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Abstract

Enhancement of oral absorption of food allergens by non-steroidal anti-inflammatory drugs

(NSAIDs), especially aspirin, is considered an exacerbating factor in the development of

food allergies. In this study, we examined the effect of aspirin on oral sensitization to and

absorption of the egg-white allergen ovalbumin (OVA) in rats. The absorption of OVA was

evaluated by measuring the plasma concentration of OVA after oral administration by

gavage. To evaluate oral sensitization to OVA, plasma levels of immunoglobulin (Ig) E and

IgG1 antibodies (Abs) specific to OVA were determined by enzyme-linked immunosorbent

assay after initiation of sensitization. High-dose aspirin (30 mg/kg) increased oral OVA

absorption and plasma levels of OVA-specific IgE and IgG1 Abs compared with those

observed in vehicle-treated rats. In contrast, low-dose aspirin (3 mg/kg) exerted no changes

in either absorption or sensitization. Spermine, an absorption enhancer, increased the oral

absorption of OVA to nearly the same extent as high-dose aspirin, whereas the plasma lev-

els of OVA-specific IgE and IgG1 Abs exhibited no significant differences between sper-

mine- and vehicle-treated rats. Among the NSAIDs, diclofenac and indomethacin increased

sensitization to OVA, similar to high-dose aspirin, but meloxicam exerted no effects on Ab

levels. In conclusion, we showed that high-dose aspirin enhanced oral sensitization to OVA.

Our study suggests that enhanced oral sensitization to OVA cannot be ascribed to

increased absorption of OVA from the intestinal tract. Although the mechanisms underlying

this enhancement of sensitization are still controversial, our study suggests that modification

of cytokine production due to impairment of the intestinal barrier function and inhibition of

cyclooxygenase-1 activity by aspirin may be involved.

Introduction

Food allergy is defined as an adverse immune reaction to certain foods. The prevalence of food

allergies has been increasing rapidly and is becoming a healthcare problem worldwide. In

Japan, the prevalence of food allergies is estimated to be 5–10% in infants (aged 0–6 years) and
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1–2% in school-aged children (6–15 years) based on data from epidemiological surveys [1,2].

Various foods, such as peanuts, tree nuts, hen eggs, cow milk, wheat, shellfish and soy, can

cause allergic reactions. Among these foods, hen eggs are the most frequent causative food of

food allergies in Japan [1,2]. Allergic reactions to foods are induced by specific immunoglobu-

lin (Ig) E-mediated, non-IgE-mediated (cell-mediated), and both IgE and cell-mediated mech-

anisms. In particular, IgE-mediated allergic reactions are the most common mechanism of

food allergies such as immediate-type and food-dependent, exercise-induced anaphylaxis. The

pathogenesis of IgE-mediated food allergies is divided into two phases, sensitization and elici-

tation. In the sensitization phase, an IgE antibody (Ab) specific for an allergen, which enters

the body through the gastrointestinal tract, skin, or mucosa, is produced under T-helper type

(Th) 2 cell-dominant conditions. Parts of the IgE Ab bind to IgE receptors on the surface of

mast cells and basophils. In the elicitation phase, the same ingested allergen cross-links with

IgE Abs bound to receptors, leading to activation of mast cells and basophils. Activated mast

cells and basophils release chemical mediators including histamines and leukotrienes by

degranulation, resulting in the development of clinical symptoms such as urticaria, dyspnea,

diarrhea, and systemic anaphylaxis.

Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity,

in which prostaglandins are produced from arachidonic acid. Two isoforms of COX have been

identified: COX-1 and COX-2. COX-1 is constitutively expressed in normal tissues and is

involved in the physiological production of prostaglandins. COX-2 is induced by inflamma-

tory stimulation and modulates the inflammatory and immune responses [3]. Thus, the inhibi-

tion of COX-2 by NSAIDs results in anti-pyretic, analgesic, and anti-inflammatory effects,

whereas COX-1 inhibition causes gastrointestinal injury. This gastrointestinal injury can

increase the intestinal permeation of macromolecules via the paracellular pathway. We previ-

ously reported that aspirin increased the absorption of ingested allergens after impairment of

the paracellular pathway in rats [4–6]. In addition, aspirin-facilitated absorption of ingested

wheat allergen elicited allergic reactions in provocation tests in patients with wheat-dependent,

exercise-induced anaphylaxis [7,8]. These findings indicate that aspirin induces and exacer-

bates IgE-mediated allergic symptoms by facilitation of allergen absorption from the intestinal

tract during the elicitation phase. However, the effect of aspirin on the sensitization phase is

unknown. We hypothesized that aspirin could also enhance oral sensitization to food allergens

by increasing allergen absorption from the intestinal tract. In this study, we examined the

effect of aspirin on oral sensitization to an egg-white allergen, ovalbumin (OVA), in rats.

Materials and methods

Materials

OVA (grade V), spermine, diclofenac, and meloxicam were purchased from Sigma-Aldrich (St

Louis, MO, USA). Aspirin and indomethacin were obtained from Wako Pure Chemicals

(Osaka, Japan) and Nacalai Tesque (Kyoto, Japan), respectively. Alum adjuvant (Imject1

Alum) was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Horseradish per-

oxidase (HRP)-conjugated mouse anti-rat IgE (MARE-1) and HRP-conjugated goat anti-rat

IgG1 were purchased from GeneTex (Irvine, CA, USA) and Bethyl Laboratories (Montgomery,

TX, USA), respectively. All chemicals used were of the highest purity available.

Animals

Male Brown Norway (BN) rats aged 4 weeks were obtained from Japan SLC, Inc. (Shizuoka,

Japan). Rats were provided with a standard laboratory diet (MF, Oriental Yeast, Tokyo, Japan)

and water ad libitum. Rats were maintained in a temperature- and light-controlled
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environment for more than 1 week prior to experiments. At the end of each experiment, rats

were euthanized by decapitation under anesthesia. All experiments involving animals were

carried out in accordance with the Guide for Animal Experimentation from the Committee of

Research Facilities for Laboratory Animal Sciences of Hiroshima University (approval No.

A16-44-3, Hiroshima, Japan).

Oral administration study

To evaluate the effects of aspirin on the absorption of an ingested allergen, plasma levels of

OVA in rats were examined as reported previously [9]. Briefly, after overnight fasting, rats

were anesthetized with pentobarbital (30 mg/kg, i.p.) and cannulated with polyethylene tubing

(PE-50) at the femoral artery for blood sampling. Vehicle alone [phosphate-buffered saline

(PBS), pH 7.4] or vehicle containing aspirin (3 or 30 mg/kg) was administered orally using a

stainless-steel feeding tube. OVA (50 mg/kg) dissolved in PBS (pH 7.4) was administered

orally 30 min after treatment. To evaluate the effect of spermine on OVA absorption, a mixture

of OVA (50 mg/ml) and spermine (20 mg/ml) was administered orally at a dose of 1 ml/kg.

Blood (0.25 ml) was collected at designated time intervals for 3 h via the cannula to determine

the plasma concentrations of OVA. Each blood sample was centrifuged, and the plasma sample

was stored at −30˚C until use. The plasma concentration of OVA was determined using a

sandwich enzyme-linked immunosorbent assay (ELISA) kit (Morinaga Institute of Biological

Science, Yokohama, Japan) and a Microplate Fluorometer (PerkinElmer, Waltham, MA,

USA) at a wavelength of 500 nm for excitation and 520 nm for emission, as described previ-

ously [9].

Oral sensitization study

The oral sensitization study was performed without the use of an adjuvant according to the

procedure described by Proust et al. [10] with slight modification. Briefly, rats were orally

administered vehicle alone (PBS, pH 7.4) or vehicle containing aspirin (3 or 30 mg/kg), diclo-

fenac (1.5 mg/kg), indomethacin (3 mg/kg), or meloxicam (0.3 mg/kg) using a stainless-steel

feeding tube. Then, OVA (50 mg) dissolved in PBS (pH 7.4) was administered orally 30 min

after treatment. To evaluate the effect of spermine on oral OVA sensitization, a mixture of

OVA (250 mg/ml) and spermine (25 mg/ml) was administered orally at a dose of 200 μl. These

immunization procedures were repeated every other day for 8 weeks. Every two weeks after

the first immunization, blood (0.3 ml) was collected from the jugular vein to check plasma lev-

els of OVA-specific IgE and IgG1 Abs using ELISA.

Measurement of plasma levels of OVA-specific IgE

To confirm sensitization to OVA, plasma levels of OVA-specific IgE and IgG1 Abs were deter-

mined using an ELISA according to our previous report with slight modification [8]. Briefly,

the wells of ELISA plates (F8 MaxiSorp loose Nunc-Immuno™ Modules, Thermo Fisher Scien-

tific Inc., Yokohama, Japan) were coated with 100 μl of OVA (10 μg/ml for IgE Ab and 1 μg/ml

for IgG1 Ab) dissolved in PBS (pH 7.4) overnight at 4˚C. After washing with PBS containing

0.1% Tween 20 (PBS-T) six times, plates were incubated with 1% blocking reagent (Block

Ace1, DS Pharma Biomedical, Osaka, Japan) for 2 h at room temperature. Then, 100 μl of

each sample of rat plasma (diluted 1:10 for IgE Ab and 1:30,000 for IgG1 Ab in 1% Block

Ace1) was added to each well and incubated for 2 h (for IgE) or 1 h (for IgG1) at room temper-

ature. After washing with PBS-T, wells were incubated with 100 μl of HRP-conjugated mouse

anti-rat IgE Ab (diluted 1:1000 in PBS) for 2 h or HRP-conjugated goat anti-rat IgG1 Ab

(diluted 1:100,000 in PBS) for 1 h at room temperature. Wells were washed with PBS-T and
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then incubated with 100 μl of tetramethylbenzidine substrate solution at room temperature.

After incubation, the reaction was terminated with 100 μl of 1 M phosphoric acid. Absorbance

was measured at 450 nm and compared with that at 630 nm as a reference using a Multiskan

GO spectrophotometer (Thermo Fisher Scientific).

Fig 1. Effects of aspirin (A) and spermine (B) on plasma concentrations of OVA after oral administration in rats. Vehicle alone [phosphate-buffered saline (pH

7.4), Control] or vehicle containing aspirin (Asp, 3 or 30 mg/kg) was administered 30 min before oral administration of OVA at a dose of 50 mg/kg. Spermine (Spm, 20

mg/kg) was orally administered with OVA (50 mg/kg) simultaneously. Each value represents the mean ± S.E. of four rats. �P< 0.05 compared with the Control group.

https://doi.org/10.1371/journal.pone.0226165.g001

Table 1. Effects of aspirin and spermine on absorption parameters of OVA after oral administration in rats.

Control Aspirin Spermine

3 mg/kg 30 mg/kg

Cmax (ng/mL) 0.81 ± 0.09 0.61 ± 0.12 1.85 ± 0.19a 2.23 ± 0.35b

AUC0–3 h (ng h/mL) 1.14 ± 0.13 1.17 ± 0.14 3.84 ± 0.22b 4.61 ± 0.32b

Cmax, peak plasma concentration; AUC, area under the plasma concentration–time curve. Vehicle alone [phosphate-buffered saline (pH 7.4), Control] or vehicle

containing aspirin (3 or 30 mg/kg) was administered 30 min before oral administration of OVA at a dose of 50 mg/kg. Spermine (20 mg/kg) was orally administered

with OVA (50 mg/kg) simultaneously. Each value represents the mean ± S.E. of four rats.
aP < 0.05
bP < 0.01 compared with the Control group.

https://doi.org/10.1371/journal.pone.0226165.t001
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Fig 2. Effects of aspirin on oral sensitization to OVA in rats. Vehicle alone [phosphate-buffered saline (pH 7.4), Control] or vehicle containing

aspirin (Asp, 3 or 30 mg/kg) was administered 30 min before oral administration of OVA at a dose of 50 mg/animal. These oral immunizations
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Statistical analyses

Data are displayed as the means ± standard errors of the mean (S.E.). Differences in mean val-

ues between groups were assessed using Kruskal-Wallis tests or ANOVA, followed by a post

hoc Tukey test, Scheffe’s F test, or Student’s t-test. A value of P< 0.05 was considered statisti-

cally significant.

Results

Effects of aspirin and spermine on OVA absorption after oral

administration

The effects of aspirin and spermine on plasma concentrations of OVA were evaluated after

oral administration in rats (Fig 1). The peak plasma concentrations (Cmax) and the area under

the concentration–time curves from 0 h to 3 h (AUC0–3 h) of OVA are summarized in Table 1.

In vehicle-treated (control) rats, oral OVA was absorbed into the blood gradually over time

and reached a Cmax of 0.81 ± 0.09 ng/ml at 1.5 h after gavage. Aspirin increased the OVA

absorption in a dose-dependent manner; that is, low-dose aspirin (3 mg/kg) did not affect the

plasma concentration of OVA, whereas high-dose aspirin (30 mg/kg) increased the Cmax and

AUC0-3 h by ~2.3-fold and ~3.4-fold, respectively, compared with the values observed in con-

trol rats (Fig 1A and Table 1). Spermine increased the Cmax and the AUC0-3 h by ~2.8-fold and

~4.0-fold, respectively (Fig 1B and Table 1).

Effects of aspirin and spermine on oral sensitization to OVA

Plasma levels of OVA-specific IgE and IgG1 Abs were determined to evaluate the effects of

aspirin and spermine on oral sensitization (Figs 2 and 3). When OVA was orally administered

to rats every other day for 8 weeks, plasma levels of OVA-specific IgE Ab were increased at 2

weeks after initiation of sensitization (Figs 2A and 3A). Then, the elevated plasma levels of

OVA-specific IgE Ab gradually decreased over time. The plasma levels of OVA-specific IgG1

Ab were also elevated in vehicle-treated rats, but the increase was slower than that of IgE Ab

(Figs 2B and 3B). Low-dose aspirin exerted no significant effects on the plasma levels of OVA-

specific IgE and IgG1 Abs (Fig 2). High-dose aspirin increased the plasma levels of OVA-spe-

cific IgE Ab after 8 weeks of treatment. Plasma levels of OVA-specific IgG1 Ab were also

increased by high-dose aspirin at 6 and 8 weeks, although the difference was not statistically

significant. In contrast, spermine did not affect the plasma level of either OVA-specific IgE or

IgG1 Abs (Fig 3).

Effects of NSAIDs on oral sensitization to OVA

To evaluate the involvement of selective COX inhibition by NSAIDs in the oral sensitization to

OVA, diclofenac, indomethacin, and meloxicam were tested. In diclofenac-treated rats, at 8

weeks, the plasma levels of OVA-specific IgE Ab were higher than those in control rats (Fig

4A), and the plasma levels of IgG1 Ab tended to be higher than those in control rats (Fig 4B).

Indomethacin significantly increased the plasma levels of both OVA-specific IgE and IgG1

Abs, whereas meloxicam did not affect the Ab levels (Fig 4).

were repeated every other day for 8 weeks. Plasma levels of OVA-specific IgE (A) and IgG1 (B) Abs in rats were measured by ELISA. The optical

densities measured at 450 nm in 10-fold- or 30,000-fold-diluted plasma are shown. Bars represent the mean values of eight to nine rats. �P< 0.05

compared with the Control group.

https://doi.org/10.1371/journal.pone.0226165.g002
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Fig 3. Effects of spermine on oral sensitization to OVA in rats. Vehicle alone [phosphate-buffered saline (pH 7.4), Control] was

administered 30 min before oral administration of OVA at a dose of 50 mg/animal. Spermine (Spm, 5 mg) was orally administered with
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Discussion

Previous reports have shown that aspirin induced and exacerbated allergic symptoms by pro-

moting absorption of ingested allergens in rats and patients with IgE-mediated food allergies

[7–9,11]. However, there are no reports regarding the effect of aspirin on the sensitization to

ingested allergens. In this study, we showed that aspirin, diclofenac, and indomethacin

enhanced the oral sensitization to OVA in rats.

In clinical settings, aspirin is used as an anti-inflammatory and anti-coagulant agent at

doses of 0.5–1.5 g and 0.1–0.3 g, respectively. According to US Food and Drug Administration

guidelines, these doses in humans correspond to 62–186 mg/kg and 12.4–37.2 mg/kg in rats,

respectively [12]. In this study, aspirin was administered to rats at a dose of 30 mg/kg and 3

mg/kg. Similarly, diclofenac, indomethacin, and meloxicam are orally administered in clinical

settings at doses of 25–100 mg, 25–75 mg and 10–15 mg, respectively. These doses in humans

correspond to 3.1–12.4 mg/kg, 3.1–9.3 mg/kg and 1.24–1.86 mg/kg in rats, respectively [12].

In this study, diclofenac, indomethacin, and meloxicam were administered to rats at doses of

1.5 mg/kg, 3 mg/kg and 0.3 mg/kg, respectively. Thus, the doses of NSAIDs used in this study

may have been smaller, but not significantly smaller, than those used clinically.

Aspirin enhanced the absorption of ingested OVA in a dose-dependent manner (Fig 1A).

In this study, the plasma concentrations of OVA were determined by a sandwich ELISA, indi-

cating that both intact and/or partially digested OVA might be detected in plasma. We previ-

ously demonstrated that OVA were absorbed from intestine as an intact form in the presence

of protease inhibitors using in situ intestinal perfusion technique [5]. In addition, aspirin elic-

ited and/or exacerbated the allergic symptoms by increasing oral absorptions of OVA [9].

These reports suggested that aspirin could enhance the oral absorption of OVA as an intact

form at least partly. Furthermore, we previously reported that aspirin facilitated the permeabil-

ity of macromolecules including OVA following impairment of the paracellular pathway [4,5].

Several reports have shown that aspirin induced intestinal barrier disruption due to the sup-

pression of prostaglandin production by inhibiting COX-1 [13], oxidative stress [14], and/or

modulation of tight junctional proteins [15,16]. Our previous report showed that diclofenac, a

non-selective COX-1 and COX-2 inhibitor, facilitated the absorption of the egg-white allergen

lysozyme, but meloxicam, a preferential COX-2 inhibitor, exerted no effects on its absorption

[4]. In addition, coadministration of misoprostol (a synthetic prostaglandin-E1 analog) with

aspirin ameliorated the aspirin-facilitated absorption of lysozyme to the same extent as that

observed in untreated rats. Louis et al. [17] and Isobe et al. [18] reported that indomethacin (a

preferential COX-1 inhibitor) increased OVA absorption. These results may suggest that aspi-

rin facilitates the absorption of ingested allergens as a result of reduced prostaglandin produc-

tion via inhibition of COX-1. Similar to aspirin, spermine increased the absorption of ingested

OVA (Fig 1B). The mechanism of by which spermine facilitates OVA absorption is not

completely understood. Sugita et al. reported that spermine increased the oral absorption of

macromolecules such as dextran without causing severe epithelial damage [19]. They also sug-

gested that interaction of the positively charged amino groups of spermine with the negative

membrane components might influence intestinal permeability to macromolecules. Thus, the

mechanisms for enhanced OVA absorption may be different between aspirin and spermine.

However, Sugita et al. also showed that coadministration of OVA and spermine increased in

plasma histamine levels, as well as OVA absorption, in mice sensitized with OVA compared

OVA (50 mg/kg) simultaneously. These oral immunizations were repeated every other day for 8 weeks. Plasma levels of OVA-specific IgE

(A) and IgG1 (B) Abs in rats were measured by ELISA. The optical densities measured at 450 nm in 10-fold- or 30,000-fold-diluted

plasma are shown. Bars represent the mean values of six to eight rats.

https://doi.org/10.1371/journal.pone.0226165.g003
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Fig 4. Effects of various NSAIDs on oral sensitization to OVA in rats. Vehicle alone [phosphate-buffered saline (pH 7.4), Control] or vehicle containing

diclofenac (Dic, 1.5 mg/kg), indomethacin (Ind, 3 mg/kg), or meloxicam (Mel, 0.3 mg/kg) was administered 30 min before oral administration of OVA at a dose
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with oral administration of OVA alone [20]. Thus, we consider that both spermine and aspirin

could enhance the oral absorption of OVA as an intact form at least partly.

Aspirin enhanced the oral sensitization to and oral absorption of OVA in a dose-dependent

manner (Fig 2). However, spermine did not affect oral sensitization to OVA, although it facili-

tated OVA absorption (Fig 3). These results suggest that enhanced oral sensitization to OVA

cannot be ascribed only to increased absorption of OVA from the intestinal tract. The mecha-

nisms underlying the aspirin-facilitated oral sensitization to OVA are not clear at present.

However, two possible hypotheses may explain this finding. Dhuban et al. [21] reported that

the proportion of interleukin (IL)-17-producing CD4+ T cells (Th 17) in children with food

allergy is significantly lower than that in healthy subjects by flow cytometric analysis of CD4

+ T cells. Moon et al. reported that aspirin inhibited the production of IL-17 from lung T cells

as well as the in vitro Th17 cell polarization induced by IL-6 in a mouse model of asthma [22].

They also reported that aspirin could transform the adenosine receptors-mediated Th17-type

cells into Th2-type inflammatory cells in the lung via the upregulation of adenosine and uric

acid productions in the surrounding inflammatory cells [23]. Furthermore, there was one

report that prostaglandin E2 can directly promote the differentiation and proinflammatory

functions of human and murine Th17 cells [24]. Thus, aspirin might impair Th17 polarization,

which controls the sensitization to allergens. In addition to IL-17, some cytokines, including

thymic stromal lymphopoietin (TSLP), IL-33 and IL-25, are key factors for the development of

allergic diseases, such as asthma and skin atopic dermatitis, that act by promoting Th2-type

responses [25–30]. These cytokines are released from epithelial cells of the intestine and lung

and keratinocytes activated by stimulation with allergens, cytokines, and protease [31,32].

Thus, aspirin might increase the oral sensitization to OVA by inducing these cytokines follow-

ing impairment of intestinal epithelial cells. Furthermore, it has been reported that some leu-

kotrienes (LTs) including cysteinyl LTs, LTB4 and LTC4 caused allergic sensitization via

promotion of IL-33 in lung [33,34]. Thus, aspirin might also enhance the oral sensitization to

OVA, resulting from increasing leukotriene production by COX inhibition. Further studies

are necessary to elucidate the factors that affect the aspirin-facilitated sensitization to food

allergens.

In conclusion, we demonstrated that a clinical dose of aspirin enhanced oral sensitization

to OVA in a rat food-allergy model. Our study suggests that enhanced oral sensitization to

OVA cannot be ascribed to increased absorption of OVA from the intestinal tract. Although

the mechanisms underlying this enhancement of sensitization are still controversial, our study

suggests that modification of cytokine production due to impairment of the intestinal barrier

function and inhibition of cyclooxygenase-1 activity by aspirin may be involved. These find-

ings shed new light on the pathophysiological mechanisms underlying the effects of medica-

tion on oral sensitization to food allergens.
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