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The use of thrombolysis in acute ischemic stroke is restricted to a small proportion of patients because of the rigid
4·5-hwindow.With advanced imaging-basedpatient selection strategy, rescuing penumbra is critical to improv-
ing clinical outcomes. In this study, we included 155 acute ischemic stroke patients (84 patients in training
dataset, age from 43 to 80, 59 males; 71 patients in validation dataset, age from 36 to 80, 45 males) who
underwentMR scanwithin the first 9-h after onset, from 7 independent centers. Based on themismatch concept,
penumbra and core area were identified and quantitatively analyzed. Moreover, predictive models were devel-
oped and validated to provide an approach for identifying patients whomay benefit from thrombolytic therapy.
Predictive models were constructed, and corresponding areas under the curve (AUC) were calculated to explore
their performances in predicting clinical outcomes. Additionally, the models were validated using an indepen-
dent dataset both on Day-7 and Day-90. Significant correlations were detected between the mismatch ratio
and clinical assessments in both the training and validation datasets. Treatment option, baseline systolic blood
pressure, National Institutes of Health Stroke Scale score, mismatch ratio, and three regional radiological param-
eters were selected as biomarkers in the combined model to predict clinical outcomes of acute ischemic stroke
patients. With the external validation, this predictive model reached AUCs of 0·863 as short-term validation
and 0·778 as long-term validation. This model has the potential to provide quantitative biomarkers that aid
patient selection for thrombolysis either within or beyond the current time window.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Stroke is the second most common cause of death and the leading
cause of adult disabilityworldwide [1] and patients with acute ischemic
stroke (AIS) may benefit from thrombolysis up to 4·5 h after onset [2],
while a treatment beyond this time window is associated with an in-
creased risk of mortality [3,4]. The time window of 4·5 h is derived
from large-sample randomized clinical trials [5,6]. Using imaging guid-
ance to confirm the eligibility of AIS patients for thrombolytic therapy,
despite the 4·5-hour time window, has become clinically pertinent. It
is of great value to popularize imaging-guided decision-making for the
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improvedmanagement of AIS progress, especially in primary healthcare
centers.

Penumbra quantification is critical for improving clinical outcomes
and is a promising strategy for extending the treatment time window
[5,7]. As a dynamic process, the penumbra can persist for as long as
48 h after symptom onset [4]. Both CT andMR are valuable imagingmo-
dalities for assessing the penumbra [8]. Although CT is faster and more
widely used, MR is potentially superior to CT because of its higher reso-
lution, rapid identification of acute infarction, and sensitivity to intracra-
nial hemorrhage [9,10]. Several clinical trials, including DEFUSE 2 and
EPITHET, have used the MRmismatch criteria to guide patient selection
for thrombolysis [11,12]. However, the clinical conditions and radiolog-
ical signatures of patientswho aremost likely to benefit from thrombol-
ysis have not been clarified [13]. In addition, most current MR studies
rely on qualitative imaging which might lead to weak interpretation of
results [14]. Furthermore, based on suggestions from previous studies
that the location, volume ratio, and perfusion/diffusion features of the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Thrombolysis is the sole effective treatment with a Level Ib evi-
dence for the early treatment of acute ischemic stroke (AIS) that
can improve clinical outcomes. Unfortunately, the narrow 4·5-h
window with thrombolysis restricts the eligibility of patients and
the clinical significance of the treatment. The concept of the pen-
umbra describes dynamic hypo-perfused brain tissue with the ca-
pacity to recover if perfusion is promoted. Penumbral
quantificationwould contribute to extending the current timewin-
dowand includingmore treatable AIS patients. However, because
the methodology for quantifying the penumbra is inadequate, an
imaging-based selection for thrombolysis beyond 4·5 h has not
been established.

Added value of this study

By including global and regional features of the impaired brain re-
gion, we developed a multivariable quantification method for pen-
umbral assessment that reflects more information than
assessments from previous studies. The predictive model, which
combined both clinical and penumbral signatures, demonstrated
a sufficiently high discrimination for clinical outcomes. Through
combing clinical factors and quantification of impaired brain re-
gions after AIS, the model enabled the identification of patients
who may benefit from thrombolysis.

Implications of all the available evidence

Our model provides an approach via the penumbral quantification
for identifying patients who may benefit from thrombolytic thera-
py either within or beyond the 4·5-h window. The current results
suggest the necessity of combining clinical and radiological char-
acteristics, as opposed to using the time lag from stroke
onset alone, for the selection. The application of this model to a
validated cohort in this study showed promising results toward
selecting patients who may qualify for thrombolysis and benefit
from treatment.
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penumbra are all critical predictors of clinical outcome [15–17]. There-
fore, an overall assessment of penumbral profilesmight behelpful in de-
termining whether thrombolytic treatment is effective either within or
beyond the 4·5-h window.

The goal of this study was to develop and validate an MR-based
model for clinical outcomes. We first introduced a short-term clinical
assessment of AIS patients to generate clinical labels. Second, quantita-
tive analyses of the global and regional parameters of the ischemic pen-
umbra and core area were performed. The potential baseline clinical
and radiological signatures of AIS patientswere screened usingmachine
learningmethods based on a short-term clinical label. Finally, predictive
models were validated in an independent dataset, with both short-term
and long-term clinical labels.We hypothesized that thesemodelswould
help to select patients eligible for thrombolysis and to develop person-
alized therapy during AIS management.

2. Materials and methods

2.1. Study design

In this study, we developed predictive models for AIS patients in-
cluding two independent datasets which were collected from seven
independent hospitals, as listed in Supplementary Table S1. Firstly, the
training dataset was retrospectively collected in three hospitals from
June 2012 to October 2016. After the training dataset were collected,
we used a prospective dataset, which were collected from September
2008 to July 2010 [18], to validate our results. The study was approved
by the Ethics Committees of all listed hospitals and informed consent
was obtained. The study design is shown in Fig. 1.

The enrollment criteria were as follows: 1) diagnosis of early stroke;
2) age between 18 and 80 years; 3) absence of contraindications toMRI;
4) absence of brain tumor or pregnancy; 5) absence of intracranial hem-
orrhage on CT/MRI at baseline; 6) both diffusion-weighted imaging
(DWI) and perfusion-weighted imaging (PWI) acquired within
9-hours after AIS onset; 7) intravenous recombinant tissue plasminogen
activator (IV-rtPA) treatments or conventional medical treatments after
MR scanning; and 8) completion of National Institutes of Health Stroke
Scale (NIHSS) and modified Rankin Scale (mRS) assessments on Day-7
after onset for the training dataset; or completion of NIHSS on Day-7
andmRS assessments on both Day-7 and Day-90 after onset for the val-
idation dataset.

The exclusion criteriawere as follows: 1) poor image quality; 2) per-
fusion imaging failure; and 3) non-detection of lesion on DWI or PWI.

Certain clinical assessments were performed by experienced neuro-
radiologists to record the symptoms at onset. Specific information was
obtained from each patient at baseline, namely, age, sex, time lag be-
tween onset and baseline MRI scan (T-M), baseline systolic blood pres-
sure (SBP), and diastolic blood pressure (DBP). Additionally, other
potential risk factors such as hypertension, diabetes, hyperlipidemia,
atrial fibrillation, and previous stroke or transient ischemic attack
(TIA) were collected. The radiological analyses had not yet been per-
formed at the time of hospital admission and the decision-making re-
garding treatment was based on conventional clinical information.

2.2. Clinical assessments

NIHSS andmRS scores on Day-7were recorded and combined for an
early clinical outcome assessment. A combined score (MN) of mRS and
NIHSS is defined below (Eq. (1.1)) and a favorable clinical outcome
(FCO) was defined as MN ≥ 4. Unfavorable clinical outcome (UFCO)
was defined asMN b 4. Furthermore, a long-term clinical labelwas eval-
uated on Day-90. Specifically, FCO was defined as mRS b 2 and UFCO
was defined as mRS≥ 2.

MN ¼ ΔNIHSSþ 3−mRSð Þ � 4 ð1:1Þ

2.3. MR image processing and penumbral quantification

DWI and PWI sequences were acquired for all participants. The de-
tailed acquisition parameters are listed in Supplementary Table S2.
Pre-processing and statistical analyses of MRI data were carried out
using tools from the FMRIB Software Library (www.fmrib.ox.ac.uk/fsl)
[19,20]. In addition, MATLAB scripts developed in house were used in
the preprocessing.

The DWI images were preprocessed as follows: 1) skull stripping on
b0 imaging; 2) calculation of the ADCmaps; and 3) estimation of a rigid
transformation from the individual space to theMNI152 standard brain
(FNIRT in FSL, 2 mm isotropic). The PWI images were preprocessed as
follows: 1) detection of the baseline image; 2) alignment of each vol-
ume to the baseline image; 3) smoothing of the 4D images using a 6-
mm FWHM Gaussian kernel; 4) estimation of a rigid transformation
from the perfusion baseline images to theDWI image space; and 5) gen-
eration of a linear transformation between the individual space to the
MNI152 template (FNIRT in FSL, 2 mm isotropic). The perfusion image
calculation was based on a standard singular value decomposition
model [21], including cerebral blood flow (CBF), cerebral blood volume
(CBV), mean transit time (MTT) and Tmax.

http://www.fmrib.ox.ac.uk/fsl


Fig. 1. Study design. FCO= favorable clinical outcome; UFCO= unfavorable clinical outcome; DWI= diffusion-weighted imaging; PWI= perfusion-weighted imaging;MN is defined in
Eq. (1.1); mRS=modified Rankin scale.
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Before applyingmismatch, all mapswere transferred and resampled
to b0 (DWI space), resamplingwith a 2-mm voxel size. The quantitative
penumbral analysis was conducted with the following steps. Firstly, the
brain mask (see Fig. 3b) was generated and applied to all calculated
maps in the DWI space. Second, penumbral segmentation was per-
formed based on a mismatch model [22,23]. Thirdly, with a clustering
filter, any cluster b9 voxels (72 mm3) was excluded from the final re-
sults. Finally, the penumbral identification was reconstructed into
3-dimensional visualization [24] and the results are shown in Fig. S1.
In comparison with the traditional 2D demonstration of penumbral
identification, a 3D reconstruction model clearly showed a jagged
interlocking pattern of the penumbra. After image preprocessing and
penumbral identification, the imageswere reviewedby two radiologists
(Y.C. and D.L.Z.).

Meanwhile, the cortex labels, as shown in Fig. S2,were transferred to
the native space to identify the positions of the ischemic penumbra and
core area based on the invert transfermatrix (See Fig. 3b, labeledmaps).
The labeled atlas was based on the MNI space (MNI-maxprob-thr0-2
mm.nii.gz). After merging the thalamus, caudate, putamen, pallidum,
hippocampus, amygdala, and accumbens into one area, the gray matter
of the brain was divided into six separate regions and labeled accord-
ingly, as shown in Fig. S2. Along with the white matter area, the whole
brain was divided into seven local regions for further analysis. In addi-
tion, a group of three parameters (volume ratio, ADC and CBF) within
each separate region was defined as the regional features, and the pen-
umbra and core area were separately calculated for each group. The
value of the intact brain region was replaced with the mean value of
the region. For regional quantification, 42 features from the seven sepa-
rate regions were extracted and are listed in Table S3.

MIS was defined to quantify the ischemic penumbra and defected
area of AIS patients (Eq. (1.2)). The volumes of the core area were de-
fined by DWI defected area volume, and the volumes of penumbra
were defined by PWI defected with intact DWI maps. VPWI represented
the volume of PWI defected areas, VPWI represented the volume of DWI
defected areas and VMIX represented the volume of both the DWI and
PWI defected areas.

MIS ¼ VPWI−VDWIð Þ= VPWI þ VDWI−Vmixð Þ ð1:2Þ
Global ischemic penumbra and core variables including core region
volume, penumbral region volume, ADC/CBF of the core region,
ADC/CBF value of the penumbra region were quantitatively calculated,
as well as 42 regional features of the penumbra and core area (see Sup-
plementary Table S3). The value of the intact brain region was replaced
with the mean value of the region.

2.4. Statistical analyses

2.4.1. Clinical measurements
SPSS Statistics software (Version 21.0, IBM) was used for the statis-

tical analyses. Two-sample t-tests and Pearson's correlation analyses
were employed and the reported significance levels were all two-
sided, with statistical significance set at 0·05. Data are presented as
mean [standard deviation (SD)], median [interquartile range (IQR)],
and number (percentage), as appropriate.

2.4.2. Feature selection
Based on the short-term clinical labels, the clinical and radiological

features were evaluated with a feature selection procedure. In our
study, the Least Absolute Shrinkage and Selection Operator method
(LASSO) logistic regression model [25] was conducted in the training
dataset to select the most predictive features for clinical outcome.

To compare the predictive capabilities of the clinical features, MIS
and regional features (see Supplementary Table S3), three different
models were evaluated as listed below.

Clinical model: The input of this model contained 12 potential vari-
ables that were purely clinical, namely, sex, age, baseline SBP, baseline
DBP, hypertension, atrial fibrillation, diabetes, hyperlipidemia, previous
stroke or TIA, T-M, baseline NIHSS, and treatment option.

Mismatch model: The input of this model covered all 12 potential
variables listed in Clinical model plus MIS.

Combined model: The input of this model contained 61 potential
variables covering clinical information, global and regional information,
including the 12 clinical variables listed in Clinical model, seven global
ischemic penumbra and core variables (MIS, core region volume, pen-
umbral region volume, ADC/CBF of the core region, ADC/CBF value of
the penumbra region), and 42 regional features of the penumbra and
core area (see Supplementary Table S3).
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2.4.3. Development and validation of the predictive models
Based on the short-term clinical label, the clinical model, mismatch

model, and combined model were independently validated. Moreover,
the models were further tested with a long-term clinical label which
was defined based on mRS scores assessed on Day-90.

The predictive models were developed and validated using WEKA
software (http://www.cs.waikato.ac.nz/ml/weka/). Logistic model tree
(LMT) models were developed based on the selected features in the
training dataset [26]. The performances of the predictive models were
evaluated with receiver operating characteristic (ROC) analysis, and
pairwise ROC comparisons between our models were tested using
Delong method [27]. Model calibration was assessed with the
Hosmer–Lemeshow goodness-of-fit test [28]. To estimate the clinical
utility of ourmodels, decision curve analysis was performed by calculat-
ing the net benefits for a range of threshold probabilities in the valida-
tion dataset.

To avoid algorithm bias, we applied four machine learning methods
and used reclassification methods to evaluate the models, the detailed
information was list in Supplementary S1. The packages used in R for
the discrimination and calibration of the predictive models were also
list in Supplementary S1.

3. Results

3.1. Clinical assessment

As shown in Figs. 1, 5 patients were excluded because of poor image
quality, 6 patients were removed because of the failure to acquire a per-
fusion image, and another 2 patients were excluded because of the ab-
sence of lesions on the DWI/PWI maps. Finally, a total of 155 patients
were included in the final data analyses, with 84 in the training dataset
(age from 43 to 80, 59 males) and the remaining 71 in the validation
dataset (age from36 to 80, 45males). ThemRS scores of theAIS patients
are shown in Fig. 2. For the short-term clinical label, there were 41 pa-
tients (48·8%) in the FCO group in the training dataset and 42 patients
(59·2%) in the FCO group in the validation dataset. On Day-90, there
were 41 patients (57·7%) in the FCO group.

The characteristics of the AIS patients at baseline are shown in
Table 1. Significant differences were evident for SBP and IV-rtPA in-
volvement in both training and validation datasets. Age, Sex, baseline
NIHSS score and hyperlipidemia involvement were detected to be
Fig. 2. Scores on themodified Rankin Scale (mRS) on Day-7 in the training dataset and on Day-7
slight disability (able to look after own affairs without assistance but not to a full extent); 3, m
disability (requires assistance and unable to walk unassisted); 5, severe disability (requires co
significantly different between the FCO group and UFCO group in the
training dataset while no differencewas found in the validation dataset.
In the validation dataset, there were more hypertension patients in the
UFCO group than in the FCO group.

3.2. Penumbral quantification

The quantification results of the penumbra and core area are shown
in Fig. 3. As shown in Fig. 3b, the penumbra and core area were labeled
green and red. The probability of core and penumbral area in all the AIS
patients in the training and validation datasets is shown in Supplemen-
tary Fig. S3. The relationship between MIS and the clinical assessments
MN was investigated on Day-7 are shown in Fig. 4a. On Day-7, there
were significant correlations between MIS and clinical assessments
such as NIHSS score, mRS score, MN, and improvement of NIHSS score
between baseline and Day-7 in both datasets (see Table 2).

3.3. Feature selection and model development

In clinical model, five features survived in the feature selection,
namely, sex, baseline SBP, T-M, baseline NIHSS, and the treatment op-
tion. In MIS model, four features survived, namely, baseline SBP, base-
line NIHSS, treatment option, and MIS. In combined model, seven
features survived, namely, baseline SBP, baseline NIHSS, treatment op-
tion, MIS, ratio of the core area in the temporal lobe (R.C.T), ADC value
in the white matter area of the penumbra (ADC.C.W) and CBF value in
the occipital lobe of the penumbra (CBF.P.O).

As shown in Table 3, significant differences were detected in MIS,
R.C.T, and CBF.P.O in both datasets, whereas, ADC.C.W was significantly
different in the training dataset alone. The predictive models were de-
veloped based on LMT and are outlined below. The scatter plots of MN
and the output of the combined model of all of our patients are shown
in Fig. 4b.

The model calculates the predicted probability of the models as
follows:

PClinical ¼ 4 � 44−Sex�0 � 50−SBP�0 � 02−T−M�0 � 02−N0
�0 � 12

þ Treatment�0 � 80 ð1:3Þ
andDay-90 in the validation dataset. 0, no symptoms; 1, no clinically relevant disability; 2,
oderate disability (requires some help but able to walk unassisted); 4, moderately severe
nstant nursing care); 6, dead.

http://www.cs.waikato.ac.nz/ml/weka


Table 1
Characteristics of the AIS patients at baseline in training and validation datasets.

Training dataset Validation dataset

UFCO (N= 43) FCO (N = 41) P-value UFCO (N = 29) FCO (N = 42) P-value

General clinical information
Sex(Male) 26 (60·5%) 33 (80·5%) 0·044 21 (72·4%) 24 (57·1%) 0·187
Age,years, median (Range) 67 (43–80) 66 (47–80) 0·041 62 (36–80) 61·5 (40–77) 0·797

Risk factors
Hypertension 28 (65·1%) 28 (68·3%) 0·761 19 (65·5%) 17 (40·5%) 0·038
Atrial fibrillation 10 (23·3%) 10 (24·4%) 0·904 2 (7·0%) 8 (19·0%) 0·123
Diabetes 14 (32·6%) 9 (22·0%) 0·280 3 (10·0%) 3 (7·0%) 0·650
Hyperlipidemia 3 (7·0%) 10 (24·4%) 0·030 3 (10·0%) 7 (17·0%) 0·443
Previous stroke or TIA 6 (14·0%) 10 (24·4%) 0·231 2 (7·0%) 4 (10·0%) 0·693

Baseline information
T-M (hours) 4·39 ± 1·99 3·60 ± 1·63 0·051 4·54 ± 1·73 4·50 ± 2·00 0·931
SBP (mmHg) 156·65 ± 16·36 145·90 ± 21·04 0·011 159·55 ± 21·38 143·43 ± 23·17 0·004
DBP (mmHg) 88·35 ± 13·75 85·15 ± 13·56 0·286 93·41 ± 16·44 84·93 ± 15·07 0·031
NIHSS score, median (Range) 10 (2–24) 6 (1–14) b0·001 10 (4–21) 8·5 (4–21) 0·104
IV–rtPA 16 (37·2%) 25 (61·0%) 0·030 10 (34·0%) 26 (62·0%) 0·023

Note: Data are presented asmean± SD or n (%). SBP= systolic blood pressure; DBP= diastolic blood pressure; T-M= time from stroke onset to MRI scan before treatment; IV-rtPA=
intravenous tissue plasminogen activator; FCO= favorable clinical outcome; UFCO= unfavorable clinical outcome. FCO and UFCOwere defined based onMN onDay-7;MN is defined in
Eq. (1.1).
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PMIS ¼ 2 � 40−SBP�0 � 02−N0
�0 � 12þ Treatment�0 � 74þMIS�1

� 15 ð1:4Þ

PCombined ¼ 0 � 69−SBP�0 � 01−N0
�0 � 09þ Treatment�0 � 54þMIS�1 � 15

þR:C:T�2 � 61þ ADC:C:W�0 � 99þ CBF:P:O�2 � 73
ð1:5Þ

In Eq. (1.3), Sex is defined as 1 with male patients, while 2 with fe-
male patients. In Eq. (1.3)–(1.5), Treatment is defined as 1 with
Fig. 3. Segmentation of the penumbra and core area. (a) Original maps. ADCmap, CBFmap, CBV
in green and the core area is shown in red. ADC=Apparent diffusion coefficient; CBF= cerebr
perfusion-weighted imaging.
IV-rtPA while Treatment is defined as 0 with conventional medical
treatment. In Eq. (1.3)–(1.5), N0 is the NIHSS score after onset.

3.4. Model validation

The ROC curves of the predictive models are shown in Fig. 5. Based
on the short-term validation, the AUCs of the clinical model, MIS
model, and combined model were 0·743 (95% CI: 0·629–0·856),
0·854 (95% CI: 0·767–0·941), and 0·863 (95% CI: 0·774–0·951),
respectively. With pairwise ROC comparisons, there are significant dif-
ferences between clinical model vs mismatch model (P= 0·002) and
map and Tmaxmap; (b)mask, segmentation and labeled results. The penumbra is shown
al blood flow; CBV= cerebral blood volume; DWI= diffusion-weighted imaging; PWI=



Fig. 4. Scatter plots of the clinical assessments and radiological measurements. (a) Scatter plots of MIS andMN; (b) Scatter plots of the outputs of the combined LMTmodel andMN;MN is
defined in Eq. (1.1); MIS represents quantification of the ratio of ischemic penumbra to the defected area, which is defined in Eq. (1.2); IV–rtPA = Intravenous tissue plasminogen
activator; LMT= logistic model tree.
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clinical model vs. combined model (P=0·003). There is no significant
difference between our two imaging based models: mismatch model
and combined model (P=0·749). In addition, we analyzed the predict
performance of the combined model of short-term validation in pa-
tients with or without IV-rtPA treatments. The AUC in the patients
with IV-rtPA is 0·869 (95% CI: 0·739–1·000), while in patients without
IV-rtPA is 0·799 (95% CI: 0·636–0·963). TheHosmer–Lemeshow test of
model calibration with a non-significant p value showed favorable cali-
bration of our models, for short-term models: Pclinical model = 0·778;
Pmismatch model = 0·202; Pcombined model = 0·450. The decision curves of
our models in the validation datasets were shown in Fig. S4, indicating
the clinical usefulness of our models.

Furthermore, based on the long-term validation, the AUCs of the
clinical model, MIS model, and combined model were 0·697 (95% CI:
0·573–0·821), 0·773 (95% CI: 0·662–0·884) and 0·778 (95%
CI: 0·668–0·888). In the long-termmodels, there is significant differ-
ence between clinical model vs mismatch model (P=0. 030). There is
no significant difference between clinical model vs. combined model
(P = 0·058) and mismatch model vs. combined model (P = 0·870).
The Hosmer–Lemeshow test of model calibration with a non-
Table 2
Pearson's correlation between the MIS and clinical assessments in the training and validation d

T-M N0

Training dataset Pearson's correlation −0·308 −0·091
P -value 0·004 0·410
N 84 84

Validation dataset Pearson's correlation −0·173 0·179
P-value 0·150 0·135
N 71 71

Note:MIS represents quantification of the ratio of ischemic penumbra to the defected area, whi
= National Institutes of Health Stroke Scale; N0 = baselineNIHSS score; N7 =NIHSS score onD
Day-90; ΔNIHSS= the improvement of NIHSS score between baseline and Day-7.
significant p value showed favorable calibration of our models, for
long-term models: Pclinical model = 0·959; Pmismatch model = 0·649;
Pcombined model =0·437.

4. Discussion

In this study, predictive models for individual clinical outcome after
AIS onset was developed and validated with both short-term and long-
term clinical labels. The combined model included both clinical charac-
teristics and advanced MR penumbra profiles derived from machine
learning methods. The predictive power of the model was validated
using an independent dataset and reached AUCs of 0·863 in the short-
term validation and 0·778 in the long-term validation, indicating a fa-
vorable discriminative ability.

4.1. Clinical labels

To identify the potential features at baseline and to develop predic-
tivemodels for further clinical outcomes of AIS patients, reasonable clin-
ical labels were needed. It has been shown that the early mRS can serve
atasets.

N7 mRS7 mRS90 MN ΔNIHSS

−0·278 −0·360 – 0·370 0·313
0·011 0·001 – 0·001 0·004
84 84 – 84 84
−0·363 −0·402 −0·299 0·513 0·528
0·002 0·001 0·011 b0·001 b0·001
71 71 71 71 71

ch is defined in Eq. (1.2); T-M= time lag between onset and the baselineMRI scan; NIHSS
ay-7;mRS=modified Rankin Scale;mRS7 =mRS score onDay-7;mRS90=mRS score on



Table 3
Radiological characteristics of AIS patients with FCO versus UFCO in the training and validation datasets.

Training dataset Validation dataset

FCO (N = 41) UFCO (N = 43) P-value FCO (N = 42) UFCO (N = 29) P-value

Radiological characteristics
MIS 0·800 ± 0·280 0·584 ± 0·309 b0·001 0·858 ± 0·150 0·578 ± 0·384 0·001
R.C.T 0·146 ± 0·263 0·040 ± 0·064 0·033 0·198 ± 0·216 0·113 ± 0·138 0·049
ADC.C·W 0·615 ± 0·219 0·485 ± 0·152 0·001 0·490 ± 0·179 0·513 ± 0·165 0·574
CBF.P·O 0·162 ± 0·107 0·114 ± 0·066 0·006 0·196 ± 0·099 0·144 ± 0·070 0·012

Note: Data are presented as mean± SD. MIS represents quantification of the ratio of ischemic penumbra to the defected area, which is defined in Eq. (1.2); AIS= acute ischemic stroke;
FCO= favorable clinical outcome; UFCO= unfavorable clinical outcome; FCO and UFCOwere defined byMN on Day-7; MIS=mismatch ratio; R.C.T = ratio of the core area in the tem-
poral lobe; ADC.C.W=ADC value in the white matter area of the core area; CBF.P.O= CBF value in the occipital lobe of the penumbra.
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as a good proxy for Day-90 outcomes [29,30], suggesting that short-
term and long-term clinical assessments had a similar treatment effect
magnitude. A combined score was used to generate an early clinical
label to discriminate potential clinical and radiological features using
machine learning methods. With external validation, this combined
score has demonstrated a reasonable ability to distinguish the relative
features of AIS patients at baseline.

4.2. Penumbral quantification

Several early studies reported that DWI/PWI mismatch was corre-
lated with clinical assessments [31,32]. Consistently, our study found
that MIS was significantly correlated with clinical outcomes, suggesting
that the penumbra, themain target of salvageable brain tissue, is associ-
ated with FCOs with adequate medical care [4]. With penumbral imag-
ing, two clinical trials based on diffusion-perfusion were performed to
select patients for thrombolysis beyond the current time window, but
failed to reach the endpoints [11,33]. Although the exact reasons for
the failure remain unknown, the inadequacy of the penumbral identifi-
cation methodology may have led to the negative results. Our study
aimed to develop a quantitative penumbral method to evaluate the ex-
tent of the global penumbral existence and local tissue characteristics.
Comparedwith global signatures, the regional features of the penumbra
and core area might capture more information regarding tissue impair-
ment after AIS [16,17] and may help predict clinical outcomes.

4.3. Predictive model performance

Three different models were developed in our study, the combined
model included both clinical and radiological signatures had the best
ability to predict the 3-month clinical outcomes of AIS patients. These
Fig. 5. ROC curves of predictive models. (a) ROC curves of the models in the training dataset; (
models in the validation dataset, with long-term labels. Black lines indicate the ROCs of the clin
ROCs of the combined models; ROC= Receiver operating characteristics; AUC= area under th
results might suggest that with machine learningmethods, the regional
features of the penumbra and core area are integrated with the clinical
factors and treatment option to affect clinical outcome. A recent study
developed a multivariable model, including clinical information and
CT assessments, to predict clinical outcomes [34]. Consistent with our
results, SBP, baseline NIHSS, and IV-rtPA treatment were confirmed to
be independent predictors of clinical outcomes. In contrast, rather
than via visual assessment, the features in our model were derived
from machine learning techniques, which included more objective ra-
diological signatures. These favorable results demonstrate that with
machine learning techniques, essential clinical and radiological features
can be revealed and predictions of clinical outcomes for AIS patients can
be more accurately identified than with conventional methods. This in-
terpretation could be supported by the external validation in the inde-
pendent dataset in our study, which also demonstrated a favorable
prediction performance based on the combined model with both
short-term and long-term clinical labels.
4.4. Clinical Implications

Although penumbral imaging is already widely acknowledged in
clinical practice, penumbral imaging for selecting candidates for throm-
bolysis has not been validated [35]. Several clinical trials, including
EPITHET, DIAS II, andMR RESCUE, have failed to confirm the clinical va-
lidity of penumbral imaging [11,33,36], largely because of improper
penumbral definition. In the current study, our model enabled the pre-
diction of favorable clinical outcome for each individual up to 9 h after
stroke onset. By providing a promising strategy in detail to guide current
patient selection in AIS management, the application of our models will
be particularly meaningful to hospitals that are not competent enough
to be qualified for endovascular treatment.
b) ROC curves of models in the validation dataset, with short-term labels; (c) ROC curves
ical models. Red lines indicate the ROCs of the mismatch models. Green lines indicate the
e curve.
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4.5. Limitations

Themain limitation of this study is that the treatment choicewas not
randomized and there might have been selection bias and information
bias.With an independent validation, these biasesmight have been con-
trolled. However, the observational nature of this study may have still
limited the interpretation of current results. Further validations in pre-
designed clinical trials are recommended. Second, the sample size was
relatively small and imaging protocols for current data varied from
one center to another, so the homogeneity of the sample may have
been affected. The application of themodels to a relatively larger cohort
with a prospective designwould generatemore convincible evidence to
guide current patient selection in AIS management.

5. Conclusions

In summary, the proposed imaging-basedmodels contain both clin-
ical and imaging signatures, showing sufficiently high discrimination for
clinical outcomes of AIS patients. Despite patient heterogeneity, the
model still acquired relatively high AUCs, indicating the robustness
and reliability of our methodology. This model may be clinically useful
because the model enables patient selection for thrombolysis either
within or beyond the 4·5-h time window, especially in hospitals that
are not qualified for endovascular treatments.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.07.028.
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