum score reached in this project is
coloured in red. Below the plot, a summary of the regions
bearing the highest homozygosity scores is given together
with hyperlinks to directly zoom into the region or to the
underlying genotypes. Additionally, users can manually
zoom into single chromosomes or regions selected with
two mouse clicks. A promising region will yield a high
homozygosity score over many contiguous markers (i.e.
many red bars next to each other or a single thick one if
markers are very close, see Figure 2) and show an excess of
homozygosity in cases over controls.
The next step is the inspection of the underlying

genotypes, either by selecting a region and click on the
hyperlink or by following the direct links below the plot.
Here, genotypes for each sample specified as case or con-
trol are shown so that unaffected siblings can be employed
to exclude regions or a possible genetic heterogeneity can
be identified (Figure 3). For a quick overview, we use a
colour coding scheme; unknown genotypes are displayed
as grey boxes, heterozygous genotypes as blue boxes and
stretches of homozygosity as red bars. The saturation of
the red colour depends on length of the homozygous
block. The two possible different homozygous genotypes
are indicated by a small vertical bar in the less abundant
genotype. This case may arise when data from different

families with the same disease locus but different disease
haplotypes is analysed (Figure 3).

Integration with GeneDistiller

Whenever a target region is displayed on the genotype
level, a link to our candidate gene search engine
GeneDistiller (30) is provided. Users are free to change
the limiting SNPs of a region simply by clicking on the
new borders in the plot. Clicking on the GeneDistiller
button will then open its query interface with the limiting
markers already filled in. Every input made by the user is
saved in a cookie so that there is no need to fill out the
interface again when another region is studied. Results
from the homozygosity mapping can be used to filter and
sort the genes in the candidate region. The degree of homo-
zygosity around its position will be displayed together with
a hyperlink to HomozygosityMapper that will indicate the
current gene’s position in the genotype view.

In reverse, users can also directly query a list of candi-
date genes in GeneDistiller for homozygosity (from a
HomozygosityMapper analysis) and might hence detect
founder mutations even when there is no clear disease
haplotype.

Sustainability

Due to hardware and financial constraints, we cannot
promise that every project can be kept on the website

Figure 2. Homozygosity in genomic regions. Here the homozygosity within a selected genomic region is shown. The small red bars above the
homozygosity bar chart indicate that there is a visible excess of homozygosity in the cases compared to the controls.
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forever. Data uploaded by non-registered users will be
deleted periodically. Should we have to delete data
uploaded by registered users in the future, the respective
data owners will be informed in advance and asked
whether they still want to store their projects, or whether
we can archive them and take them from the website.
We guarantee that projects made public will not be
deleted.

GENETIC HETEROGENEITY

In some studies, only a portion of the affected individuals
share the same disease locus. As these projects often do
not lead to the identification of a disease gene and are
hence not published, we decided to simulate such cases.
On our website, we provide an example for such a sce-
nario: to account for naturally occurring homozygous
stretches, real genotypes were used instead of purely simu-
lated genotypes. For this, the genotypes of eight unrelated
samples from the sample data for the Affymetrix
GeneChip Mapping 50K Hind array were chosen and
homozygous regions of 2 Mbp of length were arbitrarily
introduced at various positions. Eight affected individuals
were thus simulated; five of them were assigned a shared
homozygous region on one chromosome, the remaining
three of them on another. 0.5% of the genotypes within
these regions were randomly changed to simulate genotyp-
ing errors. HomozygosityMapper correctly detected the
first homozygous region but it also found the second.
Details on this simulation as well as other test scenarios
can be found on our website.

ROBUSTNESS AGAINST GENOTYPING ERRORS

The genotypes obtained from genotyping chips are not
error-free. In fact, in our experience some chips show a
rather poor performance which might be due to problems
during the manufacturing but also to inappropriate
genotype-calling settings or insufficient DNA quality.
Genotyping errors are known to have a potentially drastic
influence on the generation of multipoint LOD scores and
haplotypes (15). The situation worsens when individuals

without relatives (who could be used to check Mendelian
inheritance or to draw phase information from them) are
employed—a situation that might arise when financial
constraints appear or unaffected family members decline
to be involved in the study.
To circumvent this problem, HomozygosityMapper

ignores single heterozygous genotypes with seven or
more homozygous genotypes on each side. This setting
fits chips with few markers as well as high-density arrays
with usually higher error rates. Although this cannot
render very bad genotyping results useful, it normally
avoids type II errors introduced by genotyping chips
with a more reasonable error frequency of 2% or less
and hence saves the users from the effort to exclude
markers by other, arguable, means such as analysis of
Hardy–Weinberg equilibrium. To give the researchers
full control, the original genotypes are displayed in the
genotypes view (Figure 3).
Using only the genotypes provided by affected individ-

uals without any pedigree information, Homozygosity
Mapper is also robust against misspecifications of the
family structure.

USAGE AND VALIDITY OF OUR APPROACH

HomozygosityMapper has been used for four years now,
at the beginning in the form of a stand-alone application.
Over this time, more than 40 mappings were conducted
with HomozygosityMapper and validated with the con-
ventional approach or vice versa. With four or more
affected individuals in the sample, HomozygosityMapper
usually did not fail to identify the disease-linked region
instantly. With two or three affected individuals, results
sometimes required a closer inspection and, in some cases,
the exclusion of regions due to presence of a homozygous
stretch in unaffected siblings. However, even in such stu-
dies, HomozygosityMapper did not perform worse than
linkage analysis. Linkage analysis had, on the other hand,
a clear advantage when only two affected individuals were
available but the information from unaffected family
members could be included in the calculation.

Figure 3. Genotypes view. HomozygosityMapper also displays the single genotypes of all samples. Here, the markers are placed on the x-axis while
the samples are on the y-axis, with the patients on top and with red IDs. Genotypes are colour-coded: grey, unknown, blue, heterozygous, red,
homozygous stretches (colour saturation reflects the length). This figure also reveals the presence of a single heterozygous marker within the
homozygous region (possibly a genotyping error and ignored by HomozygosityMapper). The patient on the bottom is from another family than
the first two and does not share the same haplotype over the whole homozygous stretch. This can be seen from the genotypes with the diagonal
bar indicating the less abundant of the homozygous genotypes. Users are free to change the limits of the region and can subsequently submit this
region to GeneDistiller.
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With permission of the owners, some published studies
with 10K, 50K and 250K arrays in which the disease
mutation could eventually be identified, can be interac-
tively viewed on our website: Carpenter syndrome (31),
Crisponi syndrome (32), Cutis laxa (33), Dyschromatosis
universalis hereditaria (34), Familial thrombocytosis (35),
Hypomagnesia (19), Meckel-Gruber syndrome (36),
Meckel-Gruber-like syndrome (37), Nephrotic syndrome
(13), Pontocerebellar hypoplasia (38), Senior-Loken
syndrome (13). These homozygosity mappings were
either carried out with conventional linkage software
and could be reproduced with HomozygosityMapper or
vice versa. A more thorough description is given on the
website.

IMPLEMENTATION

HomozygosityMapper was programmed in Perl. It makes
use of a PostgreSQL 8.3 database. The web server,
together with the database and the CGI scripts, runs on
an Intel Xeon platform with two QuadCore processors
and 48GB of RAM under Fedora Core Linux. To grant
access to non-public genotypes and results, cookies are
employed. JavaScript is used to zoom into chromosomal
regions and to redefine the limits of the homozygous inter-
val. A more thorough description of the implementation
can be found on the website.
The website was developed with and optimized for

Mozilla Firefox. It was successfully tested with Firefox 2
and 3 (under different versions of Linux, Microsoft
Windows, and MacOS) and Microsoft Internet Explorer
6, 7 and 8.

FUTURE PLANS

We are currently implementing a function to generate
input files for the common multipoint linkage software
GENEHUNTER and Allegro for all promising regions
in one step. Users could thus run a fast genome-wide
scan with HomozygosityMapper and subsequently check
only the possible regions with the information provided by
parents and most of all by healthy sibs and produce hap-
lotypes using the slow but generally accepted approach
and save much time compared to the conventional
approach. This feature will include the option to simply
download the genotypes of a whole project or a single
analysis either for specific regions or genome-wide.
Another forthcoming change is the option for users to

modify their user profiles and projects and analysis details
with dedicated web interfaces.
Should HomozygosityMapper become a widely used

repository to publish genotypes and results from homo-
zygosity mappings, we will restructure the database and
the website so that literature references and co-authors can
be included more easily.

CONCLUSION

We have presented HomozygosityMapper, a web-based
application aimed at autozygosity mapping. Our software

is independent of parameters like family structure or allele
frequencies, the ‘homozygosity score’ is calculated simply
from the observed homozygosity and it is robust against
genotyping errors. HomozygosityMapper is much faster
than conventional linkage software. Albeit it might not
fully replace these, it could be used in combination with
them. In our opinion, a sensible strategy would be the
rapid identification of possible disease regions using
HomozygosityMapper and the subsequent generation of
LOD scores and haplotypes by conventional software
only for these, if necessary at all.

The integration with GeneDistiller greatly facilitates the
search for promising candidate genes compared to the
conventional approach. We also encourage geneticists to
consider HomozygosityMapper as a public repository for
genotypes and results when publishing their homozygosity
mappings.

Due to its user-friendly intuitive interface and the lack
of any local hardware requirements, it can be used by the
geneticists themselves without the need for computer
specialists.
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