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Ovarian cancer is a lethal gynecological cancer causing cancer-related deaths in women worldwide. It is difficult to diagnosis 
at an early stage when more than 90% patients can be cured because of lack of specific symptoms and early detection markers. 
Most of malignant ovarian tumors are originated from the germinal epithelium of the ovary. For investigation with animal models 
of epithelial-derived ovarian cancer (EOC), laying hens are the most relevant animal models because they spontaneously develop 
EOC as occurs in women through ovulating almost every day. As in women, EOC in the hen is age-related and grossly and 
histologically similar to that in women. However, domesticated animals are inappropriate for research human EOC due to multiple 
pregnancies and lactating or seasonally anestrous. In addition, the non-spontaneous nature of rodents EOC limits clinical relevance 
with human EOC. Recent studies have shown that ovarian cancer could arise from epithelium from the oviduct as oviduct-related 
genes are up-regulated in EOC of hens. Therefore, we showed in the review: 1) characterization and classification of EOC; 2) 
chicken models for EOC; 3) relationship estrogen with EOC; 4) candidate prognostic factors for EOC including serpin peptidase 
inhibior, clade B (ovalbumin), member 3 (SERPINB3), SERPINB11, gallicin 11 (GAL11), secreted phosphoprotein 1 (SPP1) and 
alpha 2 macroglobulin (A2M) in normal and cancerous ovaries of laying hens; 5) biological roles of microRNAs in development 
of EOC. Collectively, the present reviews indicate that expression of SERPINB3, SERPINB11, GAL11, SPP1 and A2M is clearly 
associated with the development of ovarian carcinogenesis. These results provide new insights into the prognostic biomarkers 
for EOC to diagnose and to evaluate responses to therapies for treating EOC of humans. (J Cancer Prev 2013;18:209-220)
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INTRODUCTION

  Ovarian cancer is the most fatal gynecological carcinoma 

even though it is the 8th most commonly diagnosed cancer 

and the 7th leading cause of cancer-related deaths in 

women worldwide.1 There are two hypothesis linked to 

carcinogenesis of ovaries, which indicate ‘incessant ovu-

lation’ and ‘gonadotropin’ hypothesis. Incessant ovulation 

causes increase of epithelial ovarian cancer with the 

number of ovulation repeating ovarian rupture and repair.2 

And gonadotropin-related hypothesis provides that inci-

dence rate of the ovarian cancer is increased by high levels 

of gonadotropin such as FSH and LH through stimulating 

the ovarian epithelium surface.3 In a variety of previous 

studies, the first hypothesis related with spontaneous 

incessant ovulation has been reported having strong 

relationship with malignant transformation of ovaries. 

Recently several studies have suggested alternative theory 

that aggressive ovarian carcinomas arise from the fallopian 

tube in women.4,5

  Ovarian cancer can be classified to three cancerous types, 

epithelial carcinoma, sex-cord stromal carcinoma and 

germ cell carcinoma.6,7 More than 90% of human ovarian 

cancers are originated from ovarian surface epithelium. 
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And there are mainly four subtypes of epithelial-derived 

ovarian cancer that are serous (70%), endometrioid (10- 

20%), mucinous (3%) and clear cell (10%) carcinomas based 

on tumor cell morphology.8 Furthermore, staging of human 

ovarian cancer is described by FIGO system from Stage I to 

IV with presence or absence of metastasis and ascites. Due 

to the lack of specific symptom and prognostic factors to 

diagnose ovarian cancer, most patients with this disease 

present advanced stage (Stage III or IV).9,10 This fact causes 

approximately 70% of patients with ovarian cancer to 

death. Therefore, it is important to develop the valuable 

early detection marker to diagnosis or treatment for 

ovarian cancers.

  To investigate the mechanisms of target genes to develop 

as a biomarker, laying hens are relevant models because 

they spontaneously induce EOC at a high rate after stop egg 

production as occur in women whereas other animals 

including mammals and rodents are not develop sponta-

neous in nature for ovarian cancer.11 Moreover, commonly 

used biomarkers to detect ovarian cancer clinically such as 

CA125 (also known as MUC16), epididymis protein 4 (HE4), 

proliferation markers including proliferating cell nuclear 

antigen (PCNA), vimentin, a proto-oncogene (ERBB2), a 

growth factor receptor (EGFR), a cell cycle inhibitor (p27), 

oncofetal tumor markers (CEA, Lewis Y and Tag 72) and 

TGF-α are expressed in chicken ovarian cancer, too.12-14 

In addition, histological appearance of EOC of chicken is 

similar to those of humans.15 Therefore, avian model is the 

best for determination of oncogenic mechanisms.

  In this regard, to discover the prognostic factors for 

diagnosis and treatment of EOC, we reviewed the charac-

teristics, classification and experimental models for EOC 

and relationship estrogen and genetic regulation including 

SERPINB3, SERPINB11, GAL11, SPP1, and A2M genes with 

development of female reproductive tract and those of 

disease. In addition, we determined the biological roles of 

microRNA in development of EOC. 

CHARACTERIZATION AND CLASSIFICATION 
OF OVARIAN CANCER

  The histologic classification categorized ovarian carci-

nomas according to derivation from coelomic surface 

epithelium, germ cells, and sex-cord stromal cells.6,7 

Among the rest, the majority human malignant ovarian 

cancers are germinal epithelium of the ovary. The etiology 

of EOC is not well known. The likelihood of developing 

EOC is associated with several factors such as age, ge-

netics, epigenetics, hormones and others. Previous studies 

suggest that the major causative factor of EOC is incessant 

ovulation which contributes to increased risk for genetic 

aberrations to the ovarian surface epithelium in response 

to repeated rupture and repair of the epithelial surface of 

the ovary.2,16 According to this hypothesis, taking oral 

contraceptives for more than five years and multiparity can 

reduce the incidence of ovarian cancer by suppressing 

ovulation and controlling hormone levels.17,18

  EOC is classified as follows: serous, endometrioid, mu-

cinous and clear cell tumors based on tumor cell mor-

phology and histology.8 Serous carcinoma is the most 

common of EOC with specific characteristics that include 

multiple cysts, solid areas, glands and parts of papillae. 

Malignant serous carcinomas account for approximately 

30% of ovarian serous carcinomas and nearly 70% of all 

EOCs. Most serous carcinomas are large and form bila-

terally.19,20 In development of ovarian serous carcinoma, a 

few gene mutations have been identified. For example, 

mutations in tumor protein 53 gene is frequently associated 

with malignant serous carcinomas.21 And V-KI-RAS2 kir-

sten rat sarcoma viral oncogene homolog (KRAS) and 

V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) 

gene mutations exist in the early grade serous carcinomas 

and they lead to activation of the mitogen activated protein 

kinase (MAPK) signaling pathway.22 

  The next most common EOC is endometrioid carcinomas 

that make up 10-20% of all ovarian cancers. This type of 

cancer is composed of epithelial and stromal cells that 

resemble those of the endometrium. These tumors are 

associated with endometriosis due to genetic alterations 

and hyperplasia of the endometrium.23,24 In addition, 

endometrioid carcinomas have glands, solid masses or a 

fibrous consistency. The endometrioid carcinomas are 

related to various alterations in molecular genetics inclu-

ding the mutation of oncogenes, tumor suppressor genes 

and other genes associated with DNA repair. For example, 

activating mutations of a key effectors of the wingless-type 



 

Whasun Lim and Gwonhwa Song: Discovery Biomarkers for Epithelial-Derived Ovarian Cancer 211

MMTY integration site family (WNT) signaling pathway 

and, catenin beta 1 (CTNNB1), as well as inactivating mu-

tations of tumor suppressor gene, phosphatase and tensin 

homolog (PTEN), have been detected mainly in endo-

metrioid carcinomas. Both of them are rare in the other 

types of ovarian cancers.25,26 

  The third most common EOC is the mucinous carcinomas 

which occur in a small percentage (3%) of primary ovarian 

carcinomas. Mucinous carcinomas are composed of pa-

pillae and solid areas, mucin-riched cytoplasm and large 

areas of necrosis and hemorrhage. Histologically, muci-

nous carcinomas are characterized with glands and cysts 

including abundant cytoplasmic mucins.27 The mechanism 

responsible for development of mucinous carcinomas has 

not been established; however mutations in the KRAS gene 

are commonly associated with mucinous ovarian tumors. 

This analysis indicates that KRAS mutations might be early 

events in the development of mucinous tumors.28 

  Clear cell carcinomas account for approximately 10% of 

EOC. Most ovarian clear cell carcinomas are malignant, as 

benign and borderline tumors are uncommon. Clear cell 

carcinomas are composed of clear cells that develop as 

tubular, papillary, solid or mixed types and hobnail cells 

which contain apical nuclei. Most of tumors are solid or 

cystic masses with one or more nodules protruding into the 

lumen.20,29,30 In clear cell carcinomas of the ovary, the 

following genetic mutations have been found as follows: 

mutations of PIK3CA (20-25%), TP53 (8.3%), PTEN (8%) 

and BRAF (6.3%).31-34 In addition, these type of tumor are 

associated with over-expression of numerous genes such 

as HFF1 homeobox 1B (HNF-1B), SPP1, neuraminidase 3 

(NEU3) and annexin A4.35,36

  Recent studies based on clinicopathologic and molecular 

genetic characteristics have suggested dualistic model for 

ovarian carcinogenesis, which indicates type I and type II 

tumors.37-39 Type I tumor features low-grade serous and 

endometrioid carcinomas, well-differentiated clear cell 

and mucinous carcinomas and Brenner tumors. This type 

of EOC exists in the early stage (stage I) and grows slowly 

from precursor lesions, such as borderline tumors and 

endometriosis. In addition, type I tumors are associated 

with specific genetic mutations, including ARID1A, BRAF, 

CTNNB1, ERBB2, KRAS, PIK3CA, PPP2R1A, PTEN, Raf, 

and Ras.40-44 On the other hand, type II tumors present 

papillary, glandular, and solid morphologies and consist of 

high-grade serous and endometrioid carcinomas, malig-

nant mingled mesodermal carcinosarcomas, and undif-

ferentiated carcinomas. Type II epithelial ovarian cancers 

present in advanced stage (stage II-IV) and grow ag-

gressively occurring to more than 75% of all EOC patients. 

They show high frequency of TP53 gene mutations, which 

are indicated rarely in the type I tumors.45 Furthermore, 

approximately 50% of high-grade serous carcinomas is 

related in molecular alteration of BRCA by the gene mu-

tation or by methylation of BRCA promoter.46 

CHICKEN MODEL FOR 
EPITHELIAL-DERIVED OVARIAN CANCER

  The majority of women diagnosed at an advanced stage of 

EOC have a high probability of dying from the disease. EOC 

is associated with complex genetic and epigenetic alte-

rations leading to ovarian cancer. Thus, it is very important 

to identify mechanism leading to initiation, promotion and 

progression of EOC. It is difficult to establish etiologies and 

pathogenesis of EOC in women; therefore, exploitation of 

animal models for EOC is essential.

  The laying hen is a valuable model for investigation of 

EOC because they develop EOC spontaneously at a high 

rate after producing eggs when more than two years of age. 

Similarly, natural menopause usually arises between 40- 

and 55-years of age in women when production of female 

steroid hormones, estrogen and progesterone, is decrea-

sing with advancing age of their ovaries. Incessant ovu-

lation in laying hens (almost every day) and women (once a 

month) is considered the major causative factor of 

EOC.11,15,47 

  Ovarian carcinomas of the laying hen model presents 

histopathologically with serous, endometrioid, mucinous 

and clear cell carcinomas as occurs in women. Further-

more, the stages of ovarian cancer in laying hens are similar 

to that for EOC in women based on the following FIGO 

system classifications.10,15 Stage I of EOC in laying hens 

indicates tumor growth limited to the ovary, firm nodules 

and little or no ascites. For stage II EOC in laying hens, 

ovarian tumors are larger and have metastasized to the 
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oviduct with moderate ascites. Next, Stage III ovarian 

cancer in laying hens shows metastasis of the tumor to the 

pelvic organs, as well as peritoneal and abdominal organs 

including small and large intestine and mesentery and 

surface of the liver with copious ascites. Stage IV EOC in 

laying hens is characterized by severe metastasis to distant 

organs such as liver, lung and spleen with multiple solid 

tumors and copious ascites.15 Therefore, the laying hen is 

the only animal model that develops EOC spontaneously 

from surface epithelium of the ovaries at an incidence rate 

due to incessant ovulations and can be used for investiga-

tions to develop therapeutic agents for prevention and or 

treatment of EOC.

  Genetically manipulated rodent models of each subtype 

of ovarian cancer have been used to improve knowledge of 

the etiologies and pathogenesis of EOC and confirm effects 

in preclinical tests of signal transduction inhibitors as 

potential therapeutic agents.20,48,49 On the other hand, the 

fact that EOC does not occur spontaneously in rodent 

models limits their clinical relevance.15

ESTROGEN ACTION IN THE 
EPITHELIAL-DERIVED OVARIAN CANCER

  Estrogen is the most important steroid hormone in the 

avian female reproductive tract as a primary sex hormone. 

In general, estrogen plays crucial roles in the modification 

of several cell-types with respect to development and dif-

ferentiation, altering expression of specific genes in a 

variety of organs, and regulation of various biological 

events including protection against apoptosis, osteopo-

rosis, diabetes and Alzheimer’s disease.50-52 For these 

biological actions, estrogen binds two classical nuclear 

receptors, estrogen alpha (ESR1) and beta (ESR2).53 

  Reproductive hormones, including gonadotropins and 

steroids hormones, affect the risk for development of 

ovarian cancer.54 Estrogen, in particular, has long been 

implicated as a factor inducing ovarian cancer. For 

instance, menopausal women who have taken estrogen as 

hormone replacement therapy have an increased risk of 

ovarian cancer55 whereas women who have taken oral 

contraceptives for more than 5 years have a reduced in-

cidence of ovarian cancer during premenopausal years. 56,57

  High levels of estrogen can change immune response, 

phagocytic activity, growth factor levels and differen-

tiation of cancer cells.58 For example, estrogen increases 

angiogenesis that is one key feature of cancer development 

by promoting secretion of vascular endothelial growth 

factor (VEGF) and endothelial cell migration.59,60 In ad-

dition, estrogen regulates expression of hepatocyte growth 

factor (HGF)61 and epidermal growth factor (EGF), both of 

which activate proliferation of ovarian surface epithelial 

cells.62 In animals, incessant exposure of the reproductive 

tract and mammary glands to estradiol induces develop-

ment of papillary ovarian carcinomas in guinea pigs and 

rabbits that are similar to human benign serous carci-

nomas.63,64 Also, estrogen can increase proliferation of 

ovarian surface epithelial cells in ewes.65 

  Both ESR1 and ESR2 have been reported to be expressed 

in human ovarian cancers.66 In the four subtypes of EOC, 

ESR1 was expressed abundantly in endometrioid carci-

nomas (100%) and detected in serous (97%) and mucinous 

(70%) carcinomas by immunohistochemal analysis. More-

over, expression of ESR1 was higher in malignant EOC than 

in ovaries with benign tumors and normal ovaries.16,67 In 

contrast, ESR2 is expressed in all types of EOC in sequence 

as follows: endometrioid, serous, clear cell, mucinous car-

cinomas.67,68 

  On the other hand, the exact mechanisms of estrogen 

action are unknown regarding development of ovarian 

cancer. Therefore, advanced studies are required to verify 

the relationship between estrogenic activity and ex-

pression of its receptors and the etiology and pathogenesis 

of EOC.

CANDIDATE BIOMARKERS FOR 
EPITHELIAL-DERIVED OVARIAN CANCER

1. A2M

  The alpha 2 macroglobulins (A2M) function as protease 

inhibitors in serum of mammals and are able to bind a 

variety of cytokines and growth factors.69-72 Proteases and 

their inhibitors take part in various biological events such 

as oncogenesis and metastasis because of their capacity to 

degrade extracellular matrix proteins.73 Similar to other 

protease inhibitors, A2M is increased in plasma of women 
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with inflammatory and neoplastic lesions of the ovary.74 In 

addition, A2M increases in blood of laying hens more than 

6 months prior to detection of advanced-stage EOC whe-

reas A2M suppresses DNA synthesis in mouse ovarian 

tumor cells as a cytotoxic factor in serum.75-77 These results 

suggest that increased levels of A2M in plasma of laying 

hens develop in the late-stages of ovarian cancer as com-

pared with its concentration in serum of normal laying 

hens.77 According to various lines of evidence, A2M might 

be a novel biomarker for improvements in early detection 

of ovarian cancer. 

2. GAL11

  GAL11 (also known as beta-defensin 11; DEFB11) belongs 

to avian defensins that are members of the beta-defensin 

subfamily members that exhibit antimicrobial activity 

against microbes including gram-positive/-negative bac-

teria or fungi.24,78-80 Avian beta defensing genes identified 

in chicken leukocytes can be subdivided into 14 classes.81 

Among them, GAL11 expression increases significantly in 

response to lipopolysaccharides82 and DES83 in chicken. 

  In mammals, there are several reports on identification of 

the role of beta-defensins in carcinogenesis. First of all, the 

low expression of human beta-defensin 1 (DEFB1) is 

involved in renal cell carcinomas, prostate cancer, basal 

cell carcinomas and oral squamous cell carcinomas as a 

tumor suppressor.84-86 And overexpression of DEFB3 in-

creases development of oral cancer through recruitment of 

macrophages via EGF that induces DEFB3 expression.87 In 

addition, DEFB2 and DEFB3 function as proto-oncogenes 

in oral squamous cell carcinomas, whereas DEFB1 works as 

a tumor suppressor gene.88 Moreover, GAL11 was induced 

in the cancerous ovaries compared with normal ovaries of 

chicken. With these results, it is possible to suggest that 

beta-defensins influence carcinogenesis through altera-

tion of inflammation and cytokine production.

3. SERPINB3

  SERPINB3, also known as squamous cell carcinoma 1 

(SCCA1), was discovered originally in squamous cell 

carcinoma of the cervix.89 It belongs to the serpin su-

perfamily of protease inhibitors related to apoptosis, im-

mune response, blood coagulation, cell migration and 

invasiveness of cells.90,91 SERPINB3 regulates programmed 

cell death through different biological process in diverse 

cancer types and over-expression of this gene is one 

characteristic of epithelial-derived cancerous cells. 

SERPINB3 decreases apoptosis mediated by carcinostatis 

substances and by TNFA -induced cell death by sup-

pressing cytochrome c release from the mitochondria.92,93 

In addition, in apoptosis mechanisms, SERPINB3 is 

upstream of caspase-3, one of its molecular targets, which 

attenuates caspase-3 activity and apoptosis.94 Moreover, 

SERPINB3 specifically modulates activity of c-Jun NH2- 

terminal kinase-1 (JNK-1).95 In chicken ovarian cancer, 

SERPINB3 mRNA and protein were localized in the 

glandular epithelium of cancerous ovaries. And it was 

abundant in the nucleus of both chicken and human 

ovarian cancer cell lines. Moreover, in 109 human patients 

with EOC, SERPINB3 protein was showed weak (13.8%), 

moderate (60.6%), and strong (25.7%) expression respec-

tively.96 Therefore, SERPINB3 may play a crucial role in 

EOC and be a novel biomarker for prognosis for EOC.

4. SERPINB11

  SERPINBs are one of group in the serpin superfamily of 

serine and cysteine proteinase inhibitors having crucial 

roles in various biological events such as blood coagu-

lation, angiogenesis, inflammation and fibrinolysis.97 Most 

clade B serpin genes are intracellular proteins that pri-

marily suppress target proteases whereas SERPINB5 and 

SERPINB11 are intracellular non-inhibitory proteins.97-99 

SERPINB5 is a class II tumor suppressor gene called as 

maspin (mammary serine protease inhibitor). This gene 

was demonstrated to induce apoptosis of breast and 

prostate cancer cells.99,100 Moreover, methylation of the 5’ 

flanking region of SERPINB5 causes gene silencing in 

colorectal, ovarian, skin and thyroid carcinomas.101-103 

Unlike SERPINB5, SERPINB11 functions as an inhibitor of 

angiogenesis through repressing endothelial cell migration 

and controlling mitogenesis.104 SERPINB11 expression was 

induced in cancerous ovaries in chickens. And in human 

ovarian cancer cells such as OVCAR-3, SKOV-3 and PA-1 

cells, immunoreactive SERPINB11 protein was predomi-

nant in the cytoplasm and had a similar expression pattern 

to that in chicken ovarian cancer cells. These results sug-
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gest that SERPINB11 is a biomarker for chicken ovarian 

endometrioid carcinoma that could be used for diagnosis 

and monitoring effects of therapies for the disease in 

women.105

5. SPP1

  SPP1 (also called as osteopontin), is a highly phospho-

rylated integrin-binding ligand and N-linked glycoprotein 

originally isolated from bones of rats.106 This gene has 

crucial functions in a variety of physiological processes 

including cell to cell interactions, inflammatory responses, 

wound healing, calcification, morphogenesis of organs and 

tumorigenesis.107 In blood, increases in SPP1 are associated 

with several types of cancers.108,109 Especially, in develop-

ment of ovarian cancer, SPP1 expression increased abun-

dantly as compared with normal ovaries. In addition, its 

expression was localized predominantly to serous carci-

noma which is one of subtype of EOC.110 Results of clinical 

experiments with postoperative patients also indicated 

that SPP1 is a biomarker for not only detecting specific 

types of ovarian cancer, but also a marker for examination 

of responses to primary treatments for cancer in place or in 

addition to the use of CA125 as a biomarker for cancer.

BIOLOGICAL ROLEES OF MICRORNAS IN 
DEVELOPMENT AND DIFFERENTIATION

  MicroRNAs (miRNAs) are small and non-coding single 

stranded RNAs. They consist of 18-23 nucleotides that are 

post-transcriptional regulators and transform cell fate 

through modulation of target-mRNA translation in various 

cells and tissues by binding partial sequences in the 3’ 

untranslated region of target genes. In other words, 

miRNAs are known to control a variety of biological events 

such as growth, development, differentiation, oncoge-

nesis, angiogenesis and cell cycle by regulating gene 

expression. They function through diverse mechanisms 

including inhibition of translation elongation and degra-

dation of target mRNAs.111-114 

  Mechanisms of oncogenesis are very complex with 

genetic and epigenetic processes changing expression of 

oncogenic and tumor suppressor genes via various me-

chanisms. An example of one epigenetic factor is miRNAs 

involved in the initiation and progression of tumors 

through effects on oncogenes and tumor suppressor 

genes.115,116 For example, the deletion and down- 

regulation of miR-15a and miR-16-1 causes overex-

pression of BCL2 gene that is frequently shown to increase 

in level of expression in various human cancers through 

actions as an anti-apoptotic gene.117 In addition, let-7 

family members, first demonstrated to be onco- miRNAs, 

regulate the expression of the RAS oncogene that usually 

shows highly increased levels in lung cancer cells as 

compared to normal cells due to mutations in RAS genes.118 

So, transfection of let-7 in lung cancer cells can protect 

from development of lung cancer or reduce tumor size if 

cells have RAS mutations.116 Moreover, the MYC oncogene 

which regulates cell proliferation and apoptosis induces 

B-cell cancer through correlation with miR-155.119,120 Also 

collaboration between MYC oncogene and miR-17-92 

causes amplification of B-cell tumorigenesis.121 Further-

more, it is remarkable that several miRNAs (miR-20, 

miR-92a, miR-93, miR-126, miR-132, miR-218 and miR- 

221) control intracellular signaling pathways downstream 

of vascular endothelial growth factors (VEGFs) that are 

remarkable regulators of vascular development and main-

tenance of carcinogenesis.114 

  The miRNAs also regulate gene expression at post- 

transcription levels in EOC. Compared with normal ova-

ries, abnormal expression of miRNAs has been demon-

strated in human EOC. For example, miR-200a, miR-200b, 

miR-200c and miR-141, miR-429 are expressed in the 

epithelial phenotype of cancer cells by targeting ZEB1 and 

ZEB2 that are E-cadherin repressor proteins and overex-

pressed in human endometrioid ovarian tumors.122,123 In 

addition, the expression of miR-21, miR-203 and miR-205 

is up-regulated in EOC as compared to normal ovaries of 

women and the abundance of these miRNAs increase 

considerably after treatment of 5-aza-2’-deoxycytidine to 

demethylate OVCAR3 cells.  These results suggest that DNA 

hypomethylation might be involved in the mechanism for 

over-expression of oncogenic miRNAs.123-125 On the other 

hand, there are down-regulated miRNAs leading to an 

increase in cellular events. For instance, miR-9, miR-15a, 

miR-22, miR-152 are suppressed in ovarian cancer cell 

lines and this repression is associated with increases 
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Gene Target miRNA Gene ID Accession No.

GAL11 gga-mir-1615 100315962 NR_035103.1

SERPINB3 gga-mir-101 777874 NR_031494.1
gga-mir-1668 100315917 NR_035161.1
gga-mir-1681 100315975 NR_035174.1

SPP1 gga-mir-140 777833 NR_031453.1

Table 1. Post-transcriptional regulatory microRNAs for prog-
nostic factors in epithelial-derived ovarian cancer in chickens

Fig. 1. Schematic illustrating me-
chanism for expression and func-
tion of regulatory genes for devel-
opment of the oviduct and for de-
velopment of epithelial-derived ova-
rian cancer. Carcinogens, DNA da-
mage, estrogen and ultra-violet 
light (UV) likely activate estrogen- 
and MAPK cascade signaling path-
way that regulate cell proliferation 
and differentiation, cell cycle pro-
gression and apoptosis in EOC 
through stimulation of expression 
of SERPINB3, SERPINB11, GAL11, 
SPP1 and A2M genes. Legend: RAS,
synaptic Ras-GTPase-activating pro-
tein; RAF, mitogen-activated pro-
tein kinase (MAPK) kinase kinase; 
MEK, MAPK kinase; ERK1/2, ex-
tracellular signal-regulated kinase;
ER, estrogen receptor; TF, tran-
scription factor.

invasion, migration and proliferation of the cancer 

cells.126-129 In chickens, several microRNAs were reported 

to regulate expression of their target genes that are related 

in the development of EOC (Table 1).130-132

  In accordance with previous studies, the cancer-related 

miRNAs expressed aberrantly or mutated in various can-

cers might have crucial roles as modifiers of expression of 

oncogenes or tumor suppressor genes that regulate their 

target genes.

CONCLUSION

  Ovarian carcinogenesis leads to dynamic alterations in 

morphology, physiology and function of the female re-

productive tract. Present review demonstrates general 

characteristics and animal model of EOC, and the function 

of prognostic factors (SERPINB3, SERPINB11, GAL11, SPP1 

and A2M) which are associated with and may be essential 

for development of EOC in women and laying hens. In 

addition indicated genes might be regulated by mecha-

nisms affecting both the genome and epigenome including 

post-transcriptional regulation via miRNAs and methy-

lation or demethylation of CpG sites of target genes. In 

addition, most suggested genes for detection of ovarian 

cancer are also related in the development of the chicken 

oviduct in response to estrogen which can act via its 

receptors to induce malignant transformations in cells of 

the ovaries. These results support the recently suggested 

hypothesis that oviduct developmental regulatory genes 

are critical regulators for development and differentiation 

of epithelial cells of the ovaries as they transition from the 

normal to the cancerous state during oncogenesis in wo-

men and laying hens. Collectively, present study revealed 

regulation of expression and function of five selected genes 

during progression of development of EOC and that their 

expression depends on transactivation of estrogen via 
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estrogen receptors as shown in Fig. 1.133 However, further 

studies are required to elucidate the clinical application of 

discoveries of these target genes in the diagnosis and 

treatment of EOC.
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