Submitted 4 August 2021
Accepted 31 August 2021
Published 16 September 2021

Corresponding author
Nicholas D. Youngblut, nyoung-
blut@tuebingen.mpg.de

Academic editor
Donovan Parks

Additional Information and
Declarations can be found on
page 10

DOI 10.7717/peer;j.12198

© Copyright
2021 Youngblut and Ley

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Struo2: efficient metagenome profiling
database construction for ever-expanding
microbial genome datasets

Nicholas D. Youngblut and Ruth E. Ley

Microbiome Science, Max Planck Institute for Developmental Biology, Tuebingen, Baden Wurttemberg,
Germany

ABSTRACT

Mapping metagenome reads to reference databases is the standard approach for
assessing microbial taxonomic and functional diversity from metagenomic data.
However, public reference databases often lack recently generated genomic data such
as metagenome-assembled genomes (MAGs), which can limit the sensitivity of read-
mapping approaches. We previously developed the Struo pipeline in order to provide
a straight-forward method for constructing custom databases; however, the pipeline
does not scale well enough to cope with the ever-increasing number of publicly
available microbial genomes. Moreover, the pipeline does not allow for efficient
database updating as new data are generated. To address these issues, we developed
Struo2, which is >3.5 fold faster than Struo at database generation and can also
efficiently update existing databases. We also provide custom Kraken2, Bracken, and
HUMAnNN3 databases that can be easily updated with new genomes and/or individual
gene sequences. Efficient database updating, coupled with our pre-generated databases,
enables “assembly-enhanced” profiling, which increases database comprehensiveness
via inclusion of native genomic content. Inclusion of newly generated genomic content
can greatly increase database comprehensiveness, especially for understudied biomes,
which will enable more accurate assessments of microbiome diversity.

Subjects Bioinformatics, Genomics, Microbiology
Keywords Metagenome, Database, Profiling, GTDB

INTRODUCTION

Utilizing shotgun metagenomics for microbiome research is increasing in popularity due
to the reduced costs and scalability of sequencing and the improved ease of sequence library
generation (Sczyrba et al., 2017; Breitwieser, Lu ¢ Salzberg, 2019). Metagenome profiling
is a very common approach of assessing microbial diversity from metagenomics data,
which involves mapping unassembled reads or assembled contigs to reference databases
in order to derive annotations for taxonomy, metagenomic pathways, genes, and other
genomic content. Importantly, metagenome profiling requires the use of >1 reference
database, which are all incomprehensive and are often biased toward pathogens and
other well-studied microbes (Breitwieser, Lu & Salzberg, 2019; Loeffler et al., 2020). While
microbial diversity can be directly assessed via kmer-based approaches that do not rely
on reference databases (Benoit et al., 2016; Rowe et al., 2019), such methods provide no

How to cite this article Youngblut ND, Ley RE. 2021. Struo2: efficient metagenome profiling database construction for ever-expanding
microbial genome datasets. Peer] 9:e12198 http://doi.org/10.7717/peerj. 12198

https://peerj.com
mailto:nyoungblut@tuebingen.mpg.de
mailto:nyoungblut@tuebingen.mpg.de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.12198
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.12198

Peer

direct insight into the taxa or genomic content that differs across treatment groups or
environmental gradients.

Most metagenome profiling software includes “standard” reference databases (Kim
et al., 2016; Franzosa et al., 2018; Wood, Lu & Langmead, 2019; LaPierre et al., 2020). For
instance, the popular HUMANNN pipeline includes multiple databases for assessing both
taxonomy and function from read data (Franzosa et al., 2018). Similarly, Kraken2 includes
a set of standard databases for taxonomic classification of specific clades (e.g., fungi or
plants) or all taxa (Wood, Lu & Langmead, 2019). While such standard reference databases
provide a crucial resource for metagenomic data analysis, they may be suboptimal for
multiple reasons. First, databases will always be somewhat out-of-date, given the rapid
increase in newly assembled genomic content. For instance, database biases and lack of
representation can be reduced by first assembling genes and genomes from metagenomes
and adding the new genomic content to the existing databases (Youngblut et al., 2020).
Second, standard profiling databases may not be customized for specific research questions
such as smaller databases focused on certain (well-curated) taxa or genomic content from
specific environments (e.g., only marine or soil microbiomes). Third, the underlying
taxonomy or genomic annotations included in the database may be suboptimal. For
example, the Genome Taxonomy Database (GTDB) defines a taxonomy based on microbial
genome phylogenies, which is highly standardized relative to the polyphasic taxonomy of
the NCBI; however, the GTDB taxonomy is not available in standard profiling databases
(Parks et al., 2020; De la Cuesta-Zuluaga, Ley & Youngblut, 2020).

The process of making custom reference databases is often complicated and requires
substantial computational resources, which led us to create Struo for straight-forward
custom metagenome profiling database generation (De la Cuesta-Zuluaga, Ley &
Youngblut, 2020). We utilized our toolset to generate and publish custom metagenome
profiling databases from the GTDB, which not only provides a standardized taxonomy but
also increased the percent of gut metagenome reads mapped to database references relative
to standard Kraken2 and HUMAnNN?2 databases.

While Struo greatly aids in custom database generation, it does require substantial
computational resources, especially for the gene annotation that is necessary for creating
custom HUMAnNN databases. Specifically, Struo requires ~2.4 CPU hours per genome and
thus took >51,000 CPU hours when applied to ~21,000 species-representative genomes in
Release 89 of the GTDB. The number of representative genomes has increased to >31,900
in the subsequent GTDB release (an ~50% increase), which would require >77,900 CPU
hours (>9.1 years) for the Struo pipeline. Given that the number of genomes added to
the GTDB and other databases is rapidly expanding (Fig. 1) (Almeida et al., 2020; Sayers et
al., 2021), we sought to develop a pipeline that scales accordingly. Struo2 is a rewrite and
expansion of Struo, which is substantially faster, can efficiently update existing databases,
and includes generally applicable utility tools for database manipulation.

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 212

https://peerj.com
http://dx.doi.org/10.7717/peerj.12198

Peer

>

- 0
o o
0 D 2e+05 A
o8 t
£ 2 L category
S o = il —e— genomes
(@]
w6 E 1e+05 A / —o— lineages
S 2
=& ._+_/
80.0 83.0 86.2 89.0 95.0 202.0
GTDB release
B 50000 >
/, category
g » 99084 / ~o— Classes
<
g% 30000 A //—-”ég ~o— Families
52 N —e— Genera
= '@ 20000 - A~
o % & —o— Orders
. 0‘_’__,&/’
2 © 10000+ .M/ ~s- Phyla
'——.———:'———t—':‘fq ~~ Species
0-

80.0 83.0 862 89.0 950 202.0
GTDB release

Figure 1 The number of microbial genomes and taxonomic lineages in the Genome Taxonomy

Database (GTDB) is rapidly expanding. (A) The number of total genomes and GTDB taxonomic lineages
in each GTDB release. (B) The number of unique groups per taxonomic level in each GTDB release. Data
was obtained from GTDB: https://gtdb.ecogenomic.org/downloads.

Full-size &l DOI: 10.7717/peer;j.12198/fig-1

MATERIALS & METHODS

Struo2 database creation algorithm

A general outline of the Struo2 algorithm is shown in Fig. 2A. Struo2 can generate database
files for four main database types: “Kraken2”, “Bracken”, “genes”, and “HUMANN3”
(Wood, Lu & Langmead, 2019; Lu et al., 2017; Franzosa et al., 2018). Struo2 uses snakemake
and conda (Kdster ¢ Rahmann, 2012), and so there are no dependencies that must be
installed prior to pipeline execution besides snakemake, conda, and pandas (for input
table loading). Moreover, snakemake allows for efficient job execution and easy scaling
on to high performance computing systems. We note that the Struo2 pipeline code is a
substantial re-write and expansion of the original Struo pipeline (e.g., ~1500 versus ~7000
lines of code in Struo versus Struo2, respectively). Struo2 has extensive documentation,
including tutorials on its usage.

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 312

https://peerj.com
https://gtdb.ecogenomic.org/downloads
https://doi.org/10.7717/peerj.12198/fig-1
http://dx.doi.org/10.7717/peerj.12198

Peer

< ~2.44x + 45.7
Genbank/ Genome |« List of genomes.
download (e.g., from the GTDB)
RefSeq 2000
® Struo
l 3 Version
2 .
Al =) o Struot
assembly Gi”*;a”""g @ 1000
contigs (Prodigal) o o ~ Struo2
RECT e
ol €777 ~0.67x+46.8
Kraken2 build Predicted gene Predicted genes.
database nuc\eonde) (amino acid) 100 500 1000
C No. of genomes
(%]
2
Per- gg:r:\;me Cluster al s 2000000 A
dereplication (st ey Struo
vsearch 1500000 4 i
bl 2 version
- =
S 1000000 0 struot
Apply Per-cluster Apply = 1
annotations representative annotations © . Struo2
Bracken build (nucleotide) sequences (amino acid) %5 500000 -
database °
o [
1 1] S od | -
All annotated Annalsie All annotated 1000
sequences sequences sequences
(nucleotide) (mmses)s (amino acid) No of genomes
searc

DIAMOND

Bowtie2 build build

database

UniRef database

HUMANN3 HUMANN3
Kraken2 Bracken nucleotide amino acid
database database database database

% CPU hours saved &

0 10 20 30 40 50
% genomes added

Figure 2 Struo2 can build databases faster than Struo and can efficiently update the databases. (A) A
general outline of the Struo2 database creation algorithm. Cylinders are input or output files, squares are
processes, and right-tilted rhomboids are intermediate files. The largest change from Struo is the utiliza-
tion of mmseqs2 for clustering and annotation of genes. (B) Benchmarking the amount of CPU hours re-
quired for Struo and Struo2, depending on the number of input genomes. The equations show that Struo2
scales 3.5 fold faster than Struol. (C) The number of genes annotated with a UniRef90 identifier, which
shows that both Struo versions annotate approximately the same number of genes. (D) The percent of
CPU hours saved via the Struo2 database updating algorithm versus de novo database generation. The
original database was constructed from 1,000 genomes. For (B) and (D), the lines are linear regressions,
and the grey regions represent 95% confidence intervals.

Full-size & DOI: 10.7717/peerj.12198/fig-2

The user input for Struo2 database creation is a table that lists: (i) unique taxon names, (ii)
assembly accession identifiers (if available), (iii) paths to (compressed) genome assembly
fasta files, (iv) taxonomy identifiers (taxids) used for Kraken2 database construction,
and (v) taxonomies at the genus and species levels (used for HUMAnN3). We provide
2 utility scripts to aid in construction of custom databases from genomes in the GTDB:
GTDB_metadata_filter.R and genome_download.R. GTDB_metadata_filter.R can filter the
publicly available GTDB archaeal and bacterial genome metadata files to a select subset of
genomes (e.g., those with a lower CheckM-estimated contamination). genome_download.R
can then download all of the user-selected GTDB genomes and add the path to the genome
assembly fasta files to the GTDB metadata table. This updated metadata table can then be
directly used as input to GTDB.

For construction of the custom Kraken2 database, contigs are renamed to
“kraken:taxid| <taxid >| <seqid >”, as described in the Kraken2 manual (https:
//github.com/DerrickWood/kraken2/wiki/Manual). The renamed contigs are added to

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 412

https://peerj.com
https://doi.org/10.7717/peerj.12198/fig-2
https://github.com/DerrickWood/kraken2/wiki/Manual
https://github.com/DerrickWood/kraken2/wiki/Manual
http://dx.doi.org/10.7717/peerj.12198

Peer

a new Kraken2 database via kraken-build, and then the database is constructed via

the same command. By default, the GTDB taxonomy is used, which entails providing
custom GTDB taxdump files created via the gtdb_to_taxdump.py utility tool (available at
https://github.com/nick-youngblut/gtdb_to_taxdump). The “taxonomy” and “library”
directories created by Kraken2 for temporary file storage are saved in order to expedite
database updating with new genomes.

Custom Bracken database files are created for any number of read lengths that the user
specifies (100 and 150 base pairs by default). The bracken-build.py script is used within the
pipeline for constructing each Bracken database.

In order to construct a custom HUMAnNN3 database, Struo?2 first creates a precursor
“genes” database, which consists of gene sequences from each genome and gene clusters
generated via mmseqs linclust. To construct the “genes” database, genes are first called
via prodigal (Hyatt et al., 2010), and then de-replicated at 97% sequence identity with
vsearch (Rognes et al., 2016), which is similar to the standard HUMAnN database
construction process (Franzosa et al., 2018). Non-redundant gene sequences from all
genomes are combined, and the metadata of each gene sequence (e.g., genome of origin,
contig of origin, and location on the contig) is also combined into one text file. The
amino acid gene sequences are clustered via mmseqgs linclust. By default, gene cluster
representative sequences are annotated against UniRef90 (version 2019-01; the same
as used by HUMANNS3) via mmseqs search with 2 search iterations and 3 sensitivity
steps (min = 1, max = 6). Prior to annotation, the sequence queries are split into #
batches and run in parallel for faster distributed searching with snakemake (# is user-
defined). For each gene cluster, the UniRef90 annotations are propagated to each gene.
UniRef90 annotations are mapped to UniRef50 identifiers via a mapping file created
from the UniRef90.xml file available from UniProt (https://www.uniprot.org/uniref/). The
unirefxml2clust50-90idx.py utility script is used to generate this mapping file (available
at https://github.com/nick-youngblut/gtdb_to_taxdump). The mapping of UniRef90 to
UniRef50 identifiers obviates the need to annotate genes separately against UniRef90 and
UniRef50. We note that Struo requires separate rounds of annotation to each UniRef
database instead of this UniRef90-to-UniRef50 mapping approach, which greatly increases
the run time versus Struo2 when the goal is to obtain annotations for both UniRef90 and
UniRef50. Note that the genes database includes both nucleotide and amino acid sequences
for each gene.

The annotated gene sequences are renamed in the format “ <UniRefID >| <gene_length
>|g__ <genus >;s__ <species > for creation of the HUMAnN3 database. Note that the
taxonomy information is provided by the user in the original input table. bowtie2-build and
diamond makedb are used to generate a HUMANN3-compatible bowtie2 and DIAMOND
databases of all annotated gene nucleotide and amino acid sequences, respectively.

Struo2 database update algorithm

Struo2 can update existing Struo2-generated Kraken2, Bracken, genes, and HUMAnN?3
databases. The databases can be updated with new genomes or individual gene sequences
(e.g., created via metagenome assembly with PLASS (Steinegger, Mirdita & Soding, 2019)).

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 512

https://peerj.com
https://github.com/nick-youngblut/gtdb_to_taxdump
https://www.uniprot.org/uniref/
https://github.com/nick-youngblut/gtdb_to_taxdump
http://dx.doi.org/10.7717/peerj.12198

Peer

If the input is a set of new genomes, the input is essentially the same as for database
creation, except the existing database files must also be provided. Database updating with
individual gene sequences requires the gene sequences in amino acid format (and also
nucleotide, if available) and metadata on each gene (i.e., the genus- and species-level
taxonomy inferred via mmseqs taxonomy or other approaches).

Kraken2 custom databases are updated via adding more genomes to the existing library
via kraken-build. New Bracken databases are created from the updated Kraken2 database.

Gene sequences, either originating from new genomes or new individual sequences,
are added to the existing mmseqs gene cluster database via mmseqs clusterupdate. Newly
formed clusters are annotated with mmseqs search, while existing annotations are used
for existing clusters. The updated database of annotated genes are used for creating new
HUMANN3-compatible bowtie2 and DIAMOND databases.

We note that database updating does not require consistent genomic representation
from each representative genome (e.g., the same taxonomic marker genes), given that
neither Kraken2/Bracken nor HUMANNS3 require such consistency.

Benchmarking custom database construction and updating
We used genomes from the GTDB (Release 95) for all benchmarking.

Only genomes with >50% CheckM-estimated completeness, <5% CheckM-estimated
contamination were included (Parks et al., 2015). To reduce biases towards species with
large numbers of representative genomes, we selected one genome per species. The genome
with the highest estimated completeness and lowest estimated contamination was selected
for all candidates of each species. The final pool consisted of 30,989 genomes (Fig. 52).

We used the same genome subsets for benchmarking database creation with both Struo
and Struo2. We benchmarked the combined time to generate Kraken2, Bracken, and
HUMANN databases, which included both UniRef50 and UniRef90 annotations for the
HUMAnNN databases. Struo was run with default parameters. Both pipelines were run on
the same computational architecture, consisting of a high performance computing cluster
comprising nodes running Ubuntu 18.04.5 with AMD Epyc CPUs and 0.5-2 terabytes of
RAM. The CPU hours shown in Fig. 2B are the sum of all CPU hours for all snakemake
jobs, as recorded via snakemake’s benchmarking feature.

We only benchmarked database updating for Struo2, given that Struo cannot update
databases, and we also clearly show in Fig. 2B that database generation is much slower
for Struo. We first used Struo2 to generate custom Kraken2, Bracken, and HUMAnN
databases from 1000 genomes. These “n1000” databases were used for all database update
benchmarking. The genomes used for database update benchmarking did not overlap with
any genomes used to generate the n1000 databases, and they did not overlap with each
other. We used subsets of 10, 100, 175, 250, 350, and 500 genomes. We used the linear
regression models shown in Fig. 2B to estimate the CPU hours that would be required to
generate each database from scratch rather than updating.

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 6/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.12198#supp-2
http://dx.doi.org/10.7717/peerj.12198

Peer

Benchmarking custom database accuracy as a function of genome
assembly quality

We utilized two randomly chosen sets of 100 genomes from the GTDB r95 reference
genome pool (described above). For each set, we simulated varying levels of misassemblies
among each genome in the set, with the same number of misassemblies introduced
into each genome per simulation set. Simulations were created via a custom python
script: genome_mis-asmbl_sim.py (available in the Struo2 GitHub repository). Three
types of misassemblies were simulated: breakpoints (splitting a contig into 2 pieces),
rearrangements (relocating a genomic fragment within one contig to another location on
the same contig or other contig in the assembly), and chimerisms (relocating a genomic
fragment from one contig in a donor genome to a contig in a recipient genome). Breakpoint
locations were selected from a uniform distribution. Fragment sizes of rearrangements
and chimerisms were selected from a uniform distribution, with size a range of 1e3-1e4.
We used CheckM to assess assembly quality of each genome in each synthetic genome
dataset (Parks et al., 2015). Each resultant synthetic genome dataset was used to construct
reference metagenome profiling databases via Struo2.

We utilized the Critical Assessment of Metagenome Interpretation (CAMI) “HMP
Gut” metagenome dataset to assess how genome assembly quality affects Kraken2/Bracken
taxonomic assignments (Sczyrba et al., 2017). The dataset was downloaded from the CAMI
challenge website: https://data.cami-challenge.org/. The Illumina paired-end reads were
subsampled to 1 million per sample. Beta diversity was calculated from the Bracken output
via QIIME2 (Bokulich et al., 2018). Beta diversity distance matrices were compared via
Mantel tests with 999 permutations and the Pearson correlation method.

Struo2 databases from GTDB releases 95 and 202

The genomes selected were as reported for the benchmarking of Struo and Struo2.
The custom Kraken2, Bracken, genes, and HUMAnNN?3 databases, are available at:
https://github.com/leylabmpi/Struo2/. We will publish new versions of each database
as new releases of the GTDB are published.

Utility tools

We have generated a set of utility tools for aiding in the construction of input for Struo2 and
generally facilitating the integration of the GTDB taxonomy into existing bioinformatics
pipelines. Some of these tools are described elsewhere in the Supplement Methods.
We note 2 utility tools that can have a broad applicability: gtdb_to_taxdump.py and
ncbi-gtdb_map.py. The former can convert the GTDB taxonomy, as documented in the
GTDB bacterial and archaeal metadata table, to NCBI-formatted taxdump files. These
taxdump files can be used with any existing software that requires taxdump files, such
as taxonkit (Shen & Xiong, 2019) or KrakenUniq (Breitwieser, Baker ¢ Salzberg, 2018).
ncbi-gtdb_map.py maps between NCBI and GTDB taxonomies, based on the taxonomy
information provided in the GTDB archaeal and bacterial metadata files. This tool can
be useful for converting GTDB-Tk classifications to NCBI taxonomies (Chaumeil et al.,
2019), or converting existing NCBI taxonomies to GTDB taxonomies without requiring
re-classification.

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 712

https://peerj.com
https://data.cami-challenge.org/
https://github.com/leylabmpi/Struo2
http://dx.doi.org/10.7717/peerj.12198

Peer

Code availability
The Struo2 pipeline code and all Jupyter Notebooks describing the analyses in this study
are available on GitHub at https://github.com/leylabmpi/Struo2.

RESULTS AND DISCUSSION

Struo2 generates Kraken2 and Bracken databases similarly to Struo (Lu et al., 2017; Wood,
Lu & Langmead, 2019), but the algorithms diverge substantially for the time consuming
step of gene annotation required for HUMAnNN database construction. Struo2 performs
gene annotation by clustering all gene sequences of all genomes using the rapid mmiseqs2
linclust algorithm, and then each gene cluster representative is annotated via mmseq2 search
(Fig. 2A; Supplemental Methods) (Steinegger & Siding, 2017; Steinegger ¢ Soding, 2018).
In contrast, Struo annotates all non-redundant genes of each genome with DIAMOND
(Buchfink, Xie ¢ Huson, 2015). Struo2 utilizes snakemake and conda, which allows for easy
installation of all dependencies and simplified scaling to high performance computing
systems (Kdoster ¢~ Rahmann, 2012).

Benchmarking on genome subsets from the GTDB showed that Struo2 requires ~0.67
CPU hours per genome versus ~2.4 for Struo (Fig. 2B), which is a >3.5 fold decrease.
Notably, Struo2 annotates slightly more genes than Struo, possibly due to the sensitivity
of the mmseqs search iterative search algorithm (Fig. 2C). The use of mmseqgs2 allows for
efficient database updating of new genomes and/or individual gene sequences via mmseqs
clusterupdate (Fig. S1); we show that this approach saves 15-19% of the CPU hours relative
to generating a database from scratch, with a linear trend towards increased efficiency as
the number of genomes are added (Fig. 2D).

We assessed how Struo2-generated databases can be affected by the assembly quality of
the reference genomes used. For this assessment, we generated synthetic reference genome
datasets, in which 3 types of misassemblies were introduced into each genome: breakpoints,
relocations, and chimerisms (see Methods). As we increased the number of per-genome
misassemblies, CheckM-estimated completeness and contamination values substantially
declined and increased, respectively (Fig. 3A). The percent of annotated genes, relative
to the ground truth reference genomes, declined linearly and steeply as median assembly
completeness declined (linear regression, n = 10, R?>=0.97) and contamination increased
(linear regression, n = 10, RZ2=0.9; Fig. 3B). Even at a median completeness of 95% and
a median contamination of 1.5%, the percent of genes annotated was reduced by 25%
relative to the ground truth, indicating that assembly quality has a substantial impact on
gene database quality. The percent of correctly annotated genes (i.e., the correct UniRef90
ID versus the ground truth) was also linearly associated with assembly quality (linear
regression, n = 10, completeness: R? =10.87, contamination: R?> = 0.7), but the decline in
annotation quality was more severe: only ~60% of genes were correctly annotated when
median completeness dropped to ~92% (Fig. 3C). In contrast, Kraken2/Bracken database
quality was not substantially affected by assembly quality, in regards to beta diversity
relative to the ground truth (Fig. 3D). Beta diversity divergence increased only slightly
as misassemblies increased (Mantel, permutations = 999, p > 0.98 for all tests). The

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 812

https://peerj.com
https://github.com/leylabmpi/Struo2
http://dx.doi.org/10.7717/peerj.12198#supp-1
http://dx.doi.org/10.7717/peerj.12198

Peer

>
(9]

Completeness Contamination Completeness Contamination
100 y
20 280
. © Reference
= | Reference 4 :6— 70 genome
i 1’ genome [dataset
0. dataset o5 .
= 504 L] H 104 ° © 5 504 ° n100_r1
> & o %8 n100_rt o 2 .
. 404 ® n100_r2
254 ®* % o s . L] £ n1oo_r2 E .
L e
; —
. o{EH 92 94 96 1.0 15 20 25
e e A B S value
& Q/,r? e,cf" S 2 P & {v& Q,cf’ NI 3
O N & & ® L W
& T E S &S S
@ N @ ¢
Simulation
B Completeness Contamination D 1.000 4
o s Reference
% -% 904 e _g 0.995 genome
5 E Reference — dataset
€T go4 genome 2 0.9904
cc c n100_r1
@ 5 7 % dataset g -
@2 > = ~ n100_r2
25704 n100 r1 0.985
g3 ’]
[® n100_r2 S 0 6 o 16 .o
S o 604 = \\)\x\ q;g], 0’3) 9\6 (}6 &Q
Q>) (\6\ 5 U\\ \q/g’ {50‘ &p'
o S O eSS
v T T T T T T & SIS
92 94 96 1.0 15 20 25 00
value Simulation

Figure 3 Struo2-generated gene database quality is substantially affected by reference genome as-
sembly quality. Two reference genome datasets of 100 randomly selected genomes each (“n100_r1” and
“n100_r2”) were used for simulating misassemblies among all genomes in order to assess how genome
assembly quality affects Struo2-generated database quality. “Ground truth” is the unaltered reference
genomes, while the “bN-rN-cN” labels denote synthetic datasets with specific numbers of added misas-
semblies per genome (see Methods). (A) CheckM-estimated assembly quality for each genome. (B) The
percent of genes annotated in the Struo2 database versus the ground truth. (C) The percent of genes anno-
tated correctly (i.e., correct UniRef90 ID) versus the ground truth. (D) Change in Bray-Curtis distances be-
tween the ground truth and synthetic datasets (measured via Mantel tests), with beta diversity calculated
from Bracken taxonomic assignments. The CAMI2 “HMP-gut” dataset of 10 metagenomes was used for
benchmarking.

Full-size Gl DOI: 10.7717/peerj.12198/fig-3

robustness of the Kraken2/Bracken databases is likely due to the use of kmers derived from
entire genomes instead of using annotated genes, as used by HUMAnNS3. In summary, we
recommend using high quality assemblies for custom database construction, especially for
the creation of the HUMANNS3 database.

We used Struo?2 to create publicly available Kraken2, Bracken, and HUMAnN3 custom
databases from releases 95 and 202 of the GTDB (see Supplemental Methods). We note that
the reference genomes selected from releases 95 and 202 had a median CheckM-estimated
completeness of 98.5 and 97.3%, respectively. The median estimated contamination
was 0.71 and 0.79%, respectively. Thus, our custom GTDB databases should be of high
quality. We will continue to publish these custom databases as new GTDB versions are
released. The databases are available at https://github.com/leylabmpi/Struo2. We also
created a set of utility tools for (i) generating NCBI-formatted taxdump files from the
GTDB taxonomy, (ii) mapping between the NCBI and GTDB taxonomies, and (iii)
generating DIAMOND databases for any set of GTDB reference genomes. The taxdump
files are utilized by Struo2, but these tools can be used more generally to integrate the

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 9/12

https://peerj.com
https://doi.org/10.7717/peerj.12198/fig-3
http://dx.doi.org/10.7717/peerj.12198#supplemental-information
https://github.com/leylabmpi/Struo2
http://dx.doi.org/10.7717/peerj.12198

Peer

GTDB taxonomy into existing pipelines designed for the NCBI taxonomy (available at
https://github.com/nick-youngblut/gtdb_to_taxdump).

In summary, Struo2 provides a substantial improvement over the state-of-the-art, which
is needed in order to scale custom database generation with the ever-increasing amount
of available genomic data. The efficient database updating feature of Struo2 enables the
following “assembly enhanced” taxonomic profiling workflow. First, the user assembles
MAGs and/or genes from the metagenomes novel to the user’s own study. Second, the
user updates our pre-generated GTDB-based profiling databases with the newly generated
genomic content. Third, the user taxonomically profiles the metagenome reads from the
user’s study against the newly customized databases in order to generate microbial diversity
assessments that are less biased and more representative of the microbiome diversity in the
microbiomes included in the study. This “assembly-enhanced” profiling method could
greatly improve database representation for less-studied environments such as the gut
microbiome of non-mammalian vertebrates or under-represented human populations
(Porras & Brito, 2019; Youngblut et al., 2020).

ACKNOWLEDGEMENTS

We thank Albane Ruaud, Liam Fitzstevens, Jacobo de la Cuesta-Zuluaga, and Jillian Waters

for providing helpful comments on an earlier version of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Max Planck Society. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Nicholas Youngblut conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

e Ruth Ley conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
Struo2 code: https://github.com/leylabmpi/Struo2.
Pre-built metagenome profiling databases: https://github.com/leylabmpi/Struo2.
Utility tools for taxonomy and database processing: https://github.com/nick-
youngblut/gtdb_to_taxdump.

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 10/12

https://peerj.com
https://github.com/nick-youngblut/gtdb_to_taxdump
https://github.com/leylabmpi/Struo2
https://github.com/leylabmpi/Struo2
https://github.com/nick-youngblut/gtdb_to_taxdump
https://github.com/nick-youngblut/gtdb_to_taxdump
http://dx.doi.org/10.7717/peerj.12198

Peer

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.12198#supplemental-information.

REFERENCES

Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi Z]J, Pollard KS , et
al. 2020. A unified catalog of 204,938 reference genomes from the human gut
microbiome. Nature Biotechnology 39:105-114 DOI 10.1038/s41587-020-0603-3.

Benoit G, Peterlongo P, Mariadassou M, Drezen E, Schbath S, Lavenier D, Lemaitre
C. 2016. Multiple comparative metagenomics using multiset K-Mer counting.
Computer Science 2(November):e94.

Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA,
Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene
amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1):90
DOI10.1186/s40168-018-0470-z.

Breitwieser FP, Baker DN, Salzberg SL. 2018. KrakenUniq: confident and fast metage-
nomics classification using unique K-Mer counts. Genome Biology 19(1):198
DOI10.1186/s13059-018-1568-0.

Breitwieser FP, Lu J, Salzberg SL. 2019. A review of methods and databases for metage-
nomic classification and assembly. Briefings in Bioinformatics 20(4):1125-1136
DOI 10.1093/bib/bbx120.

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using
DIAMOND. Nature Methods 12(1):59-60 DOI 10.1038/nmeth.3176.

Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. TDB-Tk: a toolkit to classify
genomes with the genome taxonomy database. Bioinformatics 36(6):1925-1927
DOI 10.1093/bioinformatics/btz848.

De la Cuesta-Zuluaga J, Ley RE, Youngblut ND. 2020. Struo: a pipeline for building cus-
tom databases for common metagenome profilers. Bioinformatics 36(7):2314-2315
DOI 10.1093/bioinformatics/btz899.

Franzosa EA, Mclver L], Rahnavard G, Thompson LR, Schirmer M, Weingart M,
Lipson KS, et al. 2018. Species-level functional profiling of metagenomes and meta-
transcriptomes. Nature Methods 15(11):962-968 DOI 10.1038/s41592-018-0176-y.

Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser L]. 2010. Prodigal:
prokaryotic gene recognition and translation initiation site identification. BMC
Bioinformatics 11(March):119 DOI 10.1186/1471-2105-11-119.

Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: rapid and sensitive
classification of metagenomic sequences. Genome Research 26(12):1721-1729
DOI'10.1101/gr.210641.116.

Koster J, Rahmann S. 2012. Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics 28(19):2520-2522 DOI 10.1093/bioinformatics/bts480.

LaPierre N, Alser M, Eskin E, Koslicki D, Mangul S. 2020. Metalign: efficient alignment-
based metagenomic profiling via containment min hash. Genome Biology 21(1):242
DOI10.1186/513059-020-02159-0.

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 1112

https://peerj.com
http://dx.doi.org/10.7717/peerj.12198#supplemental-information
http://dx.doi.org/10.7717/peerj.12198#supplemental-information
http://dx.doi.org/10.1038/s41587-020-0603-3
http://dx.doi.org/10.1186/s40168-018-0470-z
http://dx.doi.org/10.1186/s13059-018-1568-0
http://dx.doi.org/10.1093/bib/bbx120
http://dx.doi.org/10.1038/nmeth.3176
http://dx.doi.org/10.1093/bioinformatics/btz848
http://dx.doi.org/10.1093/bioinformatics/btz899
http://dx.doi.org/10.1038/s41592-018-0176-y
http://dx.doi.org/10.1186/1471-2105-11-119
http://dx.doi.org/10.1101/gr.210641.116
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1186/s13059-020-02159-0
http://dx.doi.org/10.7717/peerj.12198

Peer

Loeffler C, Karlsberg A, Martin LS, Eskin E, Koslicki D, Mangul S. 2020. Metalign:
efficient alignment-based metagenomic profiling via containment min hash. BMC
Biology 18(1):37 DOI 10.1186/s12915-020-0756-7.

Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2017. Bracken: estimating species
abundance in metagenomics data. Peer] Computer Science 3(January):e104
DOI 10.7717/peerj-cs.104.

Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. 2020. A
complete domain-to-species taxonomy for bacteria and archaea. Nature Biotechnol-
ogy 38(9):1079-1086 DOI 10.1038/s41587-020-0501-8.

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM:
assessing the quality of microbial genomes recovered from isolates, single cells, and
metagenomes. Genome Research 25(7):1043-1055 DOT 10.1101/gr.186072.114.

Porras AM, Brito IL. 2019. The internationalization of human microbiome research.
Current Opinion in Microbiology 50(August):50-55 DOI 10.1016/j.mib.2019.09.012.

Rognes T, Flouri T, Nichols B, Quince C. 2016. VSEARCH: a versatile open source tool
for metagenomics. Peer] 4(October):e2584 DOI 10.7717/peer).2584.

Rowe WP, Carrieri AP, Alcon-Giner C, Caim S, Shaw A, Sim K, Simon Kroll J, Hall
LJ, Pyzer-Knapp EO, Winn MD. 2019. Streaming histogram sketching for rapid
microbiome analytics. Microbiome 7(1):40 DOI 10.1186/540168-019-0653-2.

Sayers EW, Beck], Bolton EV, Bourexis D, Brister JR, Canese K, Comeau DC, et al.
2021. Database resources of the national center for biotechnology information.
Nucleic Acids Research 49(D1):D10-D17 DOI 10.1093/nar/gkaa892.

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, Gregor 1, et al.
2017. Critical assessment of metagenome interpretation-a benchmark of metage-
nomics software. Nature Methods 14(11):1063-1071 DOI 10.1038/nmeth.4458.

Shen W, Xiong J. 2019. TaxonKit: a cross-platform and efficient NCBI taxonomy toolkit.
Cold Spring Harbor Laboratory DOI 10.1101/513523.

Steinegger M, Mirdita M, Soding J. 2019. Protein-level assembly increases pro-
tein sequence recovery from metagenomic samples manyfold. Nature Methods
16(7):603—-606 DOI 10.1038/s41592-019-0437-4.

Steinegger M, Soding J. 2017. MMseqs2 enables sensitive protein sequence searching
for the analysis of massive data Sets. Nature Biotechnology 35(11):1026—1028
DOI 10.1038/nbt.3988.

Steinegger M, Soding J. 2018. Clustering huge protein sequence sets in linear time.
Nature Communications 9(1):2542 DOI 10.1128/mSystems.

Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with kraken 2.
Genome Biology 20(1):257 DOI 10.1186/s13059-019-1891-0.

Youngblut ND, De la Cuesta-Zuluaga J, Reischer GH, Dauser S, Schuster N, Walzer C,
Stalder G, Farnleitner AH, Ley RE. 2020. Large-scale metagenome assembly reveals
novel animal-associated microbial genomes, biosynthetic gene clusters, and other
genetic diversity. mSystems 5(6):.

Youngblut and Ley (2021), PeerdJ, DOI 10.7717/peerj.12198 12/12

https://peerj.com
http://dx.doi.org/10.1186/s12915-020-0756-z
http://dx.doi.org/10.7717/peerj-cs.104
http://dx.doi.org/10.1038/s41587-020-0501-8
http://dx.doi.org/10.1101/gr.186072.114
http://dx.doi.org/10.1016/j.mib.2019.09.012
http://dx.doi.org/10.7717/peerj.2584
http://dx.doi.org/10.1186/s40168-019-0653-2
http://dx.doi.org/10.1093/nar/gkaa892
http://dx.doi.org/10.1038/nmeth.4458
http://dx.doi.org/10.1101/513523
http://dx.doi.org/10.1038/s41592-019-0437-4
http://dx.doi.org/10.1038/nbt.3988
http://dx.doi.org/10.1128/mSystems
http://dx.doi.org/10.1186/s13059-019-1891-0
http://dx.doi.org/10.7717/peerj.12198

