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Abstract

Background

Magnetic Resonance Imaging (MRI) relies on optimal scanning parameters to achieve maxi-

mal signal-to-noise ratio (SNR) and high contrast-to-noise ratio (CNR) between tissues

resulting in high quality images. The optimization of such parameters is often laborious, time

consuming, and user-dependent, making harmonization of imaging parameters a difficult

task. In this report, we aim to develop and validate a computer simulation technique that can

reliably provide “optimal in vivo scanning parameters” ready to be used for in vivo evaluation

of disease models.

Methods

A glioblastoma murine model was investigated using several MRI imaging methods. Such

MRI methods underwent a simulated and an in vivo scanning parameter optimization in pre-

and post-contrast conditions that involved the investigation of tumor, brain parenchyma and

cerebrospinal fluid (CSF) CNR values in addition to the time relaxation values of the related

tissues. The CNR tissues information were analyzed and the derived scanning parameters

compared in order to validate the simulated methodology as a reliable technique for “optimal

in vivo scanning parameters” estimation.

Results

The CNRs and the related scanning parameters were better correlated when spin-echo-

based sequences were used rather than the gradient-echo-based sequences due to aug-

mented inhomogeneity artifacts affecting the latter methods. “Optimal in vivo scanning
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parameters” were generated successfully by the simulations after initial scanning parameter

adjustments that conformed to some of the parameters derived from the in vivo experiment.

Conclusion

Scanning parameter optimization using the computer simulation was shown to be a valid

surrogate to the in vivo approach in a glioblastoma murine model yielding in a better delinea-

tion and differentiation of the tumor from the contralateral hemisphere. In addition to drasti-

cally reducing the time invested in choosing optimal scanning parameters when compared

to an in vivo approach, this simulation program could also be used to harmonize MRI acqui-

sition parameters across scanners from different vendors.

Introduction

A common approach to brain tumor imaging includes anatomical and physiological MRI in

order to achieve volumetric and functional evaluations of the disease [1–3]. The anatomical

portion of the investigation encompasses the use of pre- and post-contrast MRI spin- and gra-

dient-echo-based sequences. Among these, the Fast-Spin-Echo (FSE) and the Fluid Attenuated

Inversion Recovery (FLAIR) as well as the standard Gradient-Echo (GRE) and the Magnetiza-

tion-Prepared Rapid Gradient-Echo (MP-RAGE) are the preferred MRI methods. These

sequences generate high quality images in a limited scan time and provide precise and accurate

volumetric measurement of the tissue of interest after appropriate analysis.

Once a tumor is accurately detected and delineated, the MR images can be used to add diag-

nostic information by examining their T1 and T2 properties. For instance, the signal charac-

teristics of the lesion may provide clues about its underlying composition that are relevant for

its characterization [4]. T1 hyperintensity usually denotes fat, subacute hemorrhage, protein-

rich fluid, slow vascular flow or contrast enhancement, while T1 hypointensity may represent

cerebrospinal fluid (CSF) or a relative increase in tissue water in tumor or areas of edema. T2

hyperintensity associates with relative tissue increase in water such as in edema, tumor cells,

inflammation or infection, while T2 hypointensity identifies paramagnetic substances such as

deoxyhemoglobin, hemosiderin and iron, calcification and protein-rich fluid. Administration

of contrast agent is usually utilized for perfusion and permeability assessments on dynamic

scans in addition to highlighting permeable sites on a “static image” acquired several minute

after injection. Investigating and optimizing all the MRI aspects underlined in such studies,

often necessitates a pre-clinical investigation.

A pre-clinical study of murine models for human cancer requires the identification of

mice-bearing tumors and the quantitation of tumor size for stratification, measurements of

tumor growth rate, and assessment of treatment response. The optimization of MRI anatomi-

cal sequences is often the first step in order to maximize the information available [5]. A

murine glioblastoma tumor model was chosen in this study to represent one of the most genet-

ically heterogeneous, resistant and lethal of all human cancers [6]. Several studies in the past

have approached the glioblastoma murine model utilizing various in vivo imaging methods [7,

8] with MRI as the methodology of choice whenever a detailed investigation of tumor growth

is necessary in a non-invasive manner.

Standardization of MRI scanning parameters is the key for consistent and comparable

image quality between examinations in longitudinal and multicenter studies. Although a

theoretical approach describing the magnetization evolution during an acquisition is well
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established, both clinical and pre-clinical studies use scanning parameters that are mostly

designed to achieve high quality, but often differ between institutions. In an effort to harmo-

nize the choice of MRI scanning parameters for in vivo examination of a glioblastoma murine

model using a 7T scanner, this study aimed at generating reliable computer simulation pro-

grams that automatically produce “optimal in vivo scanning parameters” as to replace the time-

consuming and often inconsistent MRI in vivo parameters optimization approach, while pro-

viding a series of guidelines which can be used reproducibly in longitudinal studies and across

centers equipped with MRI from different vendors. We investigated several MRI sequences

such as FSE, FLAIR, GRE and 3D MP-RAGE in the context of pre- and post- administration

of the Gd-DTPA contrast agent, using both an in vivo and simulated MRI of the murine

tumor model. The results were then compared and optimal parameters were selected. Such

optimal scanning parameters aimed at providing better delineation and differentiation

between tissues under study than non-optimized parameters, therefore improving characteri-

zation and analysis of the tissue of interest.

The development of a simulated approach and its validation to an in vivo scenario is not a

trivial task. In vivo conditions are much more complex than the simulated ones due to resident

inhomogeneity and biological conditions. Herein, we demonstrate that achieving “optimal in
vivo scanning parameters” by simulation is possible and deliverable with the minimal contribu-

tion of a set of information achieved in vivo that are targeted to optimize some of the initial

simulated scanning parameters.

Materials and methods

MRI theory

Theoretical calculation for spin- and gradient-echo-based sequences assume that all radiofre-

quency (RF) pulses give exactly the desired flip angles, that any effects due to stimulated echoes

are not considered, that RF pulses act instantaneously and have the same effect across the

whole slice thickness. In addition, it is assumed that all transverse magnetization either decays

or is spoiled before each TR (repetition time). The following theory equations are based on a

standard Cartesian acquisition and k-space gridding.

Spin-echo-based sequences

Spin-echo-based acquisitions are used widely in pre-clinical and clinical MRI because they

provide a variety of image contrasts that highlights pathology and are resistant to image

artifacts from RF and static field inhomogeneity. They can be engaged both as T1- and

T2-weighted sequences or to suppress a specific signal such as that of the CSF. The sequences

studied in this work are the Fast-Spin-Echo (FSE) and the Fluid Attenuated Inversion Recov-

ery (FLAIR).

Fast-Spin-Echo (FSE). Fast-Spin-Echo (FSE) or Turbo-Spin-echo (TSE) pulse sequences

are optimized derivatives of the Rapid Acquisition with Relaxation Enhancement (RARE)

technique [9]. The primary difference between the more standard method and the FSE lays in

the use of a multi-echo approach. FSE combines the desirable properties of spin-echo-based

acquisitions with the speed advantage of collecting multiple lines of phase-encoding data fol-

lowing each 90˚ RF excitation. This method is used for a broad spectrum of MRI applications

going from anatomical organ or tumor volume estimation [10] to diffusion imaging [11, 12].

The method can be employed either as a T1- or proton density or a T2-weighted sequence by

varying the TR and TE parameters. Short TR (<1000ms) and TEeff (<40ms) were engaged to

investigate T1-weighted images while long TR (>4000ms) and TEeff (>40ms) were used for

T2-weighted images [13].

Validating MRI simulation versus in-vivo for optimal scanning parameters

PLOS ONE | https://doi.org/10.1371/journal.pone.0200611 July 23, 2018 3 / 22

https://doi.org/10.1371/journal.pone.0200611


The signal intensity general equation presented for a multiple-spin-echo sequence for the

nth readout pulse can be reported as follow:

Sn � Mn � exp �
TEn

T2

� �

; ð1Þ

where “n” identifies the nth read out pulse, Mn the nth magnetization, TEn is nth echo where T2

is the transverse relaxation time. The magnetization can be expanded as Conturo et al. [14]

described after a first-order approximation assuming that the echo spacing between successive

echoes (ESP) is<< T1:

Mn� M0 1 � exp �
TDn

T1

� �� �

; ð2Þ

where TD nth is the time interval between the last echo train and the TR period, which is given

by:

TDn ¼ TR � ETL � ESP; ð3Þ

the echo train length (ETL) also determines the speed of the FSE sequence. Note that the signal

from each echo is also a function of the proton density and the instrumental gain that are

intrinsic variables usually not reported in the general signal equation.

Fluid attenuated inversion recovery (FLAIR). T2-weighted fluid attenuated inversion

recovery (FLAIR) became a standard and robust approach in clinical magnetic fields strengths

for neuroimaging investigation [15, 16]. Therefore the use of this sequence in pre-clinical stud-

ies could be especially useful in translational and co-clinical trial designs [17].

FLAIR pulse sequence relies on the application of a single 180˚ inversion pulse to null the

signal from tissues such as the CSF. FLAIR uses a FSE readout where the signal from each echo

is a function of the relaxation time TI, T1, T2 decay, as well as the number of ETL, the TR and

ESP.

Mn� M0 1 � 2exp �
TI
T1

� �

þ exp �
TR � ðETL � ESPÞ

T1

� �� �

; ð4Þ

The equation and its approximations are reported in more details in the manuscript by Meara

S. J. P. and Barker G. J. manuscript [10].

Gradient-echo-based sequences

Gradient-echo techniques have numerous applications both clinically and pre-clinically, such

as high resolution anatomic imaging, contrast-enhanced imaging, angiography and perfusion

[12, 18–20]. In this study, we simulated a standard gradient-echo technique and a 3D

MP-RAGE that are commonly used in the clinic and can be accurately translated to a pre-clini-

cal environment.

Gradient-echo (GRE). Gradient-echo sequence can be used as a T2�- or T1-weighted,

rarely as proton density PD sequence by modification of the TR, TE and flip angle parameters.
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The signal intensity general equation presented for a gradient-echo-based sequence for the

nth readout pulse can be reported as follow:

Sn � Mnsin yð Þ � exp �
TEn

T�
2

� �

; ð5Þ

Mn ¼
1 � expð� TR

T1
Þ

1 � cosðyÞ � expð� TR
T1
Þ

; ð6Þ

where TR is the repetition time between two consecutive RF pulses and θ is the flip angle. Note

that the signal from each echo is also a function of the proton density and the instrumental

gain that are intrinsic variables usually not reported in the general signal equation.

Magnetization-prepared rapid gradient-echo (MP-RAGE). First introduced by Muger

and Brookeman [21], the sequence combines the power of magnetization-prepared imaging

and rapid 3D gradient echo acquisition techniques to provide excellent T1 tissue contrasts and

high spatial resolution images using a short scanning time. Also, MP-RAGE three-dimensional

Fourier transform gradient echo acquisition method offers easy reconstruction of any plane

and three-dimensional surface contour rendering with cut away post-processing [22].

Although mainly utilized in brain imaging [23], the method can be applied to a vast number of

applications.

MP-RAGE signal equation is a function of the time interval between the inversion recovery

pulse (TI), T1 and T2� decay, as well as flip angle (θ), TR and TE. Signal intensity from the nth

read-out pulse is given by [22, 24]:

Mn ¼ M0

ð1 � dÞ � ð1 � mn� 1Þ

1 � m
þ mn� 1 � ð1 � gÞ � g � mi� 1 �

Meq

M0

� �

; ð7Þ

where:

d ¼ exp �
ESP
T1

� �

; ð8Þ

m ¼ d � cosðyÞ; ð9Þ

g ¼ exp �
TI
T1

� �

; ð10Þ

φ ¼ exp �
TD
T1

� �

; ð11Þ

TR ¼ TI þ N � ESPþ TD; ð12Þ

where N is the total number of readout RF pulses and Meq is the steady state magnetization
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after several TRs.

Meq

M0

¼
1 � φþ φ�cosðyÞ�ð1� dÞ�ð1� mN� 1Þ

1� m
þ φ � cosðyÞ � mN� 1 � r � cosNðyÞ

1þ r � cosNðyÞ
; ð13Þ

r ¼ exp �
TR
T1

� �

; ð14Þ

Contrast to noise ratio (CNR)

The contrast to noise ratio (CNR) between two regions of an image, is defined as the difference

in SNR of those regions:

CNR ¼ SNR1 � SNR2; ð15Þ

the simulated SNR was calculated as:

SNR �
FOVx � FOVy � Dz � Fsequence

ffiffiffiffiffiffiffiffiffi
NSA
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BW � NFE � NPE
p ; ð16Þ

where FOV is the field of view, Δz is the slice thickness, Fsequence is the signal intensity equa-

tion, NSA the number of averages, BW is the total receiver bandwidth and NFE and NPE are

the number of frequency encoding and phase encoding, respectively.

Note that the simulated CNR will be only proportional to the contrast to noise obtained in

an in vivo experiment due to the simplified nature of the equation that does not consider the

electronic impedance of the transmitter/receiver coil or the electric noise produced by our

hardware.

Experiments

Validating the simulation approach versus the in vivo approach. The validation of our

MRI simulation approach versus the in vivo approach is based on the study of the magnetiza-

tion effects that each scanning parameter produces when dynamically changed. Only by

understanding such effects, will the computer model be able to accurately provide those opti-

mal scanning parameters which, when used in an in vivo experiment, culminate in maximum

CNR between tissues of interest.

The in vivo and simulated approaches are introduced below.

The in vivo approach. The in vivo approach illustrated on the left side of Fig 1 shows the

main steps required to achieve the “optimal in vivo scanning parameters”. The method involves

a lengthy series of MRI acquisitions as a first step where parameters such as TR, ESP, ETL, flip

angle (FA), TI (inversion time) are changed. CNR data analysis between tissues of interest are

then performed, maximum CNR values calculated and the related “optimal in vivo scanning
parameters” found. Of note, in practical terms the in vivo approach cannot be entirely fulfilled

because the total scan time is typically constrained to a few hours depending on the diseased

animal model in use. However, restricting the scanning conditions to a limited number of

parameters, still allows the “optimal in vivo scanning parameters” to be accurately defined.

The in vivo approach with limited parameters was engaged in FSE, GRE and MP-RAGE for

T1- and T2-weighted acquisitions both in pre- and post-contrast conditions. FLAIR was run

only as a T2-weighted pre-contrast.

The simulation approach. Our MRI computer simulation (C++ code) computed all the

equations presented in the Theory section to determine the SNR of brain parenchyma, CSF

and tumor tissues and the related CNR. The computer simulation varied, in a dynamic fashion

Validating MRI simulation versus in-vivo for optimal scanning parameters
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through a numerical calculation, parameters such as ESP, ETL, TR, NSA, FA, TI and scan time

in order to study the effects of the latters on the magnetization. The range, within which the

parameters were studied, was similar between in vivo and simulation, in fact, the latter mir-

rored all the in vivo experiments. In a second step, the simulation computed the SNRs of the

tissues under study and produced a CNR analysis to estimate the maximum values. Such val-

ues exposed the “optimal computed scanning parameters”. In order to associate the latter com-

puted parameters to the “optimal in vivo scanning parameters”, a scanning parameter

comparison analysis was performed between optimal in vivo and computed scanning

Fig 1. In vivo and simulation approaches diagrams representation. The IN VIVO approach uses a long series of imaging experiments to investigate how the change in

MRI scanning parameter affects the SNR of tissues. Once completed, the CNR between selected tissues is analyzed (CNR data analysis) and “optimal in vivo scanning
parameters” are identified. Conversely, the SIMULATION approach uses a numerical calculation to estimate the magnetization effects on tissues. The simulation uses

T1, T2 and T2� values of such tissues, and, in addition, dynamically varies the scanning parameters as input variables. The CNR between selected tissues are then

computed and analyzed by the simulation program. “Optimal computed scanning parameters” are therefore provided to the user. A verification of the computed

scanning parameters versus the in vivo scanning parameters is necessary at this stage (scanning parameter compared analysis). If the outcome is positive (YES),

computed and in vivo scanning parameters are similar and the parameter will therefore be considered as an “optimal in vivo scanning parameter”. In a negative case

(NO), those parameters that differ from the in vivo case, will be reinserted in the simulation emulating the in vivo value and the simulation rerun. Such diagrams are

valid in both pre- and post-contrast conditions. Note that the in vivo method is much more time consuming than the simulated approach due to the lengthy parameters’

acquisition experiments that will be mostly replaced by a numerical calculation when using the simulation.

https://doi.org/10.1371/journal.pone.0200611.g001
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parameters. In those cases where the comparison analysis failed, the initial simulated condi-

tions (input variables) had to be adjusted to the in vivo optimum value and the simulation

repeated (right side of Fig 1).

Cell line. The luciferase-transduced murine glioblastoma cell line GL261-luc2 was pur-

chased (Perkin-Elmer) in 2014 and chosen for its syngeneic ability in the murine model. Cells

were cultured and expanded in DMEM supplied with 10% FCS and selected under 100μg/mL

G418. Cells were grown on culture flasks housed in an incubator maintained at 5% CO2 set at

37˚.

Murine model. All procedures and imaging protocols for this study were approved and

performed in accordance with Dana-Farber Cancer Institute’s Institutional Animal Care and

Use Committee (IACUC). For the intercranial injection of the GL261-luc2 cells, eight 6–-

10-week old female B6(Cg)-Tyrc-2J/J mice (The Jackson Laboratory, Bar Harbor, ME) were

anesthetized for the duration of the procedure using 2% isoflurane mixed with medical air,

and placed on a stereotactic frame. The skull of the mouse was exposed through a small skin

incision, and a burr hole was made using a 25G needle at 2.0 mm lateral of the bregma. The

GL261-luc2 cells (1 x 105 cells in 2μL PBS) were then loaded into a 33G Hamilton syringe and

injected 2 mm below the cortical surface of the brain over a one-minute time span.

After suturing the scalp, mice were given a topical anesthetic (Bupivacaine) and an intraper-

itoneally injected (IP) analgesic (0.05mg/kg buprenorphine). They were then returned to their

cages, placed on a warming pad and visually monitored until full recovery. Mice were checked

daily for any signs of distress, which included weight loss, dehydration, neurological symptoms

such as tremors, seizures, ataxia, and any skull deformation due to advanced tumor growth.

Dependent upon the severity of any observed symptoms, body condition scoring and/or

tumor size (>500 mm3 calculated from the analysis of MR images), the mice were euthanized

by CO2 asphyxiation in accordance with DFCI IACUC protocols. No animals died due to the

experimental procedures. The median survival of the tumor-bearing mice without any thera-

peutic intervention was approximately 28 days post-tumor cell injection.

MRI imaging. MRI in vivo studies were performed on 8 glioblastoma-bearing mice at

about 20 days post-cell injection using a 7T/30 cm USR horizontal bore Superconducting

Magnet System 300.3 MHz (Bruker BioSpin MRI, Ettlingen, Germany BioSpec). The scanner

was equipped with the B-GA12S2 gradient and integrated with up to 2nd order shim system,

which provides a maximum gradient amplitude of 440 mT/m and slew rate of 3440 T/m/s.

The Bruker-made transmit/receiver 23 mm ID birdcage volume radiofrequency (RF) coil was

used for brain images.

Anesthesia was maintained at a flow rate of 2 l/min through inhalation of a mixture of 1.5%

isoflurane and O2. Body temperature was maintained at 37˚ using a forced warm air fan sys-

tem. Animal respiration and temperature were monitored and regulated by the SAII (Stony

Brook, NY) monitoring and gating system model 1025T. The mice were injected intraperito-

neally (IP) with 0.5 mmol/kg of gadopentetate dimeglumine Gd-DTPA (Magnevist, Bayer,

Germany). Pre-contrast acquisitions were obtained in addition to post-contrast images. Post-

contrast imaging started at 30 min post-injection.

Bruker Paravision 6.0.1 was used for MRI data acquisition. The geometry and pixel size

were maintained constant throughout all the sequences. To limit inhomogeneity correction

typical of regridding techniques, in addition to minimizing acquisition scheme artifacts [25,

26], a Cartesian acquisition scheme with no undersampling was preferred to non-Cartesian.

For the 2D brain images, a FOV = 20x20 mm2, matrix size = 192x192x29 and slice thick-

ness = 0.5 mm were used, while a FOV = 20x20x20 mm3 and a matrix size = 128x128x128

were used for the 3D acquisition. The sequences used in this study were FSE and FLAIR as

spin-echo based sequences and GRE and MP-RAGE as gradient-echo based sequences.

Validating MRI simulation versus in-vivo for optimal scanning parameters
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The scanning parameters used for the parameters’ optimization of the in vivo portion of the

study were chosen within standard ranges (typically utilized in preclinical mice experiments)

in order to render the study more effective and less time-consuming. Details of such parame-

ters are discussed in the following sections.

T1, T2 and T2�. To estimate T1, T2 and T2� values of brain parenchyma, CSF and tumor

areas, a spin-echo sequence with variable TR and TE (RAREVTR) was used for simultaneous

T1 and T2 mapping. Scanning parameters were: 7 T1 experiments TR = 7000, 5500, 3000,

1500, 800, 400, 278 ms, 5 T2 experiments ESP = 8.5, 25.5, 42.5, 59.5, 76.5 ms, NSA = 1, FA =

90/180, ETL = 2, BW = 50 MHz, matrix = 128x128x3, FOV = 20x20x3 mm3, scan time� 15

min. T2� mapping was achieved with the use of a multi-echo GRE sequence as follows: TR =

1000 ms NSA = 2, TE = 2.4 (BW = 75 MHz), echoes = 15, ESP = 4ms, FA = 30; matrix =

128x128x3, FOV = 20x20x3 mm3, scan time = 4 min 16 sec.

The sequences were run on all 8 glioblastoma brain tumor-bearing mice. Notably, attain-

ment of T1 and T2 spin echo contrast between white and gray matter is generally more chal-

lenging at high B0 rather than low magnetic fields, thus implying a convergence in relaxation

values between such tissues at high fields [27]. For this reason, the relaxation times achieved in

the contralateral hemisphere were, most probably, a combination of the two relaxation tissues.

Fast-Spin-Echo (FSE). The glioblastoma brain tumor murine model was investigated

with a Fast-Spin-Echo in both T2 and T1-weighted pre- and post-contrast. In T2-weighted

(FSET2) examinations, the first step was to evaluate the magnetization effects while varying

ESP and maintaining the other parameters constant. The following initial parameters were

used: TR = 6000 ms, NSA = 1, ETL = 13, ESP changed from 5.4 to 6, 7.4, 9.4, 11.4, 13.4, 15.4,

17.4 ms with consequent BW variation (from 100 to 13.5 MHz). After CNR data analysis, the

best ESP for in vivo studies was determined. In a second step, the experiment was repeated

maintaining ESP to the founded value but varying ETL from 10 to 20 (increment of 1). The

last step was to change the TR from 4000 to 10000 ms in 1000 ms increments while engaging

the maximum number of averages (NSA) without exceeding the 5-minute scanning limit.

These steps determined the “optimal in vivo scanning parameters”.

The Fast-Spin-Echo T1-weighted (FSET1) sequence was performed following similar steps

and scan time restrictions of 5-minute acquisitions. Images parameters were initially set to

TR = 700 ms, NSA = 3, ETL = 1 and ESP varied from 5.4 to 6, 7.4, 9.4, 11.4, 13.4 ms (BW from

100 to 20 MHz) in the first step. Having found the optimal ESP, ETL was then changed from 1

to 5. Maintaining ESP and ETL at their best value, TR was then changed from 500 (minimum

TR) to 800 ms to investigate TR contribution on the SNR of normal and tumor tissues, while

using the maximum number of NSA at the same time without exceeding the 5-minute scan-

ning limit. “Optimal in vivo scanning parameters” were then determined.

Of note, FSET2 ETL values lower than 10 were not utilized because of scan time limits,

while using ETL higher than 20 would have encountered significant SNR drops, therefore

deteriorating image quality. Also, the recovery time in the FSET2 method did not fall below

4000 ms in order to maintain strong T2-weighted effects. Similarly, in the FSET1 method, TR

did not overcome 1000 ms to maintain T1-weighted effects.

Fluid attenuated inversion recovery (FLAIR). In the FLAIR pre-contrast method, the

following initial parameters were used: TR = 8000 ms, ESP = 7.4 (BW = 50 MHz), ETL = 1,

NSA = 1 and TI varied from 1100 to 3100 ms (200 ms increment). Such experiment meant to

assess the best TI value for the in vivo applications. In a second step, TI was maintained at the

optimal in vivo value while TR ranged from 6000 to 25000 ms (non-constant increments). In

this test, the scanning time of each experiment was limited to 10 minutes, and as a conse-

quence NSA was maintained equal to 1, while the ETL number was limited to the minimum

value (TR = 6000 ms ETL = 2; TR = 7000 to 9000 ETL = 3; TR = 10000 to 11000 ms ETL = 4;
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TR = 15000 ms ETL = 5; TR = 20000 ms ETL = 7; TR = 25000 ms ETL = 9). This step provided

optimal TR and ETL to complete the “optimal in vivo scanning parameters”.

Gradient-echo (GRE). The GRE sequence was used as a T1-weighted pre- and post-con-

trast method on the tumor-bearing mice. As a pre-contrast sequence, it offered low CNR

between the brain parenchyma and tumor tissues while producing good contrast between soft

tissue, blood and CSF. As a first step, GRE parameters were set to TR = 275 ms (minTR),

TE = 3.5 (BW = 50 MHz), NSA = 3, variable FA (from 10 to 90 degrees) in order to investigate

FA effects on the magnetization. In a second step, the FA was maintained to the optimal value

and TR varied from 275 to 350, 500, 700 and 1000 ms combined with the maximum number

of NSA without exceeding the 5-minute scan time limit. “Optimal in vivo scanning parameters”
were then defined.

Magnetization-prepared rapid gradient-echo (MP-RAGE). MP-RAGE examination

was engaged as a T1-weighted pre- and post-contrast agent method. To assess the optimal TI

parameters for the in vivo study of the glioblastoma murine model, the sequence parameters

were set to: TR = 1983 (minTR), TE = 2.3 ms (minTE) (BW = 75 MHz), segment = 1, NSA = 1,

FA = 10˚, and TI varied between 500 and 3500 ms (500 ms increment). In a second step, while

maintaining the TI constant at the optimal in vivo value, the FA was changed from 10˚ to 90˚

and NSA was maximized in a scan time limit of 5 minutes. The analysis of CNR values pro-

vided the “optimal in vivo scanning parameters”.

Data analysis

T1, T2 and T2� values were calculated by employing the Image Sequence Analysis (ISA) Tool

provided by Bruker Paravision which uses dedicated mathematical functions to best fit the

data. The same region of interest (ROI) were maintained throughout the dataset for the analy-

sis of brain parenchyma, CSF and tumor tissues. Tumor ROIs were placed in 3 consecutive

slices, typically in the middle of the tumor, to achieve a T1, T2 and T2� value representative of

the entire tumor volume. T1, T2 and T2� mean values ± standard deviations (SD) were calcu-

lated for individual mice as well as for the entire cohort by averaging over the three slices. The

Wilcoxon signed rank test was used to compare T1, T2, and T2� values averaged over three

slices from brain parenchyma, CSF, and tumor tissues before and after contrast administra-

tion. To assess the variability in T1, T2 and T2� values in brain parenchyma, CSF, and tumor

tissues, a repeated measures Analysis of Variance (ANOVA) model was fit for each T1, T2,

and T2� variable. Mice were included as a fixed effect to evaluate the differences in values

between the mice, and a random effect with slice measurements nested within each mouse was

included to evaluate the variability within each mouse.

The SNR values from the in vivo data were analyzed with the ImageJ software (National

Institutes of Health, Bethesda, MD) by placing ROIs in the contralateral hemisphere, in CSF

and in tumor areas. The analysis was typically repeated in 3 consecutive slices and a CNR

mean value ± SD in addition to the coefficients of variation were also derived. A CNR data

analysis specific to each scanning parameter was then performed and the highest CNR values

assessed. In order for a scanning parameter to be evaluated as an “optimal in vivo scanning
parameter”, two conditions had to be satisfied: 1) the image had to be free of artifacts derived

either from off resonance effect, motion, chemical shift or blurring effects, therefore assuring

good image quality (image quality analysis test); 2) the CNR had to be found maximized. CNR

mean values ± SD and the related coefficients of variation were calculated for individual mice

as well as for the entire cohort.

In the simulation case, the data analysis of the computed CNR values was integrated in the

computer program. Due to the absence of an image quality analysis test, the highest computed
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CNR values always identified the “optimal computed scanning parameters”. Such scanning

parameters were then compared to the optimal scanning parameters derived by the in vivo

study as part of the “scanning parameter comparison analysis”. When the simulated matched

the in vivo parameters, the “optimal computed scanning parameters” could be considered as

“optimal in vivo scanning parameters” thus validating the simulation.

To assess the similarity between in-vivo and simulated CNR data, we computed the correla-

tion of CNR data from the two different methods using Kendall’s tau coefficient (τ). The coef-

ficient ranges from -1 to 1, with values closer to -1 or 1 indicating higher negative (-1) or

positive (1) correlation.

Results

T1, T2 and T2� values

Table 1 reports the mean value ± SD for T1, T2 and T2� values at 7T for brain parenchyma,

CSF and tumor tissues in the 8 tumor-bearing mice. We find that T1, T2, and T2� values did

not change significantly from pre- to post-contrast acquisitions in non-diseased brain paren-

chyma and CSF. In tumors tissues, while T2 did not change significantly from pre- to post-

contrast acquisitions, a significant decrease was observed in T1, as expected, and T2� values in

tumors from pre- to post-contrast acquisitions (p-value = 0.004 and 0.022, respectively). The

variability within mice was generally smaller than the variability between mice (S1 Table). The

latter variability between mice resulted in all cases smaller or equal than 10% of the corre-

sponded mean value. The similar T1 values found before and after contrast administration in

both CSF and non-diseased brain parenchyma could be explained by the integrity of the blood

brain barrier in healthy brain tissues, in addition to the rapid washout of the contrast agent.

Spin-echo based sequences

The results for the procedures of parameter optimization (pre- and post-contrast conditions)

are presented in Fig 2 for FSET1 and in S1 Fig for all the spin-echo based cases. The reported

graphs are representative of a single mouse in vivo experiment, but are representative of the

entire animal cohort. Mean CNR values for individual animals were associated with a coeffi-

cient of variation typically smaller than 10%. A similar outcome was also found when calculat-

ing the coefficient of variation of the entire cohort thus supporting the accuracy of our

measurements and the repeatability of the mouse model. Error bars are not included in the

graphs.

It should to be noted that the magnitude of the computed and in vivo single CNR values dif-

fer significantly from each other primarily due to the complexity in simulating a real MRI

experiment. In fact, the scanner hardware on one end, and the complex biological tissues com-

position on the other, are primary factors for such magnitude discrepancies. In the case of a

MRI scanner, the electronic and hardware components deeply affect both acquisition and

Table 1. T1, T2 and T2� values (mean ± SD in the 8 tumor-bearing mice) for brain parenchyma, CSF and tumor tissues of a glioblastoma murine model under pre-

contrast and post-contrast conditions.

Pre-contrast Post-contrast

(30 minutes)

Brain parenchyma CSF Tumor Brain parenchyma CSF Tumor

T1±SD (ms) 2565.13±161.81 3553.53±125.49 3221.08±118.61 2491.88±76.09 3477.46±137.74 1032.96±49.19

T2±SD (ms) 46.04±1.02 165.75±16.20 68.67±2.15 47.38±2.07 154.08±7.06 63.79±5.47

T2�±SD (ms) 27.46±1.60 91.91±25.20 37.71±1.86 26.29±0.86 82.88±15.51 34.33±0.99

https://doi.org/10.1371/journal.pone.0200611.t001
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Fig 2. Fast-Spin-Echo CNR data and scanning parameters comparison analysis. Fast-spin-echo T1-weighted (FSET1) brain parenchyma-tumor mean CNR graphical

representation. In pre-contrast conditions: graphs A1,3,5) and A2,4,6) report respectively in vivo and simulated CNR FSET1 data when changing ESP, ETL, TR and NSA

(the scan time was limited to 5 minutes). In post-contrast conditions: graphs B1,3) and B2,4) reported respectively in vivo and simulated CNR FSET1 data when changing

ESP, TR and NSA (the scan time was limited to 5 minutes). Black arrows point at selected parameters that typically coincide with the highest CNR providing the

“optimal in vivo scanning parameters” for the in vivo method, and the “optimal computed scanning parameters” with the simulated approach. The latter parameters are
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amplification of the MRI signal making it unique to every machine. The software used for the

in vivo data analysis can also represent a contributing factor to the final magnitude. Black

arrows reported in Fig 2 and S1 Fig identified the optimal parameters found for the in vivo

and simulated approach.

A full view of the “optimal in vivo scanning parameters” spin-echo base sequences is

reported in Table 2.

Fast-Spin-Echo (FSE). In-vivo and simulated CNR data were highly correlated for most

of the parameters analyzed as in Fig 2 and S1 Fig (Kendall’s tau coefficient τ for FSET1 is:

0.36 A1—A2; 1 A3 –A4; 0.55 A5 –A6; 1 B1—B2; 1 B3 –B4); 0.93 S1A1 –S1A2; 0.55 S1A3 –S1A4;

0.43 S1A5 –S1A6). This was found in pre- and post-contrast conditions for both T2- and

T1-weighted dataset, confirming that the FSE simulation is a reliable method in reproducing

real case scenarios and thus achieves optimal scanning parameters qualification.

Fig 2A1 and 2B1 highlighted the optimal ESP in vivo value after assessing CNR in combina-

tion with the related image quality as described in the “Data Analysis” section. It was found

that when using echo spacing larger than 7.4 ms (50MHz) in the T1-weighted methods, and

similarly in the T2-weighted methods, chemical shift and distortion artifacts were introduced

resulting in significantly diminished image quality. Hence, using 7.4 ms resulted in a good

compromise between in vivo maximal CNR and artifacts’ minimization. On the other hand,

the simulation (Fig 2A2, 2B2) selected the best ESP simply based on the CNR magnitude. The

in vivo and simulated ESP values were different, therefore failing the scanning parameter com-

parison analysis. ESP was then re-inserted in the computer program and maintained constant

at the optimal in vivo value. When changing either ETL (Fig 2A3) or TR in addition to NSA

(Fig 2A5 and 2B3), the simulation (Fig 2A4, 2A6 and 2B4) computed well the magnetization

effects observed in the in vivo experiments, resulting in a successful scanning parameter com-

parison analysis.

Fluid attenuated inversion recovery (FLAIR). S1C1 and S1C2 Fig reported a similar data

trend when varying TI (high Kendall’s tau coefficient, 0.75). Both in vivo and simulation

compared by the “Scanning parameters comparison analysis” and the outcome reported as successful (YES) or failing (NO). Note that although the graphs are related to

a single mouse dataset, they are a good representation of the entire animal cohort.

https://doi.org/10.1371/journal.pone.0200611.g002

Table 2. Pre- and post-contrast “optimal in-vivo scanning parameters” for spin-echo and gradient-echo-based sequences in a glioblastoma murine model.

Pre-contrast Post-contrast

Spin-Echo based Gradient-Echo based Spin-Echo based Gradient-Echo based

FSET2 FSET1 FLAIRT2 GRET1 MP-RAGET1 FSET1 GRET1 MP-RAGET1

TR (ms) 7000 500 9000 350 1983 500 275 1983

ESP (ms) 7.4 7.4 7.4 7.4

TEeff (ms) in SE-based TE (ms)

in GE-based

59.2 7.4 14.6 3.5 2.3 7.4 3.5 2.3

BW (MHz) 50 50 50 50 75 50 50 75

ETL 15 1 3 1

FA 90/180 90/180 180/90/180 60 10 90/180 90 10

NSA 3 3 1 4 1 3 5 1

TI (ms) 1700 1700 1700

Matrix 192x192x29 192x192x29 192x192x29 192x192x29 128x128x128 192x192x29 192x192x29 128x128x128

FOV (mm) 20x20x14.5 20x20x14.5 20x20x14.5 20x20x14.5 20x20x20 20x20x14.5 20x20x14.5 20x20x20

Mode 2D 2D 2D 2D 3D 2D 2D 3D

Scan time (min : sec) 4 : 12 4 : 48 9 : 36 4 : 28 4 : 14 4 : 48 4 : 24 4 : 14

https://doi.org/10.1371/journal.pone.0200611.t002
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approaches identified the highest CNR value at a TI of 1700 ms. A different outcome was

found when changing the TR parameter in addition to ETL (S1C3 and S1C4 Fig low Kendall’s

tau coefficient, -0.28). The in vivo CNR values dropped after the 9000 ms in contrast to the

simulation where the CNR continued to rise until reaching a maximum at a TR of 20000 ms.

The unexpected in vivo trend was thought to be related to the increasing number of ETL used

at longer TR than 9000 ms (ETL>3) causing inhomogeneity resulting in dephasing effects,

which in turn produced a signal dropping. The selected optimal MRI parameters were, there-

fore, chosen as 1700 ms TI and 9000 ms TR.

Gradient-echo based sequences

Gradient-echo based sequences results are presented in pre- and post-contrast conditions in

Fig 3 and S2 Fig. Although these graphs represent the case of a single mouse, they are a good

representation of the entire animal cohort. Mean CNR values were associated to a standard

deviation (SD) typically <10%. A coefficient of variation <10% was also found for the entire

cohort. Error bars are not included in the graphs. It has to be noted that the magnitude of the

computed and in vivo single CNR values differ significantly, primarily due to the complexity

in simulating the effect that the scanner hardware has on the acquisition and amplification of

the MRI signal. The analysis software for the in vivo data was an additional factor of magni-

tude values differences. Black arrows reported in Fig 3 and S2 Fig identified the optimal

parameters found for the in vivo and simulated approach. The TE was related to a bandwidth

of 50MH, as in spin-echo methods, which provided the highest CNR values between tissues

based on an in vivo test (data not shown).

A full view of the “optimal in vivo scanning parameters” gradient-echo base sequences is

reported in Table 2.

Gradient-echo (GRE). The GRE pre- and post-contrast in vivo data trend showed impor-

tant differences with the simulated counterpart when changing both FA (Fig 3A1,2 and 3B1,2) and

TR in addition to NSA without exceeding a 5-minute scan time limit (Fig 3A3,4 and 3B3,4). The

reasons behind such divergences are not entirely understood, although it can be speculated that

enhanced susceptibility effects experienced at high field played a major role. The GRE method is

indeed very sensitive to variations in T2� decaying which might have not been fully integrated in

the simulation. The optimal parameters were, therefore, chosen based on the highest CNR

achieved in the in vivo experiment as 60 degrees angle FA and 350 ms TR in pre-contrast condi-

tions, and 90 degrees angle and 275 ms TR in post-contrast conditions. The correlation between

in-vivo and simulated graphics patterns was also low, reporting low Kendall’s tau coefficient val-

ues (0.39 3A1 - 3A2; 0.20 3A3 - 3A4 and 0.22 S2C1 –S2C2; -0.20 S2C3 –S2C4)

Magnetization-prepared rapid gradient-echo (MP-RAGE). MP-RAGE reported a non-

matching CNR trend (low Kendall’s tau coefficient, -0.17) between the in vivo and simulated

data in pre-contrast conditions when testing the best TI parameter (S2B1,2 Fig). Such differ-

ences were also reflected in the failing of the scanning parameter comparison analysis. The rea-

sons behind such dissimilarities remain unclear. In all the remaining cases (S2B3,4, S2D1,2 and

S2D3,4 Fig) in vivo and simulation CNR seem to correlate well (high Kendall’s tau coefficient

0.80 B3 –B4; 0.67 D1 –D2; 1 D3 –D4) also identifying similar optimum scanning values. Opti-

mal parameters were set as 1700ms TI and 10 degrees FA for both pre- and post-contrast

conditions.

“Optimal in vivo scanning parameters”

The simulation technique wanted to achieve the “optimal in vivo scanning parameters” after a

validation process that compared the computed scanning parameters to those achieved in
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Fig 3. Gradient-echo based sequences diagrams. Gradient-echo (GRE) brain parenchyma-tumor mean CNR graphical representation during scanning parameters

optimization. Figs A1,3 and A2,4 report respectively in vivo and simulated CNR GRE data when changing FA and TR in addition to NSA (5-minute scan limit) in pre-

contrast conditions. Same approach is shown in Figs B1,3 and B2,4 in post-contrast conditions. Black arrows point at selected parameters that typically coincide with the

highest CNR providing the “optimal in vivo scanning parameters” in the in vivo approach and the “optimal computed scanning parameters” in the simulated approach.

The latter parameters are compared with the “Scanning parameters comparison analysis” and the outcome was reported as successful (YES) or failing (NO). Note that

although the graphs are related to a single mouse dataset, there is a good representation of the entire animal cohort.

https://doi.org/10.1371/journal.pone.0200611.g003
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vivo. Included is a list of those parameters that succeed and those that failed the scanning

parameter comparison analysis.

Successful comparison scanner parameter analysis:

Failed comparison scanner parameter analysis:

These latter parameters were re-inserted in the simulation and maintained constant at the

optimum in vivo experimental value.

The FOV and matrix parameters were not modified throughout the study, and it is believed

that their contribution does not affect the series of scanning parameters succeeding or failing

the compared analysis.

Example of “optimal in vivo scanning parameters” resulting images are reported in Fig 4.

These images and the related optimal parameters are representative of the entire cohort. This

was verified by running the in vivo and simulation approaches on all the animals ultimately

finding the same results which was also confirmed by coefficient of variation typically smaller

than 10% of the mean value, and the generally small variabilities between and within mice. In

other words, if any of the single animal CNR values were to be investigated, the “optimal in
vivo scanning parameters” outcome would have been identical to that shown herein.

Regarding the time spent running the in vivo compared to the simulated method, it was

found that the computed approach provided significant benefits with the exception of the GRE

method. The user performing the simulated method will have, in fact, to investigate exclusively

the “failed” scanning parameters by an in vivo test and acquire either a T1 or T2 or T2� map

depending on the sequence theoretical requirements. Conversely, a full sequential in vivo

approach involves acquiring a series of scans for each of the scanning parameters in addition

to a full data analysis. For instance in the case of spin-echo, it is estimated that, based on our

MRI methods and their acquisition timing, the simulated technique is at least twice as fast as

the conventional method in identifying the “optimal in vivo scanning parameters”.

Discussion

This study aimed to validate a numerical simulation based on MRI theory to an in vivo

approach in a glioblastoma murine model in order to provide “optimal in vivo scanning param-
eters”. Such parameters produce the highest CNR between healthy and tumor brain tissues

which typically translate to an increase in sensitivity and accuracy of the subsequent image

analysis. The computational approach simulated similar sequences to those used in an in vivo

experiment in an effort to reproduce the magnetization effects observed in a living mouse. The

SNR of healthy and tumor tissues collected with both in vivo and simulated approaches were

1) ETL, TR, NSA in the case of FSE T1 or T2 (pre- and post-contrast);

2) TI in the case of FLAIR T2 (pre-contrast);

3) FA, NSA in the case of MP-RAGE T1 (pre-contrast);

4) TI, FA, NSA in the case of MP-RAGE T1 (post-contrast);

https://doi.org/10.1371/journal.pone.0200611.t003

1) ESP in the case of FSE T1 or T2 (pre- and post-contrast);

2) TR in the case of FLAIR T2 (pre-contrast);

3) FA, TR, NSA in the case of GRE T1 (pre- and post-contrast);

4) TI in the case of MP-RAGE T1 (pre-contrast).

https://doi.org/10.1371/journal.pone.0200611.t004
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then analyzed through a CNR data analysis, and the respective scanning parameters were com-

pared. While it was found that the computational methods suffered several inaccuracies in

reproducing in vivo optimal parameters, these could be resolved in the majority of the cases

after adjusting some of the initial computed conditions. The latter conditions had to conform

to those achieved in the in vivo experiment and the limitations of a simulation approach to a

real in vivo situation were then highlighted.

The study focused on spin-echo (FSE and FLAIR) and gradient-echo (GRE and MP-RAGE)

based sequences. These methods are commonly used in clinical brain tumor studies and are

also relevant to pre-clinical murine brain tumor investigations. The limited inhomogeneity

experienced in the spin-echo based methods helped to create a better correlation between the

CNR computed and the in vivo values (Fig 2 and S1 Fig). On the other hand, the gradient-

echo based sequences being more susceptible to field inhomogeneity effects, produced diver-

gent CNR trends making the pursue of “optimal in vivo scanning parameters” a non-trivial task

Fig 4. Pre- and post-contrast images “optimal in vivo scanning parameters” of a glioblastoma murine model brain section. Figs A1, A2, A3 and A4 represent FSET2

FSET1, GRE and FLAIR pre-contrast images respectively. Tumor areas are well differentiated from the valuable brain parenchyma in FSET2. On FLAIR images,

excellent CSF signal saturation is achieved. Figs B1, B2, B3 and B4 represent FSET2 FSET1, GRE and MP-RAGE (the image contrast was inverted for visualization

purposes) post-contrast images respectively. Tumor areas are well differentiated from the healthy brain parenchyma in all scans. Contrast enhancement effects are

prominent in all T1 examinations.

https://doi.org/10.1371/journal.pone.0200611.g004
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(Fig 3 and S2 Fig). Specifically, the simulation of the standard GRE method revealed to be far

from accurate.

FSE was used as a T2- and T1-weighted sequence. As a T2-weighted method, it provided

excellent pre-contrast anatomical information and was able to well differentiate normal brain

from tumor areas that appeared hyperintense due to increased vascularization. This method is

commonly used post-contrast in multiple sclerosis studies, and thus was reported in this work.

Post-contrast T2-weighted sequence, however, do not provide any additional biological or tis-

sue structural information compared to a pre-contrast agent administration MRI acquisition.

As a T1-weighted method, the post-contrast in vivo data offer important information on the

tumor anatomy and permeability effects and therefore is a valuable investigating tool. Simula-

tion and in vivo data were highly correlated as shown by the Kendall’s tau coefficient so that

the computer program can be used as a reliable surrogate to the in vivo measurements in

order to obtain the MRI “optimal in vivo scanning parameters”. Of note that particular atten-

tion should be given to the ESP scanning parameter because chemical shift effects can repre-

sent a limiting factor in achieving well-correlated simulated to in vivo data.

FLAIR is a challenging method when followed by a refocusing flip angle train as studied by

Saranathan et al., due to issues related to CSF nulling point signal stability over time, the pri-

mary goal of such sequence [28]. Although not often used in pre-clinical studies, FLAIR is rou-

tinely used in the clinic making it an essential tool to apply in co-clinical projects. This study

shows that in vivo and simulation data well agreed in determining the best TI parameter while

having discrepancies in optimizing TR. Such differences could be related to the incrementing

number of excitation and refocusing flip angles in the absence of an optimization of the latter

refocusing angles. It has to be noted that the number of ETL used at the optimal in vivo TR of

9000 ms was 3 while increasing to 4 at 10000 ms TR. Such increment could lead to variability

in signal-to-noise in the acquired images reflecting a drop of CNR between tissues. This

method, similarly to the FSET2, is also not commonly used in the post-contrast setting.

Despite being a gradient-echo based method, the 3D MP-RAGE generally reported well-

correlated CNR values with high Kendall’s tau coefficient between in vivo and simulated

approaches. Given that this sequence is most commonly utilized after, rather than prior to contrast

agent administration, the simulation can be reliably used to define the “optimal in vivo scanning
parameters” in post-contrast conditions. Differences between the pre- and post-contrast behavior

in identifying the optimal TI value, must lay in a reduction in inhomogeneity effects, which follow

decremented T1 values, but also in a better characterization of the tissues. The rather complex

equation, presented in the “Theory” section, which simulates the MP-RAGE sequence, is therefore

offering a good representation of the acquired in vivo signal-to-noise. Of note, contrary to the

many parameters which dynamically varied in the simulation, TD was maintained to a “0” value

primarily because of a previous publication [22] reporting an enhanced efficacy at such range

which was also verified in our laboratory in a separate in vivo experiment (data not reported).

The simulation computer program remains an important tool in MRI parameters optimiza-

tion and the different C++ codes used in this study are hereby provided and can be freely used

(S1, S2, S3, S4 and S5 Files). When engaging such simulations, the user can select and vary the

range of several parameters in a dynamic manner in order to automatically achieve the “opti-
mal scanning computed parameters” and consequently the “optimal in vivo scanning parame-
ters”. As we have seen, however, the computed outcomes do not always accurately represent

the in vivo relationship between tissue contrasts. To pursue a simulation which better adheres

to in vivo conditions, some of the simulated parameters can no longer change dynamically

during the simulation, but must be maintained constant to those found in vivo. Such incoher-

ence between the in vivo and simulation approaches, confirm the latter to be a simplistic

method. A numerical calculation does not always take into account in vivo aspects such as
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field inhomogeneity, hardware limitations and biological effects in addition to artifacts arising

from magnetic susceptibility gradients or chemical shift effects that become more pronounced

at high static fields [29], thus resulting in misleading interpretations.

Nevertheless, this study proposes some guidelines on how to validate a simulation against

an in vivo scenario in order to achieve “optimal in vivo scanning parameters”, and highlights

the parameters that have to be re-introduced into the numerical simulation after CNR com-

parison analysis. Our approach is in contrast with the more traditional MRI simulations where

a stand-alone computing program uses an analytical approach and theoretical approximation

to predict the rather complex magnetization processes of the body under investigation [30–

32]. Most of these simulations design elegant, but still job-selective, numerical corrections to

overcome either specific hardware limitations, such as RF and magnetic field imperfections,

non-linear gradients and gradients field modulation, or image artifacts such as chemical shift,

spin dephasing and susceptibility-induced off-resonance. These approaches are generally

developed for a clinical environment and/or educational purposes. In contrast, our work, did

not aim at resolving specific problematic issues related to signal acquisition, image processing

or hardware limitations, but rather to use information gained from in vivo experiments and

apply it to some specific scanning parameters to correct the discrepancies seen between the

computed and a in vivo scenario, and to forestall the best scanning parameters to use to best

differentiate one tissue from the next.

Our proposed simulated approach can be utilized to further improve the accuracy and opti-

mization of scanning parameters by decreasing the range of variation of each variable. For

instance, in our spin-echo cases, the TR parameter was varied following an increment of

1000ms, but having proved that such parameter is fully compliant to the simulation, the range

of variation could be drastically reduced (100ms for example) and a more accurate value was

found from the simulation alone. If the same situation were to be repeated in vivo, the process

would consume a considerable amount of time. Higher accuracy of “optimal scanning in vivo
parameters” will result in further maximized CNRs, and better delineation, differentiation and

characterization of the diseased model under study.

The simulation technique reported here is not limited to the glioblastoma murine model

but can be used for any type of cancer or tissue. Of note, complex tissue structures, such as

necrosis or large edematous regions within a tumor mass, can affect significant areas of the tis-

sue under study, and the T1, T2 or T2� can also significantly vary within the tissue itself. In

these cases, the user will have to explore more sophisticated mathematical approaches, rather

than an average between relaxation times, to achieve spatial/relaxation “weighted” values in

order to reflect the tissue properties, and identify one relaxation time value to use in the simu-

lation. Alternatively, one could test the simulation technique on phantoms with various relaxa-

tion times properties before approaching the in vivo experiment. We tested the simulation

using a water/oil phantom that provided similar successful and failed scanning parameters to

those presented in this work (results not shown). We hope that our proposed methodology

can help harmonize the choice of scanning parameters across different scanners, and help vali-

date the use of MRI as an effective tool for translational studies in cancer and other diseases.

In conclusion, this study presented a proposed computer simulation approach for MRI in

vivo scanning parameter optimization in a glioblastoma murine model as a validated surrogate

for the more time consuming in vivo approach. The programming used to develop this simula-

tion technique relied on a theoretical model and on information provided by the concomitant

in vivo study to introduce corrections to the initial simulated conditions as to generate a reli-

able computed approach and validate the simulation approach against the in vivo acquisition.

This proposed method could potentially be extended across pre-clinical and clinical scanners

and to other disease models.
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Supporting information

S1 File. C++ program file for fast spin-echo. The T1 and T2 values and scanning parameters

can be edited within the program file to define pre- and post-contrast conditions.

(CPP)

S2 File. C++ program file for FLAIR. The T1 and T2 values and scanning parameters can be

edited within the program file to define pre- and post-contrast conditions.

(CPP)

S3 File. C++ program fils for gradient-echo. The T1 and T2� and scanning parameters can

be edited within the program file to define pre- and post-contrast conditions.

(CPP)

S4 File. C++ program file for MPRAGE. The T1 and T2 values and scanning parameters can

be edited within the program file to define pre- and post-contrast conditions.

(CPP)

S5 File. C++ program file for fast spin-echo with changeable T1 and T2. The T1 T2 and T2

values and scanning parameters can be edited within the program file to define pre- and post-

contrast conditions.

(CPP)

S1 Table. T1 T2 and T2� variability values for brain parenchyma, CSF and tumor tissues in

a glioblastoma murine model for pre-contrast and post-contrast conditions (30 minutes

after contrast agent IP injection).

(TIFF)

S1 Fig. Spin-echo based sequences CNR data. Fast-spin-echo T2- (FSET2) and T1-weighted

(FSET1) brain parenchyma-tumor and Fluid Attenuated Inversion Recovery (FLAIR) brain

parenchyma-CSF mean CNR graphical representation. In pre-contrast conditions: Figs A1,3,5

and A2,4,6 report in vivo and simulated CNR FSET2 data, respectively, when changing ESP,

ETL, TR and NSA (the scan time was limited to 5 minutes). Figs B1,3,5 and B2,4,6 report in vivo

and simulated CNR FSET1 data, respectively, when changing ESP, ETL, TR and NSA (the

scan time was limited to 5 minutes). Figs C1,3 and C2,4 show in vivo and simulated CNR

FLAIR data, respectively, when changing TI, TR and ETL. In this latter case the scan time was

limited to 10 minutes. In post-contrast conditions: Figs D1,3 and D2,4 reported in vivo and sim-

ulated CNR FSET1 data, respectively, when changing ESP, TR and NSA (the scan time was

limited to 5 minutes). Black arrows point at selected parameters that typically coincide with

the highest CNR providing with the “optimal in vivo scanning parameters” in the in vivo

approach and the “optimal computed scanning parameters” in the simulated approach.

(TIFF)

S2 Fig. Gradient-echo based sequences diagrams. Gradient-echo (GRE) and Magnetization-

Prepared Rapid Gradient-Echo (MP-RAGE) brain parenchyma-tumor mean CNR graphical

representation during scanning parameters optimization. Figs A1,3 and A2,4 report in vivo and

simulated reports in vivo CNR GRE data, respectively, when changing FA and TR in addition

to NSA (5-minute scan limit) in pre-contrast conditions. Same approach is shown in Figs C1,3

and C2,4 in post-contrast conditions. Figs B1,3 and B2,4 report in vivo and simulated CNR

MP-RAGE data, respectively, when changing TI and FA (5-minute scan limit) in pre-contrast

conditions. Same approach is shown in Figs D1,3 and D2,4 in post-contrast conditions. Black

arrows point at selected parameters that typically coincide with the highest CNR providing

with the “optimal in vivo scanning parameters” in the in vivo approach and the “optimal
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computed scanning parameters” in the simulated approach.

(TIFF)
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Formal analysis: Andrea Protti, Sasha Kravets.

Investigation: Andrea Protti.

Methodology: Andrea Protti.

Resources: Quang-Dé Nguyen, Annick D. Van den Abbeele.

Software: Andrea Protti.
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