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Abstract

Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug
design. However, the docking scores are not sufficiently precise to represent the protein-ligand binding affinity. Here, we
developed an efficient computational method for calculating protein-ligand binding affinity, which is based on molecular
mechanics generalized Born/surface area (MM-GBSA) calculations and Jarzynski identity. Jarzynski identity is an exact
relation between free energy differences and the work done through non-equilibrium process, and MM-GBSA is a
semimacroscopic approach to calculate the potential energy. To calculate the work distribution when a ligand is pulled out
of its binding site, multiple protein-ligand conformations are randomly generated as an alternative to performing an explicit
single-molecule pulling simulation. We assessed the new method, multiple random conformation/MM-GBSA (MRC-
MMGBSA), by evaluating ligand-binding affinities (scores) for four target proteins, and comparing these scores with
experimental data. The calculated scores were qualitatively in good agreement with the experimental binding affinities, and
the optimal docking structure could be determined by ranking the scores of the multiple docking poses obtained by the
molecular docking process. Furthermore, the scores showed a strong linear response to experimental binding free energies,
so that the free energy difference of the ligand binding (DDG) could be calculated by linear scaling of the scores. The error
of calculated DDG was within <61.5 kcalNmol21 of the experimental values. Particularly, in the case of flexible target
proteins, the MRC-MMGBSA scores were more effective in ranking ligands than those generated by the MM-GBSA method
using a single protein-ligand conformation. The results suggest that, owing to its lower computational costs and greater
accuracy, the MRC-MMGBSA offers efficient means to rank the ligands, in the post-docking process, according to their
binding affinities, and to compare these directly with the experimental values.
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Introduction

Most drugs are small chemical compounds. However the

molecular mechanisms of action of a lot of drugs are not known.

Because protein-protein and protein-ligand interactions play a

crucial role in biological functions and reactions, such as enzyme

catalysis and intracellular signal transduction, recently drugs which

bind to a target protein and then inhibit protein-protein

interaction or enzyme reactions have become of a subject of

interest. The candidates of these drugs should strongly and

specifically bind to the target proteins, thus the accurate prediction

of the binding affinity of a ligand for a protein is a critical element

in drug discovery. Because drugs have traditionally been

discovered through trial and error, often involving a great deal

of expense and time, computer-aided drug design has become

important, owing to its comparative facility and lower cost. With

recent advancements in computer technology and methodology,

powerful parallel computers are now available for use in

increasingly efficient computer-aided drug design. However,

computationally accurate prediction of protein-ligand binding

affinity remains a great challenge.

One of the most popular approaches to computer-aided drug

design is the molecular docking method, involving the computa-

tional screening and ranking of a library of ligands to identify

potential lead chemical compound candidates. Many docking

programs [1–8] involve two operations: docking and scoring. In

scoring, the binding affinity of a ligand for a target protein is

calculated by using an approximated scoring function, based on a

simplified empirical force field or potential of mean force, for the

sake of computational speed. Numerous studies using docking

programs have shown that these screenings have a higher

enrichment of active compounds than random screening [9,10];

however, they suffer from false positives and false negatives, and

are not sufficiently accurate to rank compounds according to their

binding affinities [11]. As a consequence, the docking results must

be post-processed with more accurate methods for calculating the

binding affinities (scores), before the ranking and selection of

potential lead compounds. Especially, in the case that no

experimental screening is available or only very few compounds

have to be selected, more precisely method to rank the ligands

according to their binding affinities should be needed.

All-atom molecular dynamics (MD) simulation with explicit

solvent, in combination with efficient and rigorous free energy
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calculation methods, can accurately predict the binding free

energy of ligands to proteins [12]. These free energy calculation

methods include the free energy perturbation method, thermody-

namic integration, umbrella sampling, the potential of mean force

method, the double-annihilation method, the double-decoupling

method, and single-molecule pulling simulations. Numerous

studies using these methods have reported that calculated binding

free energies are quantitatively in excellent agreement with

experimental values [13–16]; however, the respective methods

are computationally too expensive to be employed in the post-

docking process and also too difficult to apply to a wide variety of

chemical compounds [17].

Alternatives to these rigorous free energy calculations are

offered by linear response approximation (LRA) [18] and the

linear interaction energy (LIE) [19], where only the ligand-bound

and unbound states are simulated. Combining the semimacro-

scopic approach based on protein dipoles Langevin dipoles

(PDLD/S) and LRA (PDLD/S-LRA) reduces the computational

cost without loss of accuracy [20,21]. Another widely used

semimacroscopic approach is the molecular mechanics-Poisson

Boltzmann (or Generalized Born) surface area (MM-PB(GB)SA)

method [22,23]. Because the free energy is thermodynamically

statistical, energies should be averaged over the MD trajectory in

these methods. However, MD simulations for the post-docking

process, especially those in an explicit solvent, are time-consuming.

Although free energy calculations using the MM-GB(PB)SA

method are usually made on an ensemble of structures sampled

during MD simulation in explicit solvent, using a single energy-

minimized structure to MM-GB(PB)SA method often showed

reasonable approximation for rapidly estimating the ligand

binding free energies (S-MMGB(PB)SA) [24–26]. The ligand

binding free energies can be easily and rapidly calculated by the S-

MMGB(PB)SA method; however, it is difficult to be employed in

most proteins, especially flexible proteins, because of its too rough

approximation based on the use of a single conformation. In terms

of theoretical foundations, computational costs, and effectiveness

in calculating absolute binding free energies, either the LIE or the

PDLD/S-LRA approach would provide an efficient method after

potentially lead candidates have been narrowed down to several

tens of compounds [20,21]. Thus, some other method is required,

to act as a bridge between the molecular docking method and the

LIE, PDLD/S-LRA, or other more rigorous methods, in order to

efficiently, and with low computational cost, enrich the small

number of potential candidates from the large chemical com-

pound library.

In this study, we describe an efficient method for calculating the

protein-ligand binding affinities, namely the MRC-MMGBSA

(Multiple Random Conformation-MMGBSA) method, which is

based on the MM-GBSA calculation and Jarzynski identity

[27,28]. Jarzynski identity is an exact relation between free energy

differences and the work done through non-equilibrium processes.

To calculate the work done when the ligand is pulled out of the

binding site, single-molecule pulling MD simulation which is

mimicking the single molecule experiment is suitable [16,29–31].

However, the single-molecule pulling MD simulation is compu-

tationally too expensive to be applied for large datasets of ligands

which is including several millions compounds. In our method, the

multiple protein-ligand conformations, whose ligands are rotatable

with protein-ligand distance r, are randomly generated for

statistical analysis, rather than performing single-molecule pulling

MD simulations. The protein-ligand distance r is defined as the

difference in the distance between the respective centers of mass of

a given ligand in the original (X-ray, NMR or model structure)

configuration, and in a related randomly generated position. In

this study, r was set at 0.0, 0.5, 1.0, 2.0, 3.0…10.0, and a hundred

conformations for each distance r were generated. In this process,

six random numbers were generated, x, y, and z of rotation angles

(hx, hy, hz) and protein-ligand distance r (rx, ry, and rz) [wherein

r2 = (rx
2+ry

2+rz
2)]. These randomly generated conformations, with

various values for the protein-ligand distance r and various ligand

orientations, were subjected to energy minimization in implicit

solvent with GBSA method, to calculate the potential energies. A

schematic representation of the method is shown in Figure 1. The

work when ligand is pulled out of its binding site can be

approximately estimated from the potential energies (see method).

The MRC-MMGBSA method was assessed by evaluating the

ligand binding affinities for four target systems: the FK506 binding

protein (FKBP), bovine trypsin, the dipeptide binding protein

(DPPA), and cyclin-dependent kinase 2 (CDK2). The computa-

tional results obtained from X-ray and modeled protein-ligand

complex structures were found to be in good qualitative agreement

with experimental binding affinities. This result indicates the

higher ranking accuracy of the MRC-MMGBSA method. Next, to

assess the ability for determining the optimal docking structure,

which is similar to experimental protein-ligand complex structure,

from among the multiple docking poses, the docking structures

were built by AutoDock Vina [8], and the docking poses were

rescored, using the MRC-MMGBSA method. By utilizing the

calculated binding affinities (MRC-MMGBSA scores), the optimal

docking structures could be determined from among the multiple

docking poses. Importantly, the free energy difference of the ligand

binding (DDG) could be obtained by linear scaling the scores

within <61.5 kcalNmol21 of the experimental values. Overall, we

Figure 1. Schematic representation of the MRC-MMGBSA
method. (a) In the MRC-MMGBSA procedure, ligand molecules are
randomly generated around a target protein with varying protein-
ligand distance r and orientation. EM indicates the energy-minimization.
(b) A 3D illustration of the distribution of ligand molecules randomly
generated around the target protein, where the target protein is drawn
by ribbon representation, and the colored spheres represent the
centers of mass of the respective ligands.
doi:10.1371/journal.pone.0042846.g001
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conclude that the MRC-MMGBSA approach is an efficient

method for use in the post-docking process, prior to the second

screening process employing more rigorous methods such as the

LIE or PDLS/S-LRA calculation, because of its low computa-

tional costs and higher ranking accuracy, especially in the case of

flexible target proteins.

Results

Calculation of MRC-MMGBSA scores
We assessed the MRC-MMGBSA method by evaluating MRC-

MMGBSA scores for four target systems (FKBP (10 ligands),

trypsin (7 ligands), DPPA (7 ligands), and CDK2 (7 ligands)), and

comparing these scores with experimental binding affinities [32–

37]. The four systems included a variety of sizes and net charges

for receptor proteins and ligands (e.g. FKBP = small sized, 107

amino acids (aa); trypsin and CDK2 = middle sized, 223 and 297

aa, respectively; and DPPA = large sized, 507 aa). The structures

and net charges of the relevant ligands are summarized in the

supporting information (SI), Figures S1, S2, S3, and S4 and Tables

S1, S2, S3, and S4. In cases where the X-ray or NMR structure for

the protein-ligand complex was not available, the protein-ligand

complex structure was modeled (Tables S1, S2, S3, and S4).

Figure 2 shows the correlation between the MRC-MMGBSA

scores and experimental binding affinities. The scores were in

good qualitative agreement with the experimental binding

affinities. In the case of the FKBP, trypsin and CDK2 systems,

the results showed no dependency on the dielectric constant e, with

high correlation coefficients R. In the case of the DPPA system,

agreement depended entirely upon the e value. It has been noted

that a high dielectric constant is useful in achieving reorganization

and polarization effects in highly charged systems [38–40]. For the

FKBP system, the net charge of all ligands and the receptor

protein were neutral (Table S1) and +4.0, respectively. For trypsin,

the net charge of the ligands and receptor were neutral (one

ligand) or +1.0 (six ligands) (Table S2) and +6.0, respectively. For

CDK2, the net charge of the ligands and receptor were neutral

(Table S4) and +9.0, respectively. Due to the e dependency of the

DPPA system, the dipeptides had high partial charges, with an N-

terminal charge of +1.0, a C-terminal charge of 21.0, and/or a

side-chain charge of 21.0 for Asp and +1.0 for Lys; although the

net charge of the dipeptides used in this study were 21.0 (one

ligand), 0.0 (five ligands), or +1.0 (one ligand) (Table S3), and the

net charge of the receptor was also negatively large, 28.0.

The reason for the lower accuracy in the case of DPPA, in

comparison to those of FKBP and trypsin, is that DPPA is the

most difficult target among the three target proteins, because it

shows conformational change upon ligand binding [41,42]. The

ligand (peptide) binding pocket of DPPA is open and accessible in

the ligand-free state. When ligand is bound, the ligand binding

pocket is closed and the ligand is buried by hinge motion of DPPA.

Thus, in the case of DPPA, we used the holo-type (closed state)

receptor only for the protein-ligand distance r = 0.0 (ligand-bound

state), and the apo-type (open state) receptor for all other protein-

ligand distances. The holo-type DPPA receptor can be used only

for the protein-ligand distance r = 0.0, because the ligand molecule

crashes into the receptor, especially at small r values. Thus we did

not try the case where only the holo-type receptor is used for all r

in the DPPA. When using only the apo-type DPPA receptor for all

protein-ligand distances, we obtained consistently poor results

(R = 20.46 for e = 1, R = 20.23 for e = 2, and R = 20.04 for e = 4).

Therefore, we concluded that both apo- and holo-type receptors

should be utilized when calculating the ligand binding affinities in

the case of flexible proteins, and that the MRC-MMGBSA

method can correctly rank the ligands according to the scores, not

only for rigid target proteins but also for flexible ones.

In the case of CDK2, the difficulty (low accuracy) may be

caused by two reasons. One is that large hydrophobic region

covers the surface of the ligand binding pocket. The hydrophobic

interaction is difficult to reproduce by the implicit solvent GBSA

method. The other is the flexibility (adjustable the shape) of the

binding pocket. From comparison among several crystal structures

of CDK2-ligand complex, the shapes (volumes) of the ligand

binding pocket ware different for each ligand. MRC-MMGBSA

method made up for the above two shortcomings (correlation

coefficient R between experimental and calculated binding

affinities was 0.65 for e = 4.0, Table 1) by calculating the energies

for multiple conformations.

The S-MMGB(PB)SA approach is well known for its simplicity

as an efficient and widely used method for calculating ligand

binding affinities. Therefore, we next compared the results

obtained from the MRC-MMGBSA and S-MMGB(PB)SA

method, and found that the S-MMGBSA produced better results

than the S-MMPBSA (Table 1). The correlation coefficients

obtained from the S-MMGBSA were as high as those obtained by

the MRC-MMGBSA calculation, except in the cases of DPPA and

CDK2 (Table 1). In this study, all the protein-ligand complex

structures were X-ray or model structures, indicating that all the

protein-ligand binding modes were correct (or nearly correct);

hence the good results obtained by the S-MMGBSA calculation.

On the other hand, in the cases of DPPA and CDK2, only the

MRC-MMGBSA scores showed good correlation with experi-

mental values (e = 4). This suggests that flexible proteins (e.g.

DPPA) and kinase (e.g. CDK2) may be problematic for the S-

MMGB(PB)SA calculation. However, on the whole, the MRC-

MMGBSA score correctly ranked the ligands in accordance with

the experimental binding affinities, with a correlation coefficient R

greater than 0.65, even if the target protein underwent large

conformational change, and the large hydrophobic regions are

located in the ligand binding pocket (the hydrophobic interactions

are dominant for the protein-ligand interactions), and the shape of

the ligand binding pocket is adjustable, such as CDK2, which are

typically difficult cases for computational screening.

Parameters for the MRC-MMGBSA calculation
In the MRC-MMGBSA calculation, three parameters must be

determined: first, the number of energy-minimization steps

(Nmin); second, the number of conformations randomly generated

for each protein-ligand distance r (Nconf); and third, the

increments and maximum of the protein-ligand distance r. For

calculation of the scores, a parameter set of Nconf = 100,

Nmin = 100, r = {0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,

9.0, 10.0} (12 points) was used as the default. In total,

100612 = 1,200 conformations were generated.

To assess the validity of the default parameter set, we calculated

the scores using several different parameter sets, and compared the

correlation coefficients between the scores and the experimental

values. From the result, we found that stable results were obtained

with Nconf.50 and Nmin.50 (Figure 3A). Although Nconf

appeared to have only a small effect on the results, the larger

Nconf is needed in order to take into account entropic effects. In

this study, the respective structures of receptor protein and ligand,

which were obtained by short (about 10 ps) MD simulation

sampling of the bound state (r = 0.0, 100 conformations) and

energy-minimization of the randomly generated conformations

(1,100 conformations), showed significant structural diversity

(Figure 3B). The small ligands showed sharp diversity, while the

large ligands showed large diversity in all systems. This suggests

Calculation of Ligand Binding Affinity

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e42846



that structural diversity makes an entropic contribution to the

MRC-MMGBSA calculation and might be a reason for the

greater accuracy of the MRC-MMGBSA method than the S-

MMGBSA method, although it is surely insufficient for sampling

wide range of conformational space.

Next, we determined the effect of the increments and maximum

protein-ligand distance r on the calculation results. We calculated

the scores using both the default values of r1 = {0.0, 0.5, 1.0, 2.0,

3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0} and those of r2 = {0.0, 0.1,

0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,

13.0, 14.0, 15.0}. The respective scores were very similar

(Figure 3C). As further analysis, we focused on one of the score

components, namely, the score for each distance r (scorer = i, see

Equation (3) in Methods below). This scorer increased asymptot-

ically and clearly approached zero beyond 10 Å in both the r1 and

r2 calculations (Figure 3D), which supports the use of the

maximum distance of r = 10.0 Å. The scorer at r = 0.5 Å was

different for the r1 and r2 calculations, while the scorer beyond 1.0

Å was almost the same. This means that the total scorer of r = 0.1,

0.25 and 0.5 in r2 is roughly equal to the scorer at r = 0.5 in r1, as

expected. Furthermore, the energy distributions of each distance r

were sufficiently overlapped (Figure 3E). Overall, the results

suggest that r1 is usable as a rough calculation of r2, allowing for a

reduction in computational costs without the loss of accuracy. In

summary, we concluded that the parameter set employed in this

study is appropriate for the calculation, and offers a standard for

the analysis of other proteins as well, since we confirmed its

validity by using a variety of target proteins and ligands, varying in

size and charge.

Rescoring of docking poses
In the docking process, the top-scored docking pose does not

always correspond to the optimal docking structure. Thus, the

abilities to determine the optimal docking structure among

multiple docking poses generated by the docking process, as well

as to correctly rank the ligands according to their binding affinities,

are important for successful computational screening. Here we

built the protein-ligand docking structures of the FKBP, trypsin,

DPPA, and CDK2 systems using the AutoDock Vina program [8],

generating five docking poses for each ligand. These docking poses

were then rescored using the MRC-MMGBSA and S-MMGBSA

methods, in order to determine the optimal docking structure.

Figure 2. Correlation between MRC-MMGBSA scores and experimental binding affinities. The respective correlation coefficients (R
values) are shown in the figures.
doi:10.1371/journal.pone.0042846.g002

Table 1. Correlation coefficients R between the experimental and calculated binding affinities.

Target
proteins S-MMPBSA S-MMGBSA MRC-MMGBSA

e = 1 e = 2 e = 4 e = 1 e = 2 e = 4 e = 1 e = 2 e = 4

FKBP 0.74 0.82 0.84 0.82 0.90 0.92 0.94 0.94 0.93

Trypsin 0.42 0.88 0.88 0.84 0.92 0.90 0.92 0.87 0.85

DPPA NC* NC NC 0.49{ 0.52{ 0.53{ 0.39 0.66 0.72

CDK2 20.14 20.09 0.05 0.16 0.34 0.20 0.64 0.58 0.65

*Not calculated.
{For calculation of the free energy of the receptor, the apo-type structure was used.
doi:10.1371/journal.pone.0042846.t001
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In this study, we defined the optimal docking structure as one

that shows less than a 2.0 Å root mean square (RMS) displacement

in the ligand position by fitting the receptor protein, between the

reference (X-ray, NMR or model) and the actual the docking

structures. For all the systems, nearly all the top-scored poses

obtained by the MRC-MMGBSA and S-MMGBSA methods

corresponded to the optimal protein-ligand complex structure

(Tables S5, S6, S7, and S8). However, the MRC-MMGBSA

approach showed a greater ability to rank the top-scored ligands

according to their binding affinities than did the S-MMGBSA

method (Table 2). For example, in the case of e = 4, the correlation

coefficients between the experimental and calculated binding

affinities (scores) for the optimal protein-ligand complex structures

determined by MRC-MMGBSA method were greater than those

determined by S-MMGBSA method. These results indicate that

the S-MMGBSA approach is an adequate method for determining

the optimal protein-ligand complex from among the multiple

docking poses and has the advantage of rapid calculation, whereas

the MRC-MMGBSA is efficient in ranking the ligands after that

optimal docking structure has been determined by the S-

MMGBSA method. Finally, the use of a dielectric constant e of

4 offered the best results with regard to ranking the ligands

according to their binding affinities and determining the optimal

protein-ligand complex structure among the multiple docking

poses.

Direct comparison of MRC-MMGBSA scores with
experimental binding affinities

If we assume that the MRC-MMGBSA scores are linearly

related to the absolute binding free energies (DG), we can

determine the weighting factor a. Here, the simplest approxima-

tion, DGcalc = aN(MRC-MMGBSA score)+b, was applied.

With e = 4, we obtained a value of {a, b} = {0.25, 0.91} for the

FKBP system, {0.12, 22.83} for the trypsin, {0.15, 2.27} for the

Figure 3. Typical results of parameter set assessment. (a) Plots of correlation coefficients between experimental and calculated binding
affinities versus Nconf (black) and Nmin (red). In the Nconf assessment, Nmin = 100 was used. In the Nmin assessment, Nconf = 100 was used. (b) The
structural diversity of receptor proteins (trypsin) and ligands. The cases involving the smallest (L16) and the largest (L11) ligands are shown. The
distribution of root mean square displacement (RMSD) of the respective ligands, between the reference (X-ray, NMR or model) and randomly
generated conformations, by fitting the receptor protein, is plotted. (c) The correlation between MRC-MMGBSA scores and experimental binding
affinities, under r1 and r2, for FKBP. (d) The correlation between the MRC-MMGBSA scorei and the protein-ligand distance r of L04, for FKBP. (e) The
potential energy distribution of each protein-ligand distance r of the largest ligand L04, for FKBP.
doi:10.1371/journal.pone.0042846.g003
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DPPA, and {0.38, 6.64} for the CDK2 system, by the least-square

fitting method. The DGcalc results were in excellent agreement with

the experimental DG for all systems in which the DG error was less

than 61.5 kcalNmol21 (Figure 4A). The weighting factor a showed

similar values for all systems (a<0.20), while the y intercept b
varied within the range of 22.83 to +6.64. These results indicate

clearly that the MRC-MMGBSA score bears a linear relation to

the experimental DG with a generalized weighting factor of

a = 0.20; however, the y intercept (the baseline) is system

dependent. Therefore, we cannot determine a generalized value

of b, which could be applied to all arbitrary target proteins.

Although we cannot calculate the absolute DG due to the

indeterminability of the generalized b, the binding free energy

difference (DDG) can be estimated from the MRC-MMGBSA

score by using the generalized a = 0.20. To estimate the DDG, we

used the ligand with the highest DGexp as the reference for each

system, DDGX,system =DGX,system–DGreference,system (Tables S1, S2,

S3, and S4). Figure 4B shows the correlation between the

calculated and experimental DDG. Nearly all of the ligand DDG

errors were within 61.5 kcalNmol21 of the experimental values,

although we used a variety of target proteins and ligands to assess

the MRC-MMGBSA approach in this study. This result argues

strongly for the use of the MRC-MMGBSA method as an efficient

tool in computer-aided drug screening, because the MRC-

MMGBSA scores can be directly compared with experimental

binding affinities.

Discussion

We have presented an efficient computational method for

calculating ligand binding affinities, based on the MM-GBSA

approach and Jarzynski identity, namely, the MRC-MMGBSA

method. MRC-MMGBSA scores can correctly rank the ligands

according to their binding affinities for a variety of target proteins

(small-, medium-, and large-sized), and a variety of ligand sizes and

net charges. Most notably, the MRC-MMGBSA method can be

easily applied to flexible proteins, which undergo conformational

change such as the open-close motion upon ligand binding. In

addition, the optimal docking structure can be determined from

among the multiple docking poses by ranking the MRC-

MMGBSA scores. Importantly, the MRC-MMGBSA score shows

a linear response to the experimental DG, and thus the DDG of the

ligand binding can be estimated from the MRC-MMGBSA score

simply by multiplying it by the weighting factor. The error of the

DDG calculation is within 61.5 kcalNmol21 of the experimental

DDG, which is sufficiently accurate to be directly compared with

the experimental values.

In summary, we have proposed an effective strategy for the

post-docking process in computer-aided drug screening. The first

step is to determine the optimal docking structure from among the

multiple docking poses, using the S-MMGBSA method. The

second step is to rank these optimal docking structures according

to the binding free energies obtained by S-MMGBSA analysis.

After the ranking, the top several tens percent of the optimal

docking structures may be selected for the next step in the analysis.

The first and second steps, using the S-MMGBSA approach,

provide an efficient first filter with which to narrow down the

candidates, because the S-MMGBSA approach is highly efficient

at determining the optimal docking structure and can roughly rank

the ligands according to their binding affinities. The third step is to

rank the ligands using the MRC-MMGBSA approach, and then

select the top several tens of the ligands, according to their MRC-

MMGBSA score (or DDG), for the next step. Finally, the absolute

binding free energies of the several tens of selected ligands are

calculated by using a more rigorous method such as PDLD/S-

LRA or LIE. It is believed that this strategy would both reduce the

loss of potential ligands and show the best overall performance, at

present time, in term of computational costs and accuracy.

Methods

Calculation of the MRC-MMGBSA score
Jarzynski identity is an equation in statistical mechanics that

relates free energy differences between two equilibrium states and

non-equilibrium processes [27,28].

Table 2. Correlation coefficients R between the experimental
and calculated binding affinities (scores) for the top-scored
docking poses.

Target
proteins

AutoDock
Vina S-MMGBSA MRC-MMGBSA

e = 1 e = 2 e = 4 e = 1 e = 2 e = 4

FKBP 0.79 0.79 0.82 0.79 0.83 0.77 0.89

Trypsin 0.86 0.87 0.93 0.93 0.73 0.94 0.98

DPPA 20.15 0.29* 0.54* 0.37* 0.36 0.69 0.77

CDK2 20.20 20.04 0.34 0.33 0.30 0.74 0.89

*For calculation of the free energy of the receptor, the apo-type structure was
used.
doi:10.1371/journal.pone.0042846.t002

Figure 4. Correlation between calculated and experimental DG
(a) and DDG (b). The correlation coefficients (R values) are shown in
the figure. The spheres are the results obtained from X-ray, NMR or
model structures, and the triangles are the results obtained from top-
scored docking structures.
doi:10.1371/journal.pone.0042846.g004
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DGA?B~
1

b
lnvexp bWA?Bð Þw ð1Þ

In principle, the work required for ligand binding,

WboundRunbound, can be measured by single-molecule experimen-

tation using, for example, atomic force microscopy or laser optical

tweezers [43]. Computationally, it can be estimated by single-

molecule pulling simulations such as steered MD simulations

[16,29–31]. In the quasi-static process wherein the pulling is done

infinitely slowly, at the zero time limit, an exponential average of

the work from state i to i+1 (Wi) corresponds to that of the

potential energy difference between state i and i+1 (Ui+12Ui).

Thus, the Jarzynski identity, Equation (1), becomes

DGi~Giz1Gi~
1

b
lnvexp b Uiz1Uið Þð Þw ð2Þ

Because of the difficulty involved in estimating the exponential

average, and since the exponential average strongly depends on

the tails of the work distribution, it is very difficult to calculate

accurately the free energy by Equation (2). In practice, a number

of trajectories are generated by repeating the steered MD

simulations, varying conditions such as the initial structures,

pulling speed, and/or pulling directions [16,29,30]. However, such

steered MD simulations are too expensive to employ in computer-

aided drug screening using a large chemical compound library. In

this study, then, as an alternative to steered MD simulations,

multiple conformations, varying the protein-ligand distance r and

orientation of ligands, are randomly generated (Figure 1). Here,

we introduced an approximation that randomly generates the

trajectories in order to conserve computational resources, and we

calculated energies using energy-minimized but not MD structures

(excluding thermal fluctuation). In addition, we also employed the

implicit solvent model by using the MM-GBSA method to

calculate the solvation energies. Thus, the calculated DG using

Equation (2) is no longer the absolute DG, and we define the

calculated DG as the ‘score’:

Scorer~i~Scorer~iz1Scorer~i~
1

b
lnvexp b Ur~iz1Ur~ið Þð Þw, ð3Þ

and

Score~
Xr~Maximum

r~0:0

Scorer, ð4Þ

where r is the protein-ligand distance. Because the score is

calculated on the basis of the MM-GBSA calculation by using the

multiple random conformations, we call the score an ‘MRC-

MMGBSA score’.

Protocol for Calculating the Energy
We evaluated the MRC-MMGBSA scores for four target

proteins: FKBP, trypsin, DPPA, and CDK2. The X-ray, NMR or

modeled structures of the respective protein-ligand complexes

were used as the template conformations (Tables S1, S2, S3, and

S4). The ff03 force field [44] was adopted for the receptor proteins.

For the ligands, the parameters were determined using the

Antechamber module (version 1.27), utilizing the general atom force

field (GAFF) [45]. Partial charges for the ligands, not included in

the standard ff03 parameter set, were calculated at the RHF/6-

31G*/B3LYP/cc-pVTZ SCRF level with Gaussian03 and the

restrained electrostatic potential (RESP) method [46].

The energy of the template conformations was minimized until

the RMS of the Cartesian elements of the gradient was less than

0.1 kcalNmol21 in the Generalized Born/surface area (GBSA)

implicit solvent model (the method for the minimization was

switched from steepest descent to conjugate gradient after 100

step), and then 10 ps-MD simulations using the GBSA method

were performed in order to sample the multiple protein-ligand

conformations of the ligand-bound state (protein-ligand distance

r = 0.0). During the MD simulations, the temperature was kept

constant at 300 K by a Langevin thermostat with a collision

frequency c of 2.0 ps. A time step of 1.0 fs was used. All bond

lengths involving hydrogen atoms were constrained to the

equilibrium length by using the SHAKE method [47]. All energy

minimizations and MD simulations were performed using Amber

11 [48].

The MD trajectories were collated with a saved snapshot every

0.1 ps, in order to sample a hundred conformations of the protein-

ligand distance r = 0.0. For the other protein-ligand distance r

values, a hundred conformations were randomly generated for

each protein-ligand distance r, based on the samples at r = 0.0. In

randomly generating the multiple protein-ligand conformations,

we set r to 0.5, 1.0, 2.0, 3.0 …. 10.0, and the ligand molecule was

allowed to randomly rotate without internal conformational

change. In this process, six random numbers were generated, x,

y, and z of rotation angles (hx, hy, hz) and protein-ligand distance r

(rx, ry, and rz) [wherein r2 = (rx
2+ry

2+rz
2)]. Figure 1 shows a

schematic representation of the method for generating the multiple

random conformations. Because we used twelve points for r, a total

of 1,200 conformations were randomly generated. The multiple

conformations randomly generated were subjected to energy

minimization in the implicit salvation model (GBSA method) (the

method for the minimization was switched from steepest descent

to conjugate gradient after 10 step). The number of steps for the

energy minimization, Nmin, was set at 100. The potential energies

at the final energy minimization step were sampled in order to

calculate the score.
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DPPA, a periplasmic dipeptide transport/chemosensory receptor. Biochemistry
34: 16585–16595.

43. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in

optical tweezers. Annu Rev Biochem 77: 205–228.
44. Duan Y, Wu C, Chowdhury S, Lee CM, Xiong G, et al. (2003) A point-charge

force field for molecular mechanics simulations of proteins based on condensed-
phase quantum mechanical calculations. J Comput Chem 24: 1999–2012.

45. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development

and testing of a general amber force field. J Comput Chem 25: 1157–1174.

46. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved

electrostatic potential based method using charge restraints for determining

atom-centerd charges. J Phys Chem 97: 10269–10280.

47. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the

Cartesian equations of motion of a system with constraints: molecular dynamics

of n-alkanes. J Comput Phys 23: 327–341.

48. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, et al. (2010)

AMBER 11, UCSF.

Calculation of Ligand Binding Affinity

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e42846


