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Recent work has indicated the potential utility of automated language analysis for

the detection of mild cognitive impairment (MCI). Most studies combining language

processing and machine learning for the prediction of MCI focus on a single language

task; here, we consider a cascaded approach to combine data from multiple language

tasks. A cohort of 26 MCI participants and 29 healthy controls completed three language

tasks: picture description, reading silently, and reading aloud. Information from each

task is captured through different modes (audio, text, eye-tracking, and comprehension

questions). Features are extracted from each mode, and used to train a series of

cascaded classifiers which output predictions at the level of features, modes, tasks,

and finally at the overall session level. The best classification result is achieved through

combining the data at the task level (AUC = 0.88, accuracy = 0.83). This outperforms

a classifier trained on neuropsychological test scores (AUC = 0.75, accuracy = 0.65) as

well as the “early fusion” approach to multimodal classification (AUC = 0.79, accuracy

= 0.70). By combining the predictions from the multimodal language classifier and the

neuropsychological classifier, this result can be further improved to AUC = 0.90 and

accuracy = 0.84. In a correlation analysis, language classifier predictions are found to

be moderately correlated (ρ = 0.42) with participant scores on the Rey Auditory Verbal

Learning Test (RAVLT). The cascaded approach for multimodal classification improves

both system performance and interpretability. This modular architecture can be easily

generalized to incorporate different types of classifiers as well as other heterogeneous

sources of data (imaging, metabolic, etc.).

Keywords: mild cognitive impairment, language, speech, eye-tracking, machine learning, multimodal, early

detection

1. INTRODUCTION

Mild cognitive impairment (MCI) describes a level of cognitive decline characterized by a clinically
observable deficit in at least one cognitive domain, but which does not interfere significantly with
a person’s ability to complete the activities of daily living (Gauthier et al., 2006; Reisberg and
Gauthier, 2008). While not everyone with MCI will go on to develop dementia, they are at a greater
risk of doing so than the general population (Ritchie and Touchon, 2000). For this reason, it is
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important to identify these early stages of cognitive decline. There
is also increasing evidence that pharmaceutical intervention may
be most effective at the milder stages of dementia, before massive
neuropathology has occurred (Posner et al., 2017). Identifying
individuals in the early stages of dementia is important for
clinical trials to test such a hypothesis.

Language tasks have been shown to be sensitive to subtle
cognitive deficits (Taler and Phillips, 2008). Due to the time-
consuming nature of traditional language analysis, there has
been growing interest in the potential application of machine
learning technology to help detect cognitive impairment from
speech samples. For example, Roark et al. (2011) employed
machine learning to distinguish participants with MCI and
healthy controls on the basis of an automated analysis of the
Wechsler Logical Memory test. Tóth et al. (2015) used support
vector machine and random forest algorithms to classify MCI
and control participants based on acoustic features derived from
a sequence of three narrative speech samples; follow-up work
by Gosztolya et al. (2019) additionally incorporated linguistic
features, and found that semantic measures and features relating
to memory problems were most effective in characterizing the
groups. Mirheidari et al. (2017) used automated conversation
analysis in the differential diagnosis of participants with mild
cognitive difficulties due to neurodegenerative disorders and
those with functional memory disorders, finding both non-
verbal and semantic cues to be highly predictive. König et al.
(2018a) presented an automated method for analyzing the
semantic verbal fluency task, and showed that the extracted
features could be used to train a machine learning classifier
to distinguish between participants with MCI, dementia, and
healthy controls. The availability of automated tools for natural
language processing, speech analysis, and eye-tracking make it
possible to conduct detailed assessment of language production
and reception, with minimal need for manual annotation.

In this paper, we propose a multimodal approach to detecting
MCI, by combining information from three different language-
based tasks (one speech production task and two reading tasks),
each of which is observed via at least two different modalities, or
modes (audio, text, eye-tracking, and comprehension questions).
By integrating information from these different sources, we aim
to more accurately distinguish between people with MCI and
healthy controls. Additionally, we investigate the predictions
made by the classifier at the level of individual modes and
tasks, and compare them with standardized neuropsychological
test scores.

2. RELATED WORK

The discovery of non-invasive biomarkers to detect early
stages of cognitive decline in Alzheimer’s disease (AD) and
related dementias is a significant challenge, and conventional
neuropsychological tests may not be sensitive to some of the
earliest changes (Drummond et al., 2015; Beltrami et al., 2018).
One potential alternative to conventional cognitive testing is the
analysis of naturalistic language use, which can be less stressful
(König et al., 2015), more easily repeatable (Forbes-McKay

et al., 2013), and a better predictor of actual functional ability
(Sajjadi et al., 2012). We briefly review the relevant findings
with respect to language production and reception in MCI and
early-stage AD.

2.1. Narrative Speech Production in MCI
Spontaneous, connected speech may be affected in the earliest
stages of cognitive decline, as speech production involves the
coordination of multiple cognitive domains, including semantic
memory, working memory, attention, and executive processes
(Mueller et al., 2018), activating numerous areas on both sides of
the brain (Silbert et al., 2014). We summarize the previous work
examining language and speech in MCI, as well as any reported
correlations with cognitive test scores.

The sensitivity of narrative speech analysis to MCI may
depend to some extent on the nature of the production task,
as different tasks impose different sets of constraints (Boschi
et al., 2017). Picture description tasks are the most relevant
to our protocol. Cuetos et al. (2007) used the Cookie Theft
picture description task from the Boston Diagnostic Aphasia
Examination (BDAE) (Goodglass et al., 1983) to elicit speech
samples from asymptomatic, middle-aged participants with and
without the E280A mutation (which inevitably leads to AD).
They found a significant reduction in information content in the
carrier group. Ahmed et al. (2013) also analyzed Cooke Theft
picture descriptions, and reported deficits in various aspects of
connected speech in 15 MCI participants who later went on to
develop AD. Impairments were observed in speech production
and fluency, as well as syntactic complexity and semantic content.
Mueller et al. (2017) analyzed Cookie Theft speech samples from
264 English-speaking participants at two time points, and found
that individuals with early MCI (n = 64) declined faster than
healthy controls on measures of semantic content and speech
fluency. Measures of lexical diversity and syntactic complexity
did not differ significantly between the groups. Drummond
et al. (2015) reported an increased production of repetitions and
irrelevant details from MCI participants (n = 22) on a task that
involved constructing a story from a series of images. However,
other work has found no significant differences between MCI
and control participants on either verbal (Bschor et al., 2001)
or written (Tsantali et al., 2013) Cookie Theft narratives. Forbes-
McKay and Venneri (2005) found that while picture description
tasks in general can be used to discriminate pathological decline,
highly complex images are more sensitive to the earliest stages
of decline.

Other work has specifically examined the acoustic properties
of speech in MCI and dementia. Temporal and prosodic changes
in connected speech are well-documented in AD, including
decreased articulation rate and speech tempo, as well as increased
hesitation ratio (Hoffmann et al., 2010), reduced verbal rate
and phonation rate, and increased pause rate (Lee et al., 2011),
and increased number of pauses outside syntactic boundaries
(Gayraud et al., 2011). Spectrographic properties, such as number
of periods of voice, number of voice breaks, shimmer, and noise-
to-harmonics ratio have also been shown to exhibit changes in
AD (Meilán et al., 2014). There is evidence that these changes
might begin very early in the disease progression, including in
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the prodromal or MCI stages (Tóth et al., 2015; Alhanai et al.,
2017; König et al., 2018b).

Some correlations between characteristics of narrative speech
and neuropsychological test scores have been reported for AD
(Ash et al., 2007; Kavé and Goral, 2016; Kavé and Dassa, 2018),
however, fewer studies have examined possible correlations in the
MCI stage. Tsantali et al. (2013) found a significant correlation
between performance on an oral picture description task and the
Mini-Mental State Examination (MMSE) (Folstein et al., 1975),
in a population of 119 Greek participants with amnestic MCI,
mild AD, and no impairment. However, MMSE was more highly
correlated with other language tasks, including reading, writing,
sentence repetition, and verbal fluency.

Mueller et al. (2017) also examined the correlations
between measures of narrative speech and standardized
neuropsychological test scores, and found only weak correlations:
e.g., the correlations between the semantic factor and the Boston
Naming Test (Kaplan et al., 2001) and animal fluency task
(Schiller, 1947) were positive but not statistically significant.
As the authors point out, this may be due to the fact that
characteristics of “empty” spontaneous speech, such as an
increased production of pronouns, could reflect working
memory problems rather than purely semantic impairments
(Almor et al., 1999).

To summarize, while the findings with respect to narrative
speech production in MCI are somewhat mixed, on our Cookie
Theft picture description task we expect the MCI group to
show a reduction in semantic content and reduced speech
fluency, including a slower rate of speech and increased pausing.
Performance on the picture description task may be correlated
with scores on the Boston naming test and MMSE score.

2.2. Reading in MCI
Reading ability can be assessed in a variety of ways; for
example, through reading comprehension, analysis of speech
characteristics while reading aloud, and the recording of eye-
movements.We summarize the results with respect toMCI along
each of these dimensions.

Segkouli et al. (2016) found that when MCI participants were
given a paragraph to read and associated questions to answer,
they had fewer correct responses and longer time to complete
the task, relative to healthy controls. Tsantali et al. (2013) found
a strong correlation between MMSE score and the ability to
read and comprehend phrases and paragraphs, in participants
with amnestic MCI and mild AD. When comparing to healthy
controls, they found that reading comprehension was one of
the earliest language abilities to be affected in MCI. In a related
task, Hudon et al. (2006) examined 14 AD, 14 MCI, and 22
control participants on a text memory task, and found that both
MCI and AD participants were impaired on the recollection of
detail information and recalling the general meaning of the text.
Chapman et al. (2002) reported a similar result, and a comparison
with the control and AD groups suggested that detail-level
processing is affected earlier in the disease progression. Results,
such as this are generally attributed to impairments in episodic
memory and a declining ability to encode new information,

which can be evident from the early stages of cognitive decline
(Belleville et al., 2008).

Further evidence for this hypothesis is given by Schmitter-
Edgecombe and Creamer (2010), who employed a “think-aloud”
protocol to examine the reading strategies of 23 MCI
participants and 23 controls during a text comprehension
task. This methodology revealed that MCI participants made
proportionally fewer explanatory inferences, which link
knowledge from earlier in the text with the current sentence
to form causal connections and promote comprehension and
understanding. The authors suggest that this could indicate
difficulties accessing and applying narrative information stored
in episodic memory. They administered a series of true-false
questions after each text, and found that MCI participants tended
to answer fewer questions correctly, and that comprehension
accuracy in the MCI group was correlated with the Rey Auditory
Verbal Learning Test (RAVLT) of word learning, as well as
RAVLT immediate and delayed recall.

Recent work has used eye-tracking technology to examine
reading processes in greater detail. For example, Fernández
et al. (2013) recorded the eye movements of 20 people with
mild AD and 20 matched controls while they read sentences.
They found that the AD patients had an increased number
of fixations, regressions, and skipped words, and a decreased
number of words with only one fixation, relative to controls.
In related work, Fernández et al. (2014) found that participants
with mild AD showed an increase in gaze duration. Lueck
et al. (2000) similarly reported more irregular eye movements
while reading in their mild-moderate AD group (n = 14), as
well as increased regressions and longer fixation times. Biondi
et al. (2017) used eye-tracking data in a deep learning model to
distinguish between AD patients and control participants while
reading sentences and proverbs. Previous work from our group
examined a similar set of features, extending this finding to
MCI (Fraser et al., 2017). More generally, Beltrán et al. (2018)
propose that the analysis of eye movements (in reading, as well as
other paradigms) could support the early diagnosis of AD, and
Pereira et al. (2014) suggest that eye movements may be able
to predict the conversion from MCI to AD, as eye-movements
can be sensitive to subtle changes in memory, visual, and
executive processes.

When texts are read aloud, the speech can also be analyzed
from an acoustic perspective, in a similar manner to spontaneous
speech. De Looze et al. (2018) found that participants with
MCI and mild AD generally read slower, with shorter speech
chunks relative to controls, and a greater number of pauses and
dysfluencies. Segkouli et al. (2016) also observed a reduction
in speech rate, reporting a significant positive correlation
between the time taken to complete the paragraph reading
comprehension task, and the time taken to complete a variety of
neuropsychological tests.

Other work has reported increased difficulty in reading
words with irregular grapheme-to-morpheme correspondence
(i.e., surface dyslexia) in AD (Patterson et al., 1994), although
this finding is not universal (Lambon Ralph et al., 1995). A
longitudinal study of AD participants concluded that these
kinds of surface reading impairments are only significantly
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correlated with disease severity at the later stages of the disease
(Fromm et al., 1991).

In our study, then, we expect that MCI participants will not
have difficulty producing the words associated with the texts, but
they may read slower and produce more pauses and dysfluencies.
MCI participants are expected to answer fewer comprehension
questions correctly, as declines in working and episodic memory
affect their ability to integrate and retain information from the
texts. Their eye movements may show similarities to those of
mild AD patients, with an increase in fixations, regressions, and
skipped words, and longer gaze duration, although possibly to a
lesser extent than has been reported in AD.

2.3. Multimodal Machine Learning for MCI
Detection
The essential challenge of multimodal learning is to combine
information from different sources (i.e., modalities, or modes)
to improve performance on some final task, where those
information sources may be complementary, redundant, or even
contradictory. Traditionally, approaches to multimodal learning
have been broadly separated into the two categories of early (or
feature-level) fusion and late (or decision-level) fusion, although
hybrid approaches also exist (Baltrusaitis et al., 2018). In early
fusion, features extracted from different modes are concatenated
into a single feature vector, and used to train a classifier. One
advantage to this approach is that, depending on the classifier,
it can be possible to model relationships between features from
different modes. In late fusion, a separate classifier is trained for
eachmode, and the predictions are then combined, often through
a process of voting. One advantage of the late fusion approach is
that it avoids the high-dimensional feature space resulting from
early fusion, which canmake it more appropriate for smaller data
sets. Late fusion also offers more flexibility, e.g., the ability to use
different classification models for each mode (Wu et al., 1999).

Multimodal learning has been applied to a variety of natural
language processing (NLP) tasks, including audio-visual speech
recognition (Potamianos et al., 2003), emotion and affect
recognition (Schuller et al., 2011; Valstar et al., 2013; D’Mello
and Kory, 2015), multimedia information retrieval (Atrey et al.,
2010), and many others. With respect to dementia detection,
multimodal approaches have been most effective in the medical
imaging domain, where such methodologies have been used to
combine information from various brain imaging technologies
(Suk et al., 2014; Thung et al., 2017). For example, work from
Beltrachini et al. (2015) andDeMarco et al. (2017) has shown that
the detection of MCI can be improved when combining features
from MRI images with cognitive test scores in a multimodal
machine learning classifier, compared to learning from either
data source individually.

However, previous NLP work on detectingMCI and dementia
has typically focused on language production elicited by a single
task, such as picture description (Fraser et al., 2016; Yancheva
and Rudzicz, 2016), story recall (Roark et al., 2011; Lehr et al.,
2013; Prud’hommeaux and Roark, 2015), conversation (Thomas
et al., 2005; Asgari et al., 2017), or tests of semantic verbal fluency

(Pakhomov and Hemmy, 2014; Linz et al., 2017). In cases where
more than one speech elicitation task has been considered, the
approach has typically been to simply concatenate the features in
an early fusion paradigm.

For example, Toth et al. (2018) consider three different speech
tasks, concatenating speech-based features extracted from each
task for a best MCI-vs.-control classification accuracy of 0.75.
They do not report the results for each task individually, so it
is not possible to say whether one task is more discriminative
than the others. In a similar vein, König et al. (2018b) combine
features from eight language tasks into a single classifier, and
distinguish between MCI and subjective cognitive impairment
with an accuracy of 0.86, but include only a qualitative discussion
of the relative contributions of each of the tasks to the final
prediction. Gosztolya et al. (2019) use a late fusion approach
to combine linguistic and acoustic features for MCI detection;
however, the data from their three tasks was again merged into
a single feature set for each mode, obscuring any differences in
predictive power between the tasks.

2.4. Hypotheses
Previous work has found that speech, language, eye-movements,
and comprehension/recall can all exhibit changes in the early
stages of cognitive decline. Furthermore, tasks assessing these
abilities have been successfully used to detect MCI using machine
learning. However, to our knowledge there has been no previous
work combining information from all these various sources, and
the few studies in the field which have explored multimodal
classification have primarily focused on a single approach to
fusing the data sources. Additionally, there has been no prior
work attempting to link the predictions generated by a machine
learning classifier to standardized neuropsychological testing.
Thus, the two questions that we seek to answer in the current
study are:

1. Can we improve the accuracy of detection of MCI by

combining information from different modes and tasks,

and at what level of analysis is the information best

integrated? Our hypothesis is that combining all the available
information will lead to better performance than using any
single mode or task.

2. Do the predictions made by the machine learning classifier

correlate with participant scores on standard tests of

language and other cognitive abilities? Our hypotheses
are: (a) Neuropsychological tests which are timed will be
correlated with predictions based on the speech mode, which
also encodes timing information; (b) Neuropsychological tests
in the language domain will be correlated with predictions
based on the language mode; and (c) Predictions which
combine information from all modes and tasks will be
correlated with MMSE, which also involves many cognitive
domains. Since there is no previous work correlating eye-
movements while reading with cognitive test scores, we do not
generate a specific hypothesis for this mode, although we do
include it in the analysis.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 August 2019 | Volume 11 | Article 205

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Fraser et al. Cascaded Classifiers for MCI Detection

3. METHODS

We first describe the participants and the details of the language
tasks, then define the variables that are extracted from each
data mode (audio, text, eye-movements, and comprehension
questions). We then present the different machine learning
architectures and the details of the classification procedure.

3.1. Participants
The participants in this study were recruited from the
Gothenburg MCI Study, a longitudinal study investigating early
and manifest phases of different dementia disorders in patients
seeking medical care at a memory clinic (Wallin et al., 2016).
The Gothenburg MCI Study has been approved by the local
ethical committee review board (reference number: L091–99,
1999; T479–11, 2011); while the currently described study has
been approved with reference number (206–16, 2016). A total
of 31 MCI patients and 36 healthy controls (HC) were recruited
according to detailed inclusion and exclusion criteria, the details
of which can be found in Kokkinakis et al. (2017). Briefly,
these criteria specified that all participants should be in the age
range 50–79 years, speak Swedish as their first language and as
the only language before the age of 5 years, and should have
recent neuropsychological test results available as a result of
their participation in the Gothenburg MCI Study. Participants
were excluded if their cognitive impairment was due to some
cause other than neurodegenerative disease (e.g., stroke, brain
tumor), if they suffered from depression, substance abuse, serious
psychiatric impairment, or neurological disease, if they had a
history of reading impairment (e.g., dyslexia), or if they had
any uncorrected vision or hearing difficulties. Written, informed
consent was obtained from all participants.

In the current analyses, we included only participants who had
completed all three of the tasks (Cookie Theft, reading silently,
and reading aloud), which led to a final dataset comprising 26
MCI participants and 29 HC participants. Demographic data is
given in Table 1.

Through the Gothenburg MCI study, all participants were
assessed by a registered nurse, who administered a number of
cognitive tests and symptom checklists (Wallin et al., 2016). For
control participants (recruited primarily through information
sessions at senior citizens’ organizations), the assessment ruled
out any subjective or objective cognitive impairment. Participants
who had been referred to the memory clinic due to memory
complaints were assessed for their level of cognitive decline
according to the Global Deterioration Scale (GDS) (Auer and
Reisberg, 1997). This assessment included the Mini-Mental
Status Examination (MMSE), listed in Table 1, as well as the
Clinical Dementia Rating (Morris, 1997), Stepwise Comparative
Status Analysis (Wallin et al., 1996), and a short form of the
executive interview EXIT (Royall et al., 1992). Those participants
categorized as GDS stage 3 were included in the MCI group per
the original Petersen criteria (Petersen et al., 1999); participants
classified at any other stage were excluded from the current
analysis. According to standard clinical protocol, no biomarker
evidence was considered in the diagnostic criteria.

TABLE 1 | Demographic information and neuropsychological test scores, by

group (mean and standard deviation).

HC (n = 29) MCI (n = 26) Sig.

Age (years) 67.8 (7.7) 70.6 (5.8) *

Education (years) 13.3 (3.7) 14.3 (3.6) n.s.

Sex (F/M) 21/8 14/12 n.s.

MMSE (/30) 29.6 (0.6) 28.2 (1.4) ***

M
e
m
o
ry
/L
e
a
rn
in
g

RAVLT (total) 45.5 (11.1) 37.6 (10.7) *

RAVLT (delayed) 9.2 (3.6) 5.8 (3.5) ***

RAVLT (immediate) 9.5 (3.5) 6.1 (3.1) ***

RCF (3 min) 18.8 (5.1) 15.8 (6.8) n.s.

RCF (20 min) 18.6 (4.4) 14.3 (7.0) *

WLM (delayed) 21.9 (8.1) 16.0 (10.5) *

WLM (immediate) 25.8 (6.3) 21.3 (7.6) *

L
a
n
g
u
a
g
e

BNT 53.3 (4.6) 50.2 (7.6) n.s.

Verbal fluency (F-A-S) 47.2 (11.5) 43.6 (11.1) n.s.

Similarities 24.6 (4.7) 24.0 (5.2) n.s.

Token test (Part 5) 20.9 (1.4) 20.0 (1.8) n.s.

A
tt
e
n
tio

n

Digit span 13.1 (3.5) 12.4 (2.8) n.s.

Digit-symbol 62.9 (12.3) 54.2 (10.8) **

TMT A 34.1 (11.9) 39.5 (13.3) n.s.

TMT B 79.8 (32.9) 97.8 (49.4) n.s.

S
p
a
tia
l Block design 40.6 (9.5) 35.5 (12.2) n.s.

RCF (copy) 33.6 (2.4) 32.4 (3.4) n.s.

Silhouettes 22.4 (4.2) 19.3 (3.3) ***

E
xe

c
u
tiv
e

Letter-digit 9.5 (2.3) 8.7 (2.6) n.s.

PaSMO 68.2 (21.5) 86.8 (29.1) *

Stroop (trial 1) 13.2 (2.4) 14.6 (3.1) n.s.

Stroop (trial 2) 17.6 (3.4) 19.4 (5.4) n.s.

Stroop (trial 3) 24.1 (6.6) 27.6 (6.6) *

Stroop effect 1.8 (0.4) 1.9 (0.5) n.s.

∗ indicates p < 0.05, ∗∗ indicates p < 0.01, ∗ ∗ ∗ indicates p < 0.005.

All participants also completed a comprehensive
neuropsychological battery, the results of which are summarized
in Table 1. The neuropsychological test battery was administered
at the memory clinic by a licensed psychologist or a supervised
psychologist in training. The examination was performed in two
sessions of 1.5–2 h. The battery covered a range of cognitive
areas, including learning and memory (Rey Auditory Verbal
Learning Test, or RAVLT; Rey Complex Figure, or RCF, recalled
after 3 and 20 min; and Weschler Logical Memory subtest, or
WLM), language (Boston Naming Test, or BNT; verbal fluency
for letters F-A-S; Similarities subtest from the Wechsler Adult
Intelligence Scale, orWAIS; and the Token Test, part 5), attention
(WAIS Digit Span test; WAIS Digit-Symbol test; Trail-Making
Test, or TMT, forms A and B), visuo-spatial ability (WAIS Block
Design test; RCF copy; and Silhouettes subtest from the Visual
Object and Space Perception Battery), and executive function
(WAIS Letter-Digit subtest; Parallel Serial Mental Operations, or
PaSMO; and Stroop test). Note that none of these tests were used
in the diagnostic procedure described previously.

The protocol for the Gothenburg MCI study does not include
subtyping of MCI participants, and thus our analysis does not
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take into account any heterogeneity within our MCI population.
However, for the sake of interpretation, we did perform a
retrospective analysis of the subtype composition of our sample
based on the neuropsychological test scores, following the
methodology described in Göthlin et al. (2017). Four MCI
subtypes (aMCI-sd, amnestic single domain MCI; aMCI-md,
amnestic multi domain MCI; naMCI-sd, non-amnestic single
domain MCI; naMCI-md, non-amnestic multi domain MCI)
were calculated using neuropsychological test data, with normal
scores based on healthy control data and stratified by age group
(50–64 and 65–80 years), using a 1.5 standard deviation cut-off
for MCI. The subtypes were operationalized as follows: aMCI-sd:
at least onememory test score below the cut-off score and all non-
memory domain test scores above cut-off; aMCI-md: at least one
memory test score and one non-memory domain test score below
cut-off; naMCI-sd: at least one non-memory test score below cut-
off and all memory test scores above cut-off; naMCI-md: at least
two test scores below cut-off in any two non-memory domain
tests and all memory test scores above the cut-off score. Specific
cut-off scores are listed in Göthlin et al. (2017).

Of the 26 patients that were categorized as MCI using
the GDS algorithm, the neuropsych-based subtyping resulted
in: 3 patients categorized as aMCI-sd; 9 as aMCI-md; 5 as
naMCI-sd: and 3 as naMCI-md. Six patients did not fulfill the
neuropsychological test criteria (even though they fulfilled the
GDS criteria), and could therefore not be categorized into a
subtype using neuropsychological tests. Two of those six had
missing neuropsychological data, which could possibly explain
why these individuals did not fulfill the neuropsychological MCI
criteria. Two aMCI-sd and one naMCI-sd patients also had
missing data (not in the memory domain), which makes it
uncertain if these were truly “single domain” cases.

3.2. Data Collection
In a separate session, the participants completed the three tasks
that we consider here. This session took place in a quiet lab
environment at the University of Gothenburg. For the two
reading tasks, we used an EyeLink 1000 Desktop Mount with
monocular eye-tracking and a sampling rate of 1,000 Hz, with
a headrest for head stabilization. The participants read two short
texts, and after each they answered five comprehension questions.
The first text was read silently, while the second was read aloud.
In the reading aloud condition, the speech was recorded using
a H2n Handy recorder and the audio files were stored in WAV
format with a sampling rate of 44.1 kHz and 16-bit resolution.

Both reading texts were taken from the International Reading
Speed Texts (IReST), which is a collection of texts that is
available in 17 different languages. They are 146 words long
in Swedish, and were developed to be used as an evaluation
tool for impairments in vision or reading ability (Trauzettel-
Klosinski and Dietz, 2012). We chose to present complete
paragraphs (rather than individual sentences) to simulate a
more natural reading task, requiring the integration and
recollection of information from the beginning through to the
end of the paragraph.

Areas of interest (AOIs) were defined in the text, with each
word labeled as a separate AOI. Eye movements, such as saccades

and fixations, are then calculated with respect to the predefined
AOIs. Fixations occurring outside the AOIs are not considered in
this analysis.

The eye-tracker was calibrated for each participant, and drift-
corrected between Trials 1 and 2. However, visual inspection of
the data revealed a tendency for downward drift, particularly in
the second trial. This was corrected manually, where necessary,
to the degree agreed upon by two of the authors (KF and KL).

Participants also described the Cookie Theft picture, which is
widely used to elicit narrative speech (Goodglass et al., 1983).
The stimulus image shows a boy standing on a stool, trying to
reach a cookie jar which sits on a high shelf. A girl stands nearby,
and a woman washes dishes at the sink and gazes distractedly
out the window. Participants were asked to describe everything
they saw in the picture, and to talk for as long as they liked.
The narratives were recorded and later manually transcribed
by a professional transcriber, according to a detailed protocol
developed by the authors.

3.3. Feature Extraction: Sessions, Tasks,
Modes, and Features
To avoid confusion, we will refer to the different levels of data
analysis using the following terminology (see Figure 1): Each
participant takes part in a data-collection session. Each session
consists of three tasks: the picture description task, the silent
reading task, and the verbal reading task. Information about
each task is captured through different modes: for the picture
description, we consider the speech signal and the transcript of
the words that were produced, when reading silently we consider
the eye-movements and the responses to the comprehension
questions, and when reading aloud we consider the eye-
movements, the comprehension questions, and the speech signal.
Each mode is represented by a set of variables, or features.
The features are motivated by the related work, and described
in the following tables: language features are given in Table 2,
speech features in Table 3, eye-movement features in Table 4,
and comprehension features in Table 5. The feature values for
each mode are stored in a feature vector, which constitutes the
input the machine learning classifier.

3.4. Classification
The goal of the classification experiments is to predict the
diagnosis (or “class”) of a participant (MCI or HC), based
on the feature vectors. The question at hand is how to best
combine the seven feature vectors described in Figure 1. We
propose several possible architectures in Figures 2, 3. In these
schematics, a box labeled “ML” represents a generic machine
learning classifier, which takes a feature vector as input, and
outputs a prediction y, where y is a score between 0 and 1,
representing a probability estimate that the feature vector came
from a control participant (coded as 0) orMCI participant (coded
as 1). The final classification is obtained by thresholding this score
(default threshold: 0.5).

In the early fusion paradigm, which we will call feature
fusion, the feature vectors from each mode for every task are
concatenated into a single long vector for each participant, and
one classifier is trained to predict the output class (Figure 2).
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FIGURE 1 | The different levels of analysis in the multimodal dataset.

TABLE 2 | Language features (26 features).

Total words is the total number of words produced (excluding filled pauses, unintelligible words, and false starts) (1 feature).

Mean length of sentence (MLS) is the total number of words in the narrative divided by the number of sentences (1 feature).

Phrase type proportion is derived from work on rating the fluency of machine translations (Chae and Nenkova, 2009). The phrase type proportion is the total number

of words belonging to a given phrase type (here prepositional phrases, noun phrases, and verb groups), divided by the total number of words in the narrative. We

additionally extend this feature to apply to clauses; namely main finite clauses, main infinitive clauses, and subordinate clauses (6 features).

Part-of-speech ratios are computed for: the ratio of nouns to verbs, the ratio of pronouns to nouns, the ratio of determiners to nouns, and the ratio of open-class

words to closed-class words (4 features).

Proportion of verbs in the present tense is computed as a proxy for discourse type as presented in Drummond et al. (2015), distinguishing between a descriptive

style (mostly present tense) vs. narrative style (mostly past tense) (1 feature).

Median word frequency is estimated according to the modern Swedish section of the Korp corpus (Borin et al., 2012) (1 feature).

Type-token ratio (TTR) is calculated by dividing the number of unique word types by the total number of tokens in the narrative (1 feature).

Information unit counts are computed for each of the information unit categories listed in (Croisile et al., 1996); namely, the three subjects, eleven objects, two
places, and seven actions. These counts are extracted using a keyword-spotting method with some manual correction. The total count for each category is then

normalized by the total number of words in the narrative (4 features).

Content density and content efficiency are computed by counting the total number of information units mentioned (including repetitions) and dividing by the total

number of words and the total time, respectively (2 features).

Propositional density is calculated by taking the ratio of propositions (verbs, adjectives, adverbs, prepositions, and conjunctions) to total number of words (Mueller

et al., 2017) (1 feature).

Dysfluency marker counts are computed by counting the number of filled pauses, false starts, and incomplete sentences, each normalized by total number of

words. An overall dysfluency index is also computed by summing the counts from the three categories and dividing by the total number of words (4 features).

Three different options for late fusion are shown in Figure 3.
In the mode fusion configuration, a separate classifier is trained
for each mode, for each task. This results in seven different
probability scores, which are averaged to produce the final
prediction. We can also assess the accuracy of each individual
classifier, to observe which modes are the most predictive.

In the task fusion configuration, the outputs (probability
scores) of the mode-level classifiers are fed into the next layer
of task-level classifiers. The task-level classifiers again output
probability scores, which are averaged to produce the task-level

prediction.We can now evaluate the accuracy of the classification
for each task, as well as each mode within a task.

In the final configuration, the outputs from the task-level
classifiers are now used to train a final, session fusion classifier.
In this set-up, probability estimates are available at all levels
of analysis.

For this study, we implement each general architecture with
both logistic regression (LR) and support vector machine (SVM)
classifiers, using Python and scikit-learn (Pedregosa
et al., 2011). Our expectation is that if the results are
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TABLE 3 | Speech features (12 features).

Syllable count: Number of syllables produced by the speaker, as estimated using the Praat script of De Jong and Wempe (2009) (1 feature).

Pause count: Number of pauses longer than 150 ms (1 feature).

Duration: Total duration of the speech sample (1 feature).

Phonation time: Total duration of time spent in speech (i.e., excluding silent pauses) (1 feature).

Proportion of time spent speaking: Phonation time divided by total duration (1 feature).

Speech rate: Number of syllables, divided by total duration (1 feature).

Average syllable duration (ASD): Phonation time, divided by number of syllables (1 feature).

Pauses per syllable: Number of pauses, divided by total number of syllables (1 feature).

Pause rate: Number of pauses, divided by total duration (1 feature).

Pause duration (mean and s.d.): The mean and standard deviation of the duration of pauses >150 ms (2 features).

Maximum pause duration: Maximum pause length over all pauses in the sample (1 feature).

TABLE 4 | Eye-movement features (22 features).

Saccade amplitude (mean and s.d.): The mean and standard deviation of the amplitude of the saccades, averaged over all saccades in a trial (2 features).

Saccade distance (mean and s.d.): The mean and standard deviation of the number of words covered in a saccade, averaged over all saccades in a trial (2 features).

Regression amplitude (mean and s.d.): The mean and standard deviation of the amplitude of the regressions (saccades ending on an AOI that precedes the AOI

on which they started), averaged over all regressions in a trial (2 features).

Regression distance (mean and s.d.): The mean and standard deviation of the number of words covered in a regression, averaged over all regressions in a trial (2

features).

Max regression amplitude: Maximum amplitude of a regressive saccade (1 feature).

Max regression distance: Maximum number of words covered in a regressive saccade (1 feature).

Fixation count: The total number of fixations in a trial (1 feature).

First-pass first fixation count: The total number of first fixations occurring in the first pass of a trial. That is, a first-pass first fixation occurs when it is the first fixation

on the given word, and there have been no fixations on any words occurring later in the text (1 feature).

Later-pass first fixation count: The total number of first fixations occurring outside the first-pass of a trial. That is, a later-pass first fixation occurs when it is the first

fixation on the given word, but there have already been fixations on words occurring later in the text (1 feature).

Multi-fixation count: The total number of fixations on a word in the first-pass, excluding the first fixation. That is, a multi-fixation occurs when a word is fixated on

multiple times in the run which starts with a first-pass first fixation (1 feature).

Re-fixation count: The total number of fixations on a word outside the first pass, excluding the first fixation (1 feature).

Reading fixation count: Number of fixations occurring before the first visit to the last AOI in the text (1 feature).

Re-reading fixation count: Number of fixations occurring after the last AOI has been visited at least once (1 feature).

First-pass first fixation duration (mean and s.d.): The mean and standard deviation of the duration of the first-pass first fixations (2 features).

Wrap-up gaze duration (mean and s.d.): The mean and standard deviation of the gaze time on the last word in a sentence, which is typically longer than normal

gaze time, to allow extra time for semantic processing and integration (Payne and Stine-Morrow, 2014) (2 features).

Wrap-up ratio: Ratio of mean wrap-up gaze time to mean sentence-internal gaze time (1 feature).

TABLE 5 | Comprehension features (11 features).

Average accuracy: Proportion of questions that were answered correctly (1 feature).

Question correctness: For each of the five questions, a binary-valued feature indicating whether the question was answered correctly or incorrectly (5 features).

Question response time: For each of the five questions, the time (in ms) taken for the participant to read and respond to the question (5 features).

robust, we should see similar results with both types of
classifier. Because SVM classifiers do not output probability
scores directly, we use Platt’s method to generate probability
estimates from the decision function, as implemented in the
CalibratedClassifierCVmethod (Platt, 1999). While LR
is a linear model, with SVMwe allow for non-linear classification
by using the radial basis function (RBF) kernel. For both LR
and SVM, we use L2 regularization to help prevent over-
fitting. Because we want to combine the classifier scores in a
meaningful way, we do not optimize the regularization parameter

independently across classifiers; rather, we use the default setting
of C = 1.0 in all cases.

To evaluate classifier performance, our primary metric will
be the area under the receiver-operator characteristic curve
(henceforth simply AUC), which is commonly used as a measure
of discriminative ability for clinical tests. In all cases, we use a
leave-pair-out cross-validation strategy, which involves iterating
over the dataset such that every possible MCI-HC pair is held
out as the test set once, with the remaining samples used as the
training set. This alternative to leave-one-out cross-validation has
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FIGURE 2 | Fusion at the feature level (early fusion).

FIGURE 3 | Fusion at the mode, task, and session levels (late fusion).

been shown to produce an unbiased estimate for AUC on small
data sets (Airola et al., 2009), and has also been used in related
work (Roark et al., 2011; Prud’hommeaux and Roark, 2015). We
estimate AUC and its standard deviation using Equations (3) and
(4) from Roark et al. (2011). For the sake of completeness, we also
report accuracy, sensitivity (true positive rate), and specificity
(true negative rate).

As a baseline for comparison, we additionally train LR
and SVM classifiers using the neuropsychological test scores
as features. This allows us to compare the predictive ability
of our data with standardized psychometric tests. Since
these data are not multimodal, we simply consider the
standard classification approach here. Some participants are
missing some of the test scores; in these cases we use

feature imputation (sklearn.impute.SimpleImputer)
to handle the missing values.

4. RESULTS

We first present the classification results obtained at each
level of the cascaded classifier. We then examine the average
probability score assigned to each participant in our cohort,
and give an example of how the cascaded approach can
be used to provide explanations at various levels of analysis
for any given individual. Finally, we report correlations
between the classifier predictions and the neuropsychological
test scores.
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FIGURE 4 | Area under the ROC curve (AUC) for each classification configuration, estimated using leave-pair-out cross-validation. Error bars represent standard

deviation over each fold in the cross-validation. PD, picture description; RS, reading silently; RA, reading aloud.

4.1. Classification of MCI vs. Controls
The classification results for each mode and task classifier, as well
as the four fusion methods and the neuropsychological test score
baseline, are shown in Figure 4. There are several observations to
be made:

• Results are relatively classifier-independent. While the
results are not identical, the same patterns emerge using
LR and SVM, as expected. The only obvious discrepancies
occur in the speech mode. In both the picture description
and reading aloud tasks, the SVM classifier achieves
substantially better results than the LR classifier in the speech
mode, suggesting that the non-linear kernel confers some
benefit here.

• Within tasks, onemode dominates. In each of the three tasks,
the task-level AUC is essentially equivalent to the best mode-
level AUC within that task. Adding additional information
from the less-accurate mode(s) does not increase the overall
classifier performance on that task. This observation is
confirmed by examining the weights assigned to each of the
modes in the task-level classification: for LR, on average, the
picture description language mode is weighted 45.2 times
higher than the speech mode, the silent reading eye-tracking
mode is weighted 3.0 times higher than the comprehension
mode, and the verbal reading eye-tracking mode is weighted
44.0 times higher than the comprehension mode and 6.6
times higher than the speech mode. The benefit to this
phenomenon is that task-level classifiers are not negatively
impacted by unreliable information coming from mode-level
classifiers with poor predictive ability; the drawback is that
there is no boost to performance by combining potentially
complementary information.

• Mode informativeness varies across tasks. Looking at the
mode-level classifiers, we see that the speech signal leads
to better performance in the verbal reading task than the
picture description task, and both the eye-movements and
comprehension questions lead to better results in the silent
reading task than the verbal reading task.

• Within a session, the silent reading task is most predictive.
The picture description and verbal reading tasks result in
AUCS of 0.71 and 0.72, respectively (for both classifiers).
These values are comparable, but slightly worse, than the
baseline classifiers trained on the neuropsychological test
scores (LR AUC = 0.73 and SVM AUC = 0.75). However, the
silent reading task out-performs both the other tasks and the
baseline, with LR AUC = 0.82 and SVM AUC = 0.79.

• Task fusion leads to the best results. Both LR and SVM
achieve a maximum AUC of 0.88 in the task fusion paradigm,
although the error bars in this condition overlap with the
session fusion results. Note that the only difference between
these two paradigms are that in task fusion, the predictions are
combined in an unweighted average, while in session fusion,
the predictions from each task are weighted according to
the parameters learned by the top-level classifier. In the LR
classifier, we can observe that these learned weights are close
to 1.0 (i.e., equivalent to task fusion), with the silent reading
prediction being weighted on average only 1.2 timesmore than
the picture description and 1.3 times more than the verbal
reading prediction.

Accuracy, sensitivity, and specificity scores for each classifier are
given in Table 6. The best result for each column is highlighted in
boldface. Again, we observe that the best results are obtained by
combining the information from the different tasks and modes.
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TABLE 6 | Classification results for the baseline classifier trained on

neuropsychological test scores, followed by the results at each level of the

cascaded classifier.

AUC Accuracy Sensitivity Specificity

LR SVM LR SVM LR SVM LR SVM

Neuropsych. 0.73 0.75 0.62 0.65 0.53 0.56 0.70 0.74

PD: speech 0.31 0.40 0.46 0.51 0.09 0.15 0.83 0.87

PD: language 0.70 0.73 0.69 0.69 0.52 0.54 0.86 0.84

PD: combined 0.71 0.71 0.67 0.63 0.55 0.55 0.79 0.72

RS: eyes 0.82 0.81 0.72 0.72 0.70 0.66 0.75 0.79

RS: comp 0.60 0.58 0.57 0.58 0.40 0.41 0.73 0.75

RS: combined 0.82 0.79 0.70 0.68 0.68 0.65 0.72 0.72

RA: eyes 0.73 0.71 0.66 0.65 0.64 0.62 0.69 0.68

RA: comp 0.37 0.38 0.48 0.41 0.18 0.06 0.77 0.76

RA: speech 0.45 0.64 0.43 0.56 0.25 0.38 0.62 0.73

RA: combined 0.72 0.72 0.65 0.65 0.63 0.62 0.67 0.67

Feature fusion 0.79 0.77 0.69 0.70 0.74 0.70 0.64 0.71

Mode fusion 0.83 0.85 0.75 0.76 0.56 0.59 0.93 0.93

Task fusion 0.88 0.88 0.83 0.83 0.78 0.80 0.89 0.85

Session fusion 0.87 0.86 0.80 0.78 0.81 0.79 0.79 0.77

PD, picture description; RS, reading silently; RA, reading aloud. The best result for each

classifier and metric is indicated in boldface.

The improvement in performance over the neuropsychological
test score baseline is even more apparent when considering
classification accuracy, where the task fusion paradigm leads to
an accuracy of 0.83 in both cases, compared to 0.62 (LR) and 0.65
(SVM) with the standardized test scores.

The sensitivity and specificity metrics indicate the types of
errors made by the classifiers. For example, the comprehension
mode classifier of the reading aloud task has a sensitivity of only
0.06 in the SVM case, indicating that almost all MCI participants
were mis-classified as controls. The speech mode of the picture
description task also suffers from extremely low sensitivity. In
contrast, most classifiers have reasonable specificity, with the
lowest scores appearing in the verbal reading task, and the highest
scores in the mode fusion paradigm.

4.2. Prediction on an Individual Level
While it is most common to only report classification results
at the group level, it can be informative to examine the
predictions on an individual level as well. For each participant,
the probability of MCI according to the top-level session fusion
LR classifier, averaged across all cross-validation experiments,
is shown in Figure 5. At the extreme ends, most participants
assigned the highest and lowest probability of MCI are correctly
classified. The standard deviation is also smaller, indicating that
the classifiers’ estimates in those cases are more confident and
robust against small changes in the training data. In the middle
of the probability range, we see more mis-classifications and
bigger errors bars, suggesting greater uncertainty around these
predictions. Figure 5 also illustrates how the decision threshold
can be shifted up or down to change the sensitivity and specificity
of the classifier, depending on the practical application.

Figure 5 also reveals an unexpected error in the classification:
the classifier ranks an MCI participant (with ID GQ28) as the
least likely to have MCI in the entire dataset (this result is also
seen in the SVM case). This error case will be discussed in more
detail below.

Considering these false negatives in the context of our
retrospective subtyping analysis, we find that the five
misclassified participants shown in Figure 5 all come from
different groups: GQ28 is classified as naMCI-sd, 8ZMZ was
not assigned a subtype according to the neuropsychological
test scores, 2MDJ is classified as aMCI-sd, FAGL is classified as
aMCI-md, and 338H is classified as naMCI-md. From this we
conclude in general that the classifier is learning various patterns
of impairment and is not performing especially poorly on any
specific subtype.

4.3. Multi-Level Interpretation
When designing machine learning systems in a healthcare
context, high accuracy is typically a necessary but not
sufficient condition for an acceptable system; generally some
level of interpretability is also required. While the notion of
interpretability can be vague, and its evaluation requires careful
consideration (see Doshi-Velez and Kim, 2017 for a discussion),
Lipton (2016) suggests that two properties of interpretable
models are transparency and post-hoc interpretability. We briefly
and qualitatively discuss these properties in relation to themodels
considered here.

On the surface, the classifier outputs either a 0 (HC) or
1 (MCI) label for each participant. However, a benefit of the
cascaded approach is that individual-level predictions, such as
those shown in Figure 5, are available at every level. In that sense,
we are allowed to peer into the “black box” at various levels
of the prediction, allowing for post-hoc explanations of how the
classifier arrived at its final decision.

For our first example, we consider the output of the LR
classifier for participant 84BU, who was correctly identified as
having MCI. In addition to the binary 0/1 output, the system
might prepare an explanatory report, such as the following:
“This patient has an overall probability of 0.82 of having MCI.
While performance on the picture description was normal
[p(MCI) = 0.27], both reading tasks suggest a high probability
of impairment, with p(MCI) = 0.86 and p(MCI) = 0.89 for
reading silently and aloud, respectively. Specifically, the eye-
movements during the silent reading task suggest a possible
impairment [p(MCI) = 0.73].” If desired, the explanation could
even continue on to the level of the individual features at each
mode. Explanations of this nature increase the transparency of
the decision process.

In fact, the classifier trained on neuropsychological test scores
also classified this participant correctly; while the MMSE score
was 30/30, the detailed neuropsychological test battery revealed a
significant memory impairment.

We can take a similar approach to examine the error case
mentioned in the previous section. Participant GQ28 was
assigned a very low probability of MCI, despite actually
having that diagnosis. Every classifier in the cascaded
architecture assigned a probability of MCI <0.5, except for
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FIGURE 5 | Predictions made by the LR classifier using feature fusion, averaged across all test folds. The solid gray line indicates the default threshold of 0.5. By

changing the threshold, we can adjust the sensitivity and specificity of the classification; e.g., if the threshold is increased to 0.6 (upper dashed line), only one control is

mis-classified as MCI; if the threshold is decreased to 0.4 (lower dashed line), only four MCI patients are mis-classified.

the comprehension-level classifier in the silent reading task,
which assigned a score of p(MCI) = 0.67.

Examining the features, the only features which indicate
impairment are the reaction times, which are much slower for
this participant than in the control group. Interestingly, the
neuropsychology classifier also mis-classifies this participant, and
examining the test scores, it appears that the only tests on which
this participant scores abnormally (<1.5 standard deviations
below the mean) are the PaSMO and Token Test; on many
others the scores are in fact better than the control average.
In particular, this participant scores highly on all the memory
tests. This suggests a limitation of both the small dataset and
the classification scheme: if an impairment is small and atypical
(relative to the rest of the training set), then the signal may get
“out-voted” in the fusion process.

4.4. Correlation Between Classifier
Predictions and Neuropsychological Test
Scores
In the previous section, we examined the classifier outputs
for two MCI participants (one correctly classified and one
incorrectly classified), and on a surface level it appeared that
there may be some link between the classifier predictions and
neuropsychological testing performance. Such a relationship
could potentially be used to better ground the predictions in
clinical knowledge. In this section, we examine the correlations
between the neuropsychological test scores and the classifier
predictions, at the level of modes, tasks, and sessions.

Spearman correlations are computed between the average
probability scores produced by the LR classifier across the
cross-validation folds, and the test scores. We also compute
the correlation between each of the test scores and the actual
diagnosis, to determine which tests are in fact associated with
MCI status. In the classifier scores, a higher value always
indicates a higher probability of MCI, but in many of the
neuropsychological tests, a higher score indicates a lower
probability of MCI (e.g., a higher MMSE score is associated with
a lower probability of MCI). Therefore, to aid in interpretation,
we adjust the sign of the correlations involving such test scores
so that they are always positively correlated with MCI. The
correlation coefficients are given in Figure 6, and the tests for
which the signs were reversed are indicated with an asterisk.
In our discussion, we refer to the conventional thresholds for
correlation coefficients; namely, that values >0.5 indicate a
strong correlation, values >0.3 indicate a moderate correlation,
and values >0.1 indicate a weak correlation (Hemphill, 2003).

In general, the correlations between test scores and classifier
predictions are not particularly high. Some correlations are even
negative, suggesting that the classifier is making predictions that
contradict the neuropsychological tests. We now examine each of
our hypotheses from section 2.4.

Contrary to our expectation, the predictions based on speech
features in particular tend to be negatively correlated with test
scores, including those with a time component (PaSMO, TMT
A and B, verbal fluency, block design, digit-symbol, and the
Stroop measures).

Examining the correlations with the language mode, the only
correlation that exceeds 0.3 is with the Token Test (Part 5).
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FIGURE 6 | Spearman correlations between classifier predictions and neuropsychological test scores. PD, picture description; RS, reading silently; RA, reading aloud.

Asterisks indicate the sign has been flipped so that all test scores correlate positively with diagnosis.

The language mode predictions are weakly positively correlated
with BNT and weakly negatively correlated with the Letter
Fluency test.

With respect to the higher level predictions, we do see an
increasing correlation with MMSE at the level of task and
session fusion predictions, as hypothesized. However, the task-
and session-level scores are actually more highly correlated
with RAVLT immediate and delayed recall than with MMSE,
suggesting that the classifier predictions based on this particular
set of tasks are more associated with learning/memory ability
than overall cognitive ability. Specifically, scores from both of the
reading tasks are correlated with RAVLT immediate and delayed
recall, which is in line with the findings of Schmitter-Edgecombe

and Creamer (2010), and confirms the intuition that the reading
tasks in our protocol share similarities with existing standardized
recall tasks.

4.5. Combining Predictions From Linguistic
and Neuropsychological Data
The low correlations in the previous section would seem to
suggest that the language tasks and the neuropsychological tests
are capturing complementary information. Thus, it is reasonable
to think that by combining these information sources, we could
achieve even better classification performance. To investigate
this idea, we combined the probability score output from the
neuropsychological classifier with the probability scores from the
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picture description, reading aloud, and reading silently classifiers
(this corresponds to the “task fusion” paradigm, but with four
votes now instead of three). Fusing the information in this way
led to an increase in AUC from 0.88 to 0.90 for both SVM and LR.

5. DISCUSSION

5.1. Multimodal MCI Classification
Our classification results indicate that combining information
from multiple sources leads to better results, and that the
cascaded approach is superior to the early fusion baseline. Given
the small size of our dataset, this may be partly due to the
difficulty in training a classifier when the feature set size is
larger than the number of training samples, which is the case in
early fusion. The cascaded approach also permitted probability
estimates to be obtained at the level of each mode and task,
rather than a single, session-level probability. Our best overall
result was obtained in the task fusion configuration, with an
AUC of 0.88 and an accuracy of 0.83; while it is difficult to
draw exact comparisons across different cohorts, this compares
favorable with previous language-based machine learning studies
on detecting MCI, which reported AUC = 0.732 (when excluding
neuropsychological features) (Roark et al., 2011), AUC = 0.724
(Toth et al., 2018), AUC = 0.758 (König et al., 2018a), AUC
= 0.796 (Asgari et al., 2017), and AUC = 0.82 (Lehr et al.,
2013; Prud’hommeaux and Roark, 2015). However, it does not
exceed the accuracy of 0.86 reported by König et al. (2018b)
and Gosztolya et al. (2019) (AUC is not given in these cases).
Nonetheless, we consider it a promising result compared to the
alternative approaches in the literature.

Previous classification studies using the picture description
task have combined acoustic and linguistic features (Roark et al.,
2011; Fraser et al., 2016; Gosztolya et al., 2019). Here, we
found that the linguistic features led to much better results
than the speech-based features (AUC = 0.70–0.73, compared
to 0.31–0.40). One explanation for this may be that linguistic
features capture cognitive deficits more directly—for example,
features, such as word frequency and content density are directly
linked to semantic processing, which is known to deteriorate in
the early stages of cognitive impairment (Barbeau et al., 2012;
De Marco et al., 2017; Gosztolya et al., 2019). This finding is also
consistent with the conclusion of Mueller et al. (2017), based on
manual analysis of a much larger, longitudinal sample of MCI
patients, that “features of connected language are associated with
very early, sub-clinical declines in memory in late-middle age.”
Interestingly, the speech features were more predictive in the
classifier trained on the reading aloud task. This may be partially
due to the fact that the reading task is more constrained in length
and content (each participant reads the same text), and thus
the samples are easier to compare from an acoustic perspective.
However, as we will elaborate below, slowness on the reading
task may also reflect a deliberate strategy by MCI participants
to improve performance on the subsequent comprehension task,
rather than any actual impairment in reading ability.

In the previous work on reading in MCI, reductions in recall
and comprehension were reported (Hudon et al., 2006; Tsantali
et al., 2013; Segkouli et al., 2016), and attributed to difficulties

in episodic memory and the encoding of new information
(Belleville et al., 2008). Our results are somewhat ambiguous on
this point, as the classifiers trained on comprehension features
achieved a maximum AUC of 0.60 on the silent reading task,
and performed worse than random on the verbal reading task.
In fact, we note that there was no significant difference in
comprehension accuracy between the MCI and HC groups on
either reading task, although MCI participants tended to take
longer to answer the questions. Taking into account the multiple-
choice nature of the comprehension questions, similar results
have been reported in imaging studies: MCI patients showed no
difference relative to controls on recognition performance, but
with different underlying activation patterns in the prefrontal
cortex, suggesting the potential contribution of compensatory
activation (Clément et al., 2010).

Out of all the modes and tasks, eye-tracking during silent
reading had the most predictive power. One interesting result
is how much better the results on the silent reading task were
compared to the verbal reading task. Our proposed explanation
for this relates partly to our experimental protocol. In the
silent reading task, participants were instructed to read the text,
and tell the examiner when they were finished. Only when
they indicated that they were finished did the comprehension
questions appear. This allowed time, if necessary, to go back
and re-read any portions of the text which were unclear or
contained details to be remembered. This re-reading behavior
is captured in the eye-movements. In contrast, in the reading
aloud task, the participants simply read the text out loud, and
when they reached the end, the examiner switched to the next
screen, which displayed the comprehension questions. Thus, in
the reading aloud task, readers were constrained to keep reading
forward through the text as they read, and thenwere not given the
opportunity to employ a re-reading at the end. Therefore, there
were fewer differences in the eye-movement patterns between the
MCI and control participants.

Both re-reading (as captured in the eye-tracking mode) and
taking a longer time to consider the questions (as captured in the
comprehension mode) may represent deliberate, and apparently
effective, strategies by the MCI participants to achieve recall
performance on par with the healthy controls. Given the fact
that in the earliest stages of cognitive decline, performance on
many tasks will be at ceiling—especially among a highly-educated
cohort—these results suggest that in general there may be more
value in focusing on a process-oriented approach to automated
assessment (that is, observing the process by which a participant
arrives at a result) rather than simply considering the final
task performance.

5.2. Correlation Analysis
In general, we cannot draw a strong link between the probability
scores output by the classifier and the neuropsychological test
scores. Being able to do so would aid interpretability, as we could
place the predictions in the familiar context of standardized test
results. However, as we have discussed previously, producing
narrative speech and reading a paragraph of text are complex
cognitive tasks, and so a lack of clear correlation with more
targeted cognitive tasks is perhaps unsurprising. Mueller et al.
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(2017) reached a similar conclusion after finding only weak
correlations between cognitive test scores and performance
on the Cookie Theft task, noting that poor narrative speech
performance can be due to a number of factors other than
impairment specifically relating to language, including memory
deficits. Furthermore, we emphasize that the task of the classifiers
is only to predict MCI status, and thus features which are
highly correlated with specific test scores are not necessarily
given high weights in the model, unless they also correlate with
diagnosis. Given this, one possible avenue for future research
could be to build regression models from the same features,
with the specific objective of predicting scores on various
neuropsychological tests, as an intermediate step toward the
final classification.

5.3. Limitations and Future Work
One limitation of this work is the small sample size, which is
unfortunately typical of many such studies due to the effort and
expense of recruiting and assessing patients. We have attempted
to mitigate the issue of small data by using simple classifiers,
minimal optimization, and leave-pair-out cross-validation in
order to avoid potential overfitting. However, future work should
attempt to replicate these results in a bigger dataset with a wider
range of educational and cultural backgrounds.

MCI is a heterogeneous condition with varying etiologies,
and attempts to further characterize the cognitive impairments
in MCI have resulted in four clinical subtypes (Gauthier et al.,
2006). The participants in our study were not subtyped as part
of the diagnostic process, and thus we have a mixed MCI group.
While this can certainly lead to difficulties in machine learning
classification (as discussed in section 4.3), we also observed
that the false negatives produced by our multimodal classifier
each came from a different subtype (with one unknown),
suggesting that the classifier is generally able to handle the
multiple subtypes together. However, given a larger dataset,
future work should take into account these heterogeneities in
MCI presentation.

To achieve our goal of a fully-automated assessment platform,
there are many challenges still to address. Here, for example,
we relied on manual transcription of the Cookie Theft task, and
some features were extracted automatically and then corrected by
hand. The benefit to this approach is that we have high confidence
in the quality of our data. However, future work will examine the
use of automatic speech recognition and other technologies to
fully automate the processing pipeline. Additionally, this work
has demonstrated the predictive power of eye-tracking for MCI
detection, but we acknowledge that the equipment needed for
this analysis is not readily available in most clinical settings.
Again, future work will explore the use of emerging technologies
for tracking eye movements with web-cams and other portable
devices (Papoutsaki et al., 2016; Huang et al., 2017).

Previous research has reported mixed results on whether
the Cookie Theft picture description task is sensitive to very
early cognitive decline. In this study, we achieved moderate
results with this task, but future work will also include
additional language tasks which have been shown to detect
MCI. Specifically, we are currently collecting data from the

same cohort of participants using a semantic verbal fluency
task (animals), a trip-planning task, and a dialogue-based map
task. Our participants will also repeat the tasks described here,
which will allow a longitudinal analysis of language changes
in MCI and healthy aging. All participants will also return
to the memory clinic for a follow-up GDS assessment, which
will provide valuable information on disease progression and
possible conversion to dementia. Finally, in future work we plan
to incorporate MRI images and neurochemical biomarkers that
were collected as part of the Gothenburg MCI study, to better
understand the relationship between structural, chemical, and
behavioral changes in MCI.

6. CONCLUSION

There has been growing interest in the possibility of using
machine learning to detect early cognitive decline from speech
and language. Speaking and reading are naturalistic tasks that
can be easily repeated, but the manual analysis of such data can
be time-consuming and expensive. Automated feature extraction
and classification may aid in sensitive, longitudinal monitoring
of cognitive function. Previous work has generally focused
on a single language task; here, we present a framework for
combining the data from several tasks, each represented via
multiple modalities, to improve the discriminative performance
of the classifier. We demonstrate that using a cascaded approach
leads to the best result, and outperforms a classifier trained on
test scores from a neuropsychological battery, as well as themore-
commonly used early fusion method of multimodal learning. We
have argued that the cascaded approach also improves post-hoc
interpretability, as the probability estimates according to each
mode and task can be observed, along with the final classification.

We emphasize that while the current analysis focused
on language-based tasks, this architecture could be extended
to incorporate data from other tasks and modalities, such
as cognitive test scores, neuro-imaging, cerebrospinal fluid
biomarkers, DNA information, and so on. Furthermore, while
we limited our analysis to simple classifiers (LR and SVM),
there is no reason why each component classifier could not
be more complex, assuming there is enough data to support
robust training.

Further work will be required to validate this methodology
for other languages and a wider range of demographic groups,
and some of the steps involved (e.g., eye-tracking) are not
likely to be clinically feasible in their current state. Nonetheless,
this preliminary result illustrates the potential sensitivity of
language production and comprehension for detecting mild
cognitive decline.
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