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Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing
pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which
changes the membrane microenvironment resulting in the activation of endogenous
metalloproteinase from the ADAMs family. Alterations in membrane microenvironment
of lipid rafts contribute to the activation of several cell surface molecules. Serine
proteinases convertases acting on the pro-domain of membrane metalloproteinases,
such as ADAMs, increase the cleavage and the release of proteins ectodomains and
receptors located at the cell surface areas containing lipid rafts. We, therefore,
investigated the interaction of SMases D with these membrane microdomains (lipid
rafts) in human keratinocytes, to better understand the molecular mechanism of
SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface
molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in
the cell membrane after SMase D action. Furthermore, proproteins convertases, such as
furin, are involved in the SMase D induced ADAMs activation. One of the signaling
pathways that may be involved in the activation of these proteases is the MAPK pathway,
since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal
analysis showed a strong colocalization between SMase D and GM1 ganglioside present
in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1,
showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1,
which is possibly degraded by toxin-induced superoxide production in cells. The action of
the toxin also results in flotilin-1 increased detection in the cell membrane. These results
indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading
to the activation of membrane bound proteases, which may explain why the lipase action
of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading
to pathology.
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INTRODUCTION

Loxosceles spiders envenomation (Sicariidae Family) occur in
temperate and tropical regions of North, Central, and South
America, Africa, Asia, and Europe (Wasserman and Anderson,
1983; Platnick, 2011). Bites by these spiders commonly result in
local necrotic skin lesions and more rarely cause systemic effects
including hemolysis, intravascular coagulation, and
thrombocytopenia, which may result in renal failure (Barretto
et al., 1985; Schenone et al., 1989; Tambourgi et al., 1998).

Forrester et al. (1978), analyzing Loxosceles reclusa venom,
showed the association of venom toxicity with sphingomyelinase
activity, and sphingomyelinase D (SMase D) is now considered
the most important component for the establishment of this
spider envenomation pathology (Tambourgi et al., 1998). We
previously showed that SMases D from Loxosceles venom
induced activation of membrane-bound metalloproteinases
from the Adamalysin family, by indirect action on the cell
surface in a variety of cells (Tambourgi et al., 2000; van den
Berg et al., 2002). This resulted in e.g. the cleavage and
ectodomain shedding of Glycophorins (GPs), endothelial
protein C receptor (EPCR), and Thrombomodulin (TM),
explaining the observed complement mediated hemolysis and
intravascular coagulation (Tambourgi et al., 2000; van den Berg
et al., 2002; Paixão-Cavalcante et al., 2006). In addition, we
demonstrated that SMase D induces the ADAM (ADAM: a
desintegrin and metalloprotease) mediated ectodomain
shedding of numerous other cell surface molecules including
MCP (Membrane Cofactor Protein: MCP; CD46), Major
Histocompatibility Complex class I (MHCI), b2-microglobulin
(associated with MHCI), Epidermal Growth Factor Receptor
(EGFR), and the C5a receptor (CD88) in many cell types,
including keratinocytes (reviewed by [Tambourgi et al., 2010]).
We have used keratinocytes successfully as a model to study the
molecular mechanisms operating in cutaneous loxoscelism
(Paixão-Cavalcante et al., 2006; Paixão-Cavalcante et al., 2007;
Corrêa et al., 2016; Lopes et al., 2019).

ADAMs are transmembrane proteases belonging to the
family of Metzicins, subfamily of Adamlysins. They induce
ectodomain shedding of a number of cell surface proteins and
are considered crucial in modulating various physiological and
pathophysiological processes (van Goor et al., 2009). The
mechanism by which the Loxosceles venom induces activation
of these ADAMs is not yet understood.

The metalloprotease domain of ADAMs is protected by a pro-
domain and the primary pathway of activation and removal of
the pro-domain is performed by proprotein convertases (PCs)
such as furin, PC7, PC5/6B, and SKI-1 (Seidah, 2006; Klein and
Bischoff, 2011). These proprotein convertases belong to a family
of serine proteinases of the Subtilisins type (Seidah et al., 2008)
and play an important role in the regulation of ADAMs
(Reviewed by [Seals and Courtneidge, 2003]). Several studies
showed that inhibition of furin transport from the Golgi to the
cell membrane, by Brefeldin A and monensin, resulted in a
decrease in activity of ADAM-17 (Lum et al., 1998; Roghani
et al., 1999; Howard et al., 2000; Kang et al., 2002).
Overexpression of PC7 increased the activity of ADAM-10
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(Anders et al., 2001), and the genetic modification of the furin
binding site of ADAMs 10, 12, and 19 prevented their activation
(Loechel et al., 1998; Anders et al., 2001; Kang et al., 2002).

The shedding of ectodomains of surface molecules by
ADAMs proteins may occur or increase due to various cellular
stimuli (Walev et al., 1996; Müllberg et al., 2000; Chalaris et al.,
2007), including those that result in the activation of MAPK and
ERK signaling pathways (Xu et al., 2012). Furthermore, the
cleavage and release of ectodomains are influenced by the
spatial organization of the transmembrane molecule and
protease within the lipid microenvironment of membranes
(Walev et al., 2000; Kojro et al., 2001; Matthews et al., 2003;
von Tresckow et al., 2004; Zimina et al., 2007). Maturation of
ADAM-17 occurs in lipid rafts and the mechanisms that regulate
the hydrolytic activity of this protease, on various substrates,
involve the re-distribution of the target proteins within the lipid
rafts (Walev et al., 2000; Kojro et al., 2001; Matthews et al., 2003;
von Tresckow et al., 2004; Zimina et al., 2007).

Lipid analysis has revealed that over 70% of all cellular
sphingomyelin (SM), the main substrate for Loxosceles SMase D,
is located in lipid rafts (Smart et al., 1999) and that SM, as well as
other sphingolipids, play an important role in the physical
properties of biological membranes (Giocondi et al., 2004), and
are necessary to maintain the integrity of the lipid rafts. A
sphingomyelinase, from Staphylococcus aureus, altered the
properties of lipid rafts in peripheral blood derived mononuclear
cells, resulting in a concomitant reduction of cholesterol content of
the rafts (Diaz et al., 2005). In addition, the composition and
function of membrane rafts can be modulated in response to a
number of factors and conditions (Simons and Ikonen, 1997)
including Reactive Oxygen Species production (Park et al., 2009;
Mougeolle et al., 2015) and ceramide generation (Zhang et al., 2009)
and their functions are closely related to the associated proteins.

Considering that (i) interference with organization of lipid
rafts or SM-hydrolysis can lead to changes in various biological
processes in the cell, (ii) that shedding of cell surface molecules
depends on the membrane microenvironment and (iii) that
SMases D in the venoms of Loxosceles hydrolyze SM, we aimed
to investigate the effects of Loxosceles SMase D on the activation
of metalloproteinases, proprotein convertases, and lipid raft
structure in human keratinocytes, in order to elucidate the
complex action of this toxin.
MATERIAL AND METHODS

Reagents, Antibodies, and Buffers
Broad spectrum matrix metalloprotease inhibitor Galardin
(GM6001) (Li et al., 2002), proprotein convertases inhibitors, FI
(Furin inhibitor); FII (Furin, PACE4 and PC1 inhibitor); ProproC
(Furin, PACE4, PC1/3, PC4, and PC5/6 inhibitor) were obtained
from Merck-Millipore (Darmstadt, Germany). Specific inhibitors
for ADAM-10 (GI254023 abbreviated GI) and ADAM17
(GW280264; abbreviated GW) (Ludwig et al., 2005) were kindly
provided by Prof. Ann Ager (Cardiff University, UK). PMSF
(serineprotease inhibitor) and Monensin (Golgi transport
inhibitor), Bovine serum albumin (BSA), paraformaldehyde
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were purchased from Sigma Aldrich (St. Louis, MO, USA).
Dimethyl sulfoxide (DMSO) and Tween-20 were obtained from
Merck-Millipore (Darmstadt, Germany), “Prolong Gold antifade”
containing 4',6-diamidino-2-phenylindole (DAPI) nuclear stain
was from Invitrogen (Paisley, UK). EIA Titerzime Phospho-
ERK1/2 Enzyme Immunometric Assay was from Assay Designs
(Ann Arbor, MI, USA). Reagents for analysis of ROS and RNOS
production, Dihydroethidium (DHE) and Dihydrorhodamine-
123 (DHR) respectively, were obtained from Sigma-Aldrich
(MO, USA) and Alexa555-conjugated Cholera Toxin subunit b
(CTx-b/Alexa555)-was obtained from Molecular Probes (Eugene,
Oregon, USA). Rabbit antibodies against Flotilin-1 andCaveolin-1,
FITC-conjugated secondary antibodies as rabbit anti-mouse IgG
(RAM/FITC) or goat anti-rabbit IgG (GAR/FITC) were obtained
from Sigma-Aldrich (Saint Louis, MI, USA). Mouse monoclonal
antibodies (MoAbs) against human EGFR (Epidermal Growth
Factor Receptor), MCP (CD46: Membrane Cofactor Protein), b2-
microglobulin, TNF-RI (CD120a: Tumor Necrosis Factor–
Receptor 1), and streptavidin-PE were purchased from BD
Biosciences (San Jose, CA, USA). MoAbs against human ADAM-
17 and ADAM-10, rabbit IgG against GM1 ganglioside, and Goat
anti-rabbit conjugated Alexa 488 (GAR/Al488) were from Abcam
(Cambridge, UK).MoAb against humanCD59 (Bric229) was from
International Blood Group Reference Laboratory (IBGRL, Bristol,
UK). Rabbit IgG anti-Loxosceles SMase D was produced in house.
DMEM (Dulbecco's Modified Eagle Medium) and penicillin-
streptomycin were purchased from Gibco, Invitrogen Corp.
(Eugene, Oregon, USA), and Fetal bovine serum (FBS) was from
Cultilab (São Paulo, Brazil). ATV (Trypsin 0.2% and Versene
0.02%) was purchased from Adolpho Lutz Institute (São Paulo,
Brazil). Buffers: Veronal buffered saline–VBS2+ (2.8 mM barbituric
acid, 145.5 mMNaCl, 0.8 mMMgCl2, 0.3 mMCaCl2, 0.9 mMNa-
barbital, pH 7.2), Phosphate buffered saline–PBS (8.1 mM
Na2HPO4; 1.5 mM KH2PO4; 137 mM NaCl; 2.7 mM KCl, pH
7.4), FACSbuffer (PBSbuffer containing 1%of albumin and0.1%of
sodium azide), and FACS fixing solution (FACS buffer containing
paraformaldehyde 1%).

Expression and Purification of
Recombinant Sphingomyelinase D
The recombinant Sphingomyelinase D (SMase D) from L. laeta
venom was prepared as described by Fernandes-Pedrosa et al.
(Fernandes Pedrosa et al., 2002). The permission to access to
genetic resources register n° AEE9AEA 11/01/2018 was provided
by National System of Management of Genetic Heritage and
Associated Traditional Knowledge (SisGen).

Cells Culture
Human keratinocyte cell line HaCaT (obtained from Banco de
Células do Rio de Janeiro - BCRJ) were grown in 75 cm2

flasks
(Corning Inc., New York, USA) in DMEM supplemented with
10% fetal bovine serum and 1% penicillin-streptomycin, at 37°C
and 5% CO2.

Treatment of Cells
HaCaT cells were trypsinized with ATV and resuspended inVBS2+

buffer. Cells (1 × 106 cells/ml), pre-incubated for 5 min with
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Galardin (GM6001, 90 µM), ADAM-10 (GI, 45 µM) or ADAM-
17 (GW, 45 µM) inhibitors, PMSF (1 mM), Monensin (10 µg/ml);
proprotein convertases inhibitor (FI, FII and ProproC, 20 µM) or
their vehicles, were further incubated with SMase D (25 µg/ml) or
buffer, for 2 h at 37°C under slight agitation.

Cell Surface Markers Analyses
Cells treated as described in Treatment of Cells, were incubated
for 30 min at 4°C with monoclonal antibodies against EGFR
(1:200), MCP (1 µg/ml), b2-microglobulin (1:200), CD59
(1:250), ADAM-10 (1:1,000), ADAM-17 (1:100), GM1

ganglioside (1:50), Flotilin-1 (10 µg/ml), Caveolin-1 (8 µg/ml),
and rabbit anti Loxosceles SMase D IgG (1:200). After washing,
cells were incubated for 30 min at 4°C with secondary antibodies
(RAM/FITC or GAR/FITC, 1:100). Some cells were also
incubated for 30 min at 4°C with anti-TNF-RI biotin-labeled
antibody (1:50), washed and, then, incubated with streptavidin-
PE (1:200). Fluorescence intensity of 10,000 cells was analyzed in
a flow cytometer (FACSCanto, Becton Dickinson, CA, USA).

Analysis of the Production of Reactive
Oxygen (ROS) and Reactive Nitrogen
Oxide Species (RNOS) and Intracellular
Signaling Pathway Activation in Human
Keratinocytes
Analysis of RNOS and ROS production by human keratinocytes
treated with SMase D was analyzed by flow cytometry. HaCaT
(106 cells) were treated with SMase D or buffer and incubated
with 5 µmol/L of DHE (for superoxide, O2•-), or DHR (for
peroxynitrite, ONOO-) for 1 h at 37 and 30°C, respectively and
5% CO2. Cells were spun (1,500 rpm, 5 min), and resuspended in
300 µl FACS fixing solution and fluorescence intensity was
measured in the flow cytometer (FACScanto, Becton
Dickinson, CA, USA).

Activation of pERK1/2 by SMase D was analysed using the EIA
Titerzime Phospho-ERK1/2 Enzyme Immunometric Assay kit,
according to the manufacturer's recommendations. The reaction
was read in a plate reader (Multiskan-EX, Labsystems, Helsinki,
Finland) at a wavelength of l 450 nm. The calculation of the
pERK1/2 concentration in the samples was performed using the
pERK recombinant standard curve (62.5 to 2,000 pg/ml) with
subtraction of the value of the blank. Protein concentration of cell
lysates was determined by the method of Lowry et al. (1951).

Analysis of SMase D Binding to Lipid Rafts
HaCaT cells (1.5 × 104/well) were cultured in four well Culture
slides (BD) for 24 h in complete medium, followed by culture for
24 h in serum free medium. Cells were treated with SMase D
(5 µg/ml) or buffer in serum free medium for 2 h at 37°C and 5%
CO2. Wells were washed five times using serum free medium,
followed by incubation in PBS containing 5% BSA for 1 h at
room temperature and brief washing with PBS for 5 min.

Binding of SMase D to the cells was assessed by incubation
with rabbit IgG anti-SMase D (1:200 PBS/2% BSA, 30 min, RT),
followed by three washes with PBS/Tween20 (0.01%) and
incubation with GAR/Al488 (1:500 in PBS/2% BSA, 30 min, RT).
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For the visualization of lipid rafts, cells were incubated with
Alexa555-conjugated Cholera toxin subunit b (CTx-b/Al555) (1.3
µg/200 µl, 30 min, RT) (Harder et al., 1998; Gniadecki et al., 2002).
Cellswerewashed three times inPBS/Tween20 (0.01%) andfixed in
1% paraformaldehyde for 20 min at 37°C. Slides were
counterstained with “Prolong Gold antifade” containing DAPI
nuclear stain and covered with coverslips for microscopy.

The effect of SMase D treatment on the colocalization of
CD59 and ADAM-17 with GM1, in lipid rafts, was investigated
by incubating the cells with MoAbs against human CD59 (1:250)
or anti-human ADAM-17 (10 µg/ml). The colocalization of
SMase D, CD59, and ADAM-17 proteins and CTx-b was
assessed using BioImageXD v1.0 software (Kankaanpää et al.,
2012) and threshold values were calculated by the method of
Costes (Costes et al., 2004). Colocalization coefficients, according
to Manders (Manders et al., 1993), were chosen since they
represent the true degree of colocalization. M1 denotes the
colocalization index of the green with red marking and M2 the
colocalization index of the red with green marking. An average of
ten different images, in three different focal planes, were analyzed
per experiment in four independent experiments.

Alternatively, to evaluate whether the labeling was restricted to
the membrane, cells were detached and treated with SMase D or
buffer, in suspension for 2 h at 37°C followed by cytospin
centrifugation (400 rpm for 5 min) (Cytospin 4, Thermo
Scientific, Massachusetts, USA) to fix the cells to the microscopy
slides and then incubated with antibodies as described above.

The photomicrographswere acquired in laser scanning confocal
microscopy system (LSCM) (LSM 510 meta, Carl Zeiss, Jena,
Germany) using objective C-Apochromat 63×/1.2W corr.
Statistical Analysis
Data were expressed as mean ± standard error and statistically
analyzed with GraphPad Prism, version 6.1 for Windows (San
Diego, USA). Comparisons between more than two groups in
relation to one variable were performed by One Way ANOVA
and multiple comparisons performed by post-hoc Tukey HSD.
Comparison of two or more variables between more than two
groups was performed using Two Way ANOVA followed by
post-hoc Bonferroni test. Comparisons between two groups were
performed by Student's t test.
RESULTS

ADAM-10 and 17 Are Activated as
Consequence of SMase D Action on
Keratinocyte Cell Membrane
To investigate the role of ADAMs in the SMase D induced
shedding of cell surface molecules from the human keratinocyte
cell line HaCaT, the effects of a broad spectrum metalloproteinase
inhibitor (Galardin: GM) and specific inhibitors of ADAM-10 (GI)
and ADAM-17 (GW) were investigated. Figures 1B–F show that
SMase D treatment of HaCaT cells resulted in reduced surface
expression, likely as a consequence of shedding, of the membrane
Frontiers in Pharmacology | www.frontiersin.org
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bound molecules EGFR, b2-microglobulin (associated with
MHCI), MCP, and TNF-RI, but not CD59. This was significantly
inhibited by the pre-incubation with GM and also by GI or GW, as
well as a combination of both. This demonstrates that ADAMs-10
and -17 are activated as consequence of the action of SMase D from
Loxosceles on cell membranes. As previously described by us
(Paixão-Cavalcante et al., 2006), using anti-Loxosceles SMases D
specific antibodies we could observe that the toxin binds to human
keratinocytesmembrane (Figure 1A).The use of ADAM inhibitors
did not affect the cell viability nor the binding of the toxin to the cell
membrane and the vehicle of the inhibitors did not produce any
interference with the cleavage of the markers (data not shown).
Proprotein Convertases Participate of the
ADAMs Activation After SMase D Action
on Keratinocyte Cell Membrane
ADAMs are zymogens and require cleavage of the prodomain,
by certain serine proteinases, also known as proprotein
convertases, such as furin (Seidah, 2006; Klein and Bischoff,
2011). In order to investigate whether furin is involved in the
SMase D induced ADAMs activation, HaCaT cells were pre-
treated with the broad-spectrum serine proteinase inhibitor
PMSF. Furin itself is also a zymogen and has to enter the
Golgi to become activated, which can be prevented by
monensin, an inhibitor of transport to the Golgi (Vey et al.,
1994). Thus, to investigate the activation of furin, cells were also
pre-treated with monensin, prior to incubation with SMase D.
Figure 2 shows that both PMSF and monensin were effective in
reducing the shedding of membrane markers by ADAMs,
suggesting the involvement of serine proteinases and Furin in
the mechanism of activation of ADAMs, on the keratinocytes
membrane, after SMases D action. Reduction in shedding was
not as effective as with the metalloprotease inhibitors.

In an attempt to identify the proprotein convertases that
participates in this process, the cells were treated with three
different inhibitors of proprotein convertases groups, i. e., FI:
specific furin inhibitor (Vey et al., 1995); FII: Furin, PACE4, and
PC1 inhibitor (Cameron et al., 2000); and ProproC: Furin,
PACE4, PC1/3, PC4, and PC5/6 inhibitor (Becker et al., 2012).
Figure 3 shows that the three inhibitors prevented the cleavage
of membrane markers, to some extent, being most effective at
inhibiting the release of cell surface b2-microglobulin and MCP.
These results indicate that proproteins as furin, PACE4, PC1,
PC7, and PC5B may be involved in the activation of ADAMs,
induced by the action of SMase D in the membrane. The
inhibitors did not have any effect on the cell surface expression
of the molecules analyzed on the keratinocytes treated with
buffer only, indicating that the observed effect was not due to
an effect on the natural turnover of cell surface molecules (data
not shown). The inhibitors or their solvents (DMSO, ethanol or
PBS) did affect neither the cell viability nor the binding of the
toxin to the cell membrane. Furthermore, the solvents of the
inhibitors did not interfere with the cleavage of the cell surface
markers induced by SMase D action on the cell membrane (data
not shown).
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SMase D Modulates the Expression of
ADAMs and Induces the Activation of
ERK1/2 Signaling Pathway
The results of the experiments, with ADAM-10 and ADAM-17
inhibitors, suggest an increase expression/function of these
ADAMs and indeed, using flow-cytometry, we show that
SMase D increases the detection/expression of ADAMs 10 and
17 on the cell surface (Figures 4A, B).

The shedding of surface molecules by ADAMs proteins may
occur or increase due to specific signaling pathways such as
MAPK and ERK (Xu et al., 2012). Based on this, we investigated
Frontiers in Pharmacology | www.frontiersin.org 5
the possible activation of ERK1/2 pathway after SMase D action
on keratinocytes. Figure 4C shows that SMase D activated this
signaling pathway, as demonstrated by an increased detection of
ERK1/2 phosphorylation in SMase D-treated keratinocytes.

SMase D Changes the Expression of
Structural Lipid Rafts Components GM1
Ganglioside, Flotilin-1, and Caveolin-1 on
Keratinocytes Membrane
Since the maturation of ADAM-17 occurs in lipid rafts and the
mechanisms that regulate the hydrolytic activity of this and other
A B

C D

E F

FIGURE 1 | Involvement of ADAMs in the shedding of surface markers, induced by SMase D. HaCaT cells were pre-incubated for 5 min with Galardin (GM: 90 µM),
ADAM-10 (GW: 45 µM), or ADAM-17 (GI: 45 µM) inhibitors followed by SMase D (25 µg/ml) or buffer for 2 h. Binding of the SMase D to keratinocytes surface (A),
Expression of CD59 in cells treated or not with SMase D (B), EGFR (C), b2-microglobulin (D), MCP (E), and TNF-RI (F) cell surface expression was analyzed by flow
cytometry. Data are presented as mean ± standard error of duplicates being representative of two independent experiments. Statistically analyzed by one-way
ANOVA, followed by Tukey's HSD test or t Test of Student in case of CD59 and toxin binding, using GraphPad Prism 6.1 Software. (*) Significant difference
compared to buffer (p < 0.05). (#) significant difference in relation to SMase D (p < 0.05).
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proteases, involve proteins within the lipid rafts (Walev et al., 2000;
Kojro et al., 2001; Matthews et al., 2003; von Tresckow et al., 2004;
Zimina et al., 2007), we analyzed the effect of SMase D on the
expression of the lipid raftmarkersGM1 ganglioside,flotillin-1, and
caveolin-1 using flow cytometry. Figures 5A, B show that SMase D
increased the detection or expression of GM1 ganglioside and
flotillin-1, while it reduced the expression or detection of
caveolin-1 (Figure 5C), an important component of a different
lipid domain named as caveolae.
SMase D Induces Superoxide Production
in Human Keratinocytes
Considering that oxidative stress may contribute to the
modification of lipid raft structural components (Park et al.,
2009; Mougeolle et al., 2015) and that we observed a reduction in
caveolin-1 expression after the SMase D treatment, we
investigated the ability of SMase D to induce reactive oxygen
and nitrogen species production. Figure 5D shows that SMase D
induced a significant increase in superoxide production by
human keratinocytes. However, the production of peroxynitrite
was not affected by SMase D (Figure 5E).
Frontiers in Pharmacology | www.frontiersin.org 6
SMase D Binds to Lipid Rafts on Human
Keratinocytes Membrane and Changes the
Behavior of Other Proteins Present in the
Microenvironment
As structural components of lipid rafts were altered by the action of
SMase D, we analyzed if the binding of SMase D on the cell
membrane would colocalize with GM1 ganglioside, a marker of
lipid rafts. Confocal microscopy, using SMase D specific antibodies
and fluorescently labeled Choleratoxin b (CTx-b), which binds to
GM1 was performed. Figures 6A, B showed that SMase D strongly
colocalizes (about 85%) with GM1 ganglioside, with a Manders'
colocalization coefficient of M1 = 0.84 and M2 = 0.85. Z-stack
analysis showed that the bindings of SMase D and CTx-b occur
mainly at the cell surface, since, as the depth of the focal planes in the
Z-axis increased, the level of colocalization reduced (Figures 6C, D).

To analyze the behavior of proteins known for their location
or concentration of their activities in lipid rafts, we evaluated the
colocalization of SMase D, CD59 (typically lipid raft associated)
and ADAM-17, with GM1, in cells before and after SMase D
incubation. Figures 7A, B show that SMase D significantly
reduced the colocalization of CD59 and GM1 (Manders'
colocalization coefficient M1 = 0.64; M2 = 0.61) when
A B

C D

FIGURE 2 | PMSF and Monensin inhibit the SMase D-induced shedding of surface markers. HaCaT cells were pre-incubated for 5 min with PMSF (1 mM) or Monensin
(10 µg/ml) followed by SMase D (25 µg/ml) or buffer for 2 h. Expression of EGFR (A), b2-microglobulin (B), MCP (C), and TNF-RI (D) was analyzed by flow cytometry. Data
are presented as mean ± standard error of duplicates, representative of two independent experiments. Statistically analyzed by one-way ANOVA followed by Tukey HSD
test using GraphPad Prism 6.1 Software. (*) Significant difference compared to buffer (p < 0.05). (#) Significant difference in relation to SMase D (p < 0.05).
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compared to cells treated with buffer alone (Manders'
colocalization coefficient M1 = 0.76; M2 = 0.76). In contrast,
Figure 8 shows that SMase D significantly increased the
colocalization of ADAM-17 and GM1 (Manders' colocalization
coefficient M1 = 0.78; M2 = 0.83) when compared to cells treated
with buffer (Manders' colocalization coefficient M1 = 0.60;
M2 = 0.47).
DISCUSSION

Various interventions have been proposed as a treatment for
loxoscelism, however, a definitive and fully effective therapy has
not yet been established. A better understanding of the molecular
mechanism of venom/toxins action is important to the
establishment of more effective therapeutic approaches for the
Loxosceles spider envenomation.

In previous studies, using a broad-spectrummetalloproteinase
inhibitor Galardin (GM6001), we demonstrated that Loxosceles
venom/SMases D activated metalloproteinases of the Adamalysin
family on nucleated cells surface resulting in cleavage of various
transmembrane anchored molecules (van den Berg et al., 2002;
van den Berg et al., 2012). Here, we show that in addition to
Galardin, specific ADAM-10 and -17 inhibitors significantly
reduced the cleavage of the cell surface markers EGFR, b2-
microglobulin and MCP. As also previously described by us
(van den Berg et al., 2002), CD59 was not affected by the action
Frontiers in Pharmacology | www.frontiersin.org 7
of SMase D (Figure 1B). Furthermore, we show here for the first
time that TNF-RI is also cleaved by the indirect action of SMase D
on keratinocytes. Thus, data obtained with these inhibitors
indicate that both ADAM-10 and -17 are activated by SMase D
and contribute to the cleavage/shedding of cell surface molecules.
Combined inhibition of these enzymes did not provide a
complete inhibition of the shedding, suggesting that other
ADAMs may be involved. According to Ari-Pekka et al.
(Huovila et al., 2005), while ADAM-10 and -17 are the main
sheddases, several other ADAMs contribute to the shedding of
membrane bound proteins.

The results presented here show that proteins cleaved after the
action of the SMases D are part of the group of specific substrates of
ADAM-10 and -17. Shedding of surface molecules by ADAMs
proteins may occur or increase in response to cellular stimulation
with phorbol esters (Müllberg et al., 2000), bacterial toxins (Walev
et al., 1996), apoptotic stimuli (Chalaris et al., 2007), and activation
ofMAPK and ERK (Xu et al., 2012). Our results showing SMaseD-
induced activation of MAPK ERK1/2 signaling pathway (Figure
4C) inkeratinocytes,may suggest that the activationof this pathway
may contribute to the ADAMs activity.

The metalloprotease domain of ADAMs is protected by a pro-
domain in the inactive zymogens, which is removed by proprotein
convertases (PCs) such as furin, PC7, PC5/6B, SKI-1. These PCs,
which are serine proteases (Seidah, 2006; Klein and Bischoff, 2011),
are activated themselves during transport through the Golgi.
Inhibiting serine protease activity with the broad-spectrum
A B

C D

FIGURE 3 | Proprotein convertases inhibitors partially prevent SMase D-induced shedding of surface markers. HaCaT cells were pre-incubated for 5 min with 20 µM of
each inhibitor followed by SMase D (25 µg/ml) or buffer for 2 h. Expression of EGFR (A), b2-microglobulin (B), MCP (C), and TNF-RI (D) was analyzed by flow cytometry.
Data are presented as mean ± standard error of duplicates representative of two independent experiments. Statistically analyzed by one-way ANOVA followed by Tukey
HSD test using GraphPad Prism 6.1 Software. (*) Significant difference compared to buffer (p < 0.05). (#) Significant difference in relation to SMase D (p < 0.05).
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inhibitor PMSF and inhibiting Golgi transport, using monensin,
resulted in a partial (EGFR, TNF-RI) to complete (MCP and b2-
microglobulin) inhibition of SMase D-induced shedding,
suggesting the involvement of proprotein convertases (Figure 2).
Using more specific inhibitors of the proprotein convertases,
including furin, their roles were confirmed, especially in the
shedding of MCP and b2-microglobulin, which cleavages were
completely inhibited (Figure 3). We thus show here for the first
time the participation of proprotein convertases in the SMase D-
induced shedding of cell surface molecules.

The furin specific inhibitor FI showed, in most cases, to be
equally efficient to the broader spectrum inhibitors FII and
ProproC, suggesting that furin is the main proprotein
convertase activated and involved in this process. However, in
the case of EGFR and TNF-RI, we did not observe a complete
inhibition and other mechanisms may contribute to the shedding
of these molecules.

Lipid raft disruption has been shown to increase shedding by
ADAMs-10 and -17 (Matthews et al., 2003; von Tresckow et al.,
2004). Tellier et al. (2006) showed that the zymogen pro-domain of
Frontiers in Pharmacology | www.frontiersin.org 8
ADAM-17 is cleaved by furin in lipid rafts, which results in
concentration of the shedding activity of ADAM-17 in lipid rafts
and inhibition of ADAM-17 resulted in increase in its substrates
within the rafts. Our results presented here also showed that SMase
D-induced cleavage of several cell surface proteins, in the cell
membrane, was prevented by ADAMs inhibitors. Corroborating
these findings, our confocal microscopy data showed that SMase D
changed the behavior ofmolecules located in the lipid rafts, resulting
in an increased lipid raft colocalization index of ADAM-17 and a
decreased CD59 colocalization (Figures 8 and 7, respectively).

Diaz and colleagues (2005) showed that sphingomyelinase C
from Staphylococcus aureus, altered the properties of lipid rafts in
peripheral blood derived mononuclear cells, resulting in a
concomitant reduction of sphingomyelin and cholesterol content
of the rafts.We have tried to emulate the action of SMase D and the
subsequent cleavage of various cell surface molecules with
commercial purified Sphingomyelinase C and with ceramide-1-
phosphate, but while the Sphingomyelinase C did not induce
cleavage of cell surface molecules, the ceramide-1-phosphate was
toxic to the cells and results were inconclusive (unpublished
A B

C

FIGURE 4 | Expression of ADAM-10 and 17 and detection of ERK1/2 phosphorylation in human keratinocytes after treatment with SMase D. HaCaT cells were treated for
2 h with SMase D (25 µg/ml) or buffer and analyzed for the expression of ADAM-10 (A) and ADAM-17 (B) by flow cytometry. Alternatively, cells were treated with SMase D or
buffer for 30 and 60 min and ERK1/2 phosphorylation was evaluated by using the EIA kit Titerzime Phospho-ERK1/2 (C). Data are expressed as mean ± standard error of
duplicates, representative of two independent experiments. Statistically analyzed by TwoWay ANOVA followed by Tukey HSD test for the evaluation of ERK1/2 and analyzed
by Student's t test for ADAMs expression, using the GraphPad Prism 5.1. (*) Significant difference compared to buffer (p < 0.05).
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observations). Therefore our observation that SMaseD changes the
lipid raft composition and stability and increases the activity of
ADAMs, suggest that this is a unique property of this SMase D and
also reveals the importance of these microdomains in controlling
this process, as demonstrated by Tellier et al. (2006).

Since the shedding process by ADAMs occurs in the lipid
rafts following “perturbation” of the cell membrane
environment, we evaluated the expression of the major
component of lipid rafts GM1 ganglioside, after treatment with
SMase D. We observed that the ganglioside detection increased
significantly after the action of SMase D, suggesting possible lipid
raft disruption leading to an enhanced binding of CTx-b to GM1
Frontiers in Pharmacology | www.frontiersin.org 9
ganglioside, probably due to increased molecule accessibility
(Slaughter et al., 2003).

There are two types of rafts: those containing the structural
protein caveolin-1 that form caveolae, and those that lack this
protein but express two different raft-specific proteins, called
flotillin-1 and 2 (Volonté et al., 1999). As both caveolar and non-
caveolar rafts are highly enriched in sphingolipids and
glycosphingolipids, they are also known as glycolipid-enriched
microdomains. These rafts are also highly enriched in
gangliosides, especially GM1 which has almost been exclusively
identified in these structures (Cremesti et al., 2002). Thus, we have
demonstrated that SMaseD is capable of interferingwithboth types
A B

C D

E

FIGURE 5 | Analysis of GM1 ganglioside, flotillin-1, and caveolin-1 and ROS production in human keratinocytes, treated with SMase D. HaCaT cells were treated for
2 h with SMase D (25 µg/ml) or buffer and analyzed for the expression of GM1 ganglioside (A), flotillin-1 (B), and caveolin-1 (C) by flow cytometry or for the presence
of superoxide (O2

• -) (D) and peroxynitrite (ONOO-) (E), by flow cytometry. Data are expressed as mean ± standard error of duplicates, representative of two
independent experiments. Statistically analyzed by Student t test, using the GraphPad Prism 5.1. (*) Significant difference compared to buffer (p < 0.001).
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A

B

C

D

FIGURE 6 | Colocalization of SMase D and Cholera Toxin subunit b in human keratinocytes membrane. HaCaT cells cultured on slides were treated, for 2 h, with
buffer or SMase D (5 µg/ml). Binding of SMase D was analyzed using rabbit IgG anti-SMase D (1:200), followed by anti-rabbit secondary antibody conjugated with
Alexa-488 (1:200). Lipid rafts were visualized using Cholera toxin subunit b-AlexaFluor 555 and the nuclei counterstained with DAPI and slides were analyzed by
CLSM. Scale bars represent 20 µm. (A) Cells treated with buffer or SMase D, at focal plane of 2.59 µm. Colocalization areas are shown as grayscale images.
(B) average percentage SMase D/CTx-b colocalization represent means ± SEM from, at least, 10 images in two independent experiments and three different focal
plans. (C) Cells treated with SMase D at focal planes from 0.86 to 5.18 µm. Colocalization areas are shown as grayscale images. (D) Percentage of SMase D/CTx-b
colocalization at the different focal planes analyzed. Data on the graphs represent means ± SEM from, at least, 10 images in two independent experiments and three
different focal plans.
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A

B

FIGURE 8 | Colocalization of ADAM-17 and Cholera Toxin subunit b in human keratinocytes, treated with SMase D. HaCaT cells were cultured on slides and
treated for 2 h with buffer or SMase D (5µg/ml). Cells were stained with Moab anti-ADAM-17 (20 µg/ml), followed by RAM-FITC (1:50). GM1 containing lipid rafts
were visualized, using the CTx-b/Alexa Fluor 555 and the nuclei counterstained with DAPI and slides were analyzed by CLSM. Scale bars represent 20 µm.
(A) Colocalization of ADAM-17 and GM1 at the focal plane of 3.02 µm analyzed in cells treated with buffer or SMase D. Colocalization areas are shown as grayscale
images. (B) Comparison between the colocalization of ADAM-17 and Cholera Toxin subunit b in cells treated with SMase D or buffer and represent means ± SEM
from at least 10 images in two independent experiments and three different focal plans. Statistically analyzed by Two Way ANOVA followed by Tukey HSD test, using
the GraphPad Prism 5.1. (*) Significant difference compared to SMase D (p < 0.05).
A

B

FIGURE 7 | Colocalization of CD59 and Cholera Toxin subunit b in human keratinocytes, treated with SMase D. HaCaT cells were cultured on slides and treated for
2 h with buffer or SMase D (5µg/ml). Cells were stained with Moab anti-CD59 (1:250), followed by RAM-FITC (1:50). GM1 containing lipid rafts were visualized using
Ctx-b/Alexa Fluor 555 and nuclei counterstained with DAPI and slides were analyzed by CLSM. Scale bars represent 20 µm. (A) Colocalization of CD59 and GM1 at
the focal plane of 3.02 µm analyzed in cells treated with buffer or SMase D. Colocalization areas are shown as grayscale images. The graph (B) shows a comparison
between the colocalization of CD59 and CTx-b, in cells treated with SMase D or buffer and represents the mean ± SEM from, at least, 10 images in two independent
experiments and three different focal plans. Statistically analyzed by Two Way ANOVA followed by Tukey HSD test, using the GraphPad Prism 5.1. (*) Significant
difference compared to buffer (p < 0.05).
Frontiers in Pharmacology | www.frontiersin.org May 2020 | Volume 11 | Article 63611

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Lopes et al. SMase D and Lipid Rafts
of rafts, since a reduction in caveolin-1 expression/detection and
increase in flotilin-1 was observed in cells treated with SMase D.
Mougeolle et al. (2015) demonstrated that oxidative stress induces
caveolin-1 degradation. We have previously shown that SMase D
inducesoxidative stress in leukocyteswithproductionof superoxide
and peroxynitrite (Manzoni-de-Almeida et al., 2018), and
corroborating this data, we show here that SMase D induces
superoxide production in human keratinocytes (Figures 5C, D).
Regarding the flotillin-1, its increase may indicate an augmented
synthesis and recruitment of raft components to the membrane
after degradation or perturbation. In the absence of caveolins,
flotillins has been shown to assume the role of a structural protein
assisting lipid rafts assembly (Slaughter et al., 2003).

To confirm the action of SMase D on lipid rafts, we sought to
analyze the possible toxin binding to the microdomains, which
were indirectly visualized by Cholera toxin labeling, which binds
to GM1 gangliosides. We observed a high colocalization index
between SMase D in the membrane and the GM1 ganglioside,
suggesting that the SMase D acts on the membrane and
preferably in these microdomains.

In conclusion, we have elucidated more of the mechanism by
which SMase D exerts its actions and our observation that SMase
D changes the rafts dynamics leading to activation of proproteases
such as furin and, consequently, the metalloproteases ADAM-10
and -17, opens up pathways for novel therapeutic interventions to
prevent and treat systemic and local pathologies after Loxosceles
spider envenomation.
Frontiers in Pharmacology | www.frontiersin.org 12
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Chile: estudios epidemiológicos, clıńicos y experimentales. Rev. Inst. Med.
Trop. Sao Paulo 31, 403–415. doi: 10.1590/S0036-46651989000600007

Seals, D. F., and Courtneidge, S. A. (2003). The ADAMs family of
metalloproteases: Multidomain proteins with multiple functions. Genes Dev.
17, 7–30. doi: 10.1101/gad.1039703

Seidah, N. G., Mayer, G., Zaid, A., Rousselet, E., Nassoury, N., Poirier, S., et al.
(2008). The activation and physiological functions of the proprotein convertases.
Int. J. Biochem. Cell Biol. 40, 1111–1125. doi: 10.1016/j.biocel.2008.01.030

Seidah, N. G. (2006). Unexpected similarity between the cytosolic West Nile virus
NS3 and the secretory furin-like serine proteinases. Biochem. J. 393, e1–e3.
doi: 10.1042/BJ20051787

Simons, K., and Ikonen, E. (1997). Functiomal rafts in cell membranes. Nature
387, 569–572. doi: 10.1038/42408

Slaughter, N., Laux, I., Tu, X., Whitelegge, J., Zhu, X., Effros, R., et al. (2003). The
flotillins are integral membrane proteins in lipid rafts that contain TCR-
associated signaling components: Implications for T-cell activation. Clin.
Immunol. 108, 138–151. doi: 10.1016/S1521-6616(03)00097-4

Smart, E. J., Graf, G. A., McNiven, M. A., Sessa, W. C., Engelman, J. A., Scherer, P. E.,
et al. (1999). Caveolins, Liquid-Ordered Domains, and Signal Transduction.Mol.
Cell. Biol. 19, 7289–7304. doi: 10.1128/mcb.19.11.7289

Tambourgi, D. V., Magnoli, F. C., van den Berg, C.W., Morgan, B. P., de Araujo, P. S.,
Alves, E. W., et al. (1998). Sphingomyelinases in the venom of the spider
Loxosceles intermedia are responsible for both dermonecrosis and complement-
dependent hemolysis. Biochem. Biophys. Res. Commun. 251, 366–373.
doi: 10.1006/bbrc.1998.9474

Tambourgi, D. V., Morgan, B. P., de Andrade, R. M., Magnoli, F. C., and van Den
Berg, C. W. (2000). Loxosceles intermedia spider envenomation induces
activation of an endogenous metalloproteinase, resulting in cleavage of
glycophorins from the erythrocyte surface and facilitating complement-
mediated lysis. Blood 95, 683–691. doi: 10.1182/blood.V95.2.683
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