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Glioma is the common histological subtype of malignancy in the central nervous system, 
with high morbidity and mortality. Glioma cancer stem cells (CSCs) play essential roles in 
tumor recurrence and treatment resistance. Thus, exploring the stem cell-related genes 
and subtypes in glioma is important. In this study, we collected the RNA-sequencing 
(RNA-seq) data and clinical information of glioma patients from The Cancer Genome Atlas 
(TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. With the differentially 
expressed genes (DEGs) and weighted gene correlation network analysis (WGCNA), 
we identified 86 mRNA expression-based stemness index (mRNAsi)-related genes in 583 
samples from TCGA RNA-seq dataset. Furthermore, these samples from TCGA database 
could be divided into two significantly different subtypes with different prognoses based 
on the mRNAsi corresponding gene, which could also be validated in the CGGA database. 
The clinical characteristics and immune cell infiltrate distribution of the two stemness 
subtypes are different. Then, functional enrichment analyses were performed to identify 
the different gene ontology (GO) terms and pathways in the two different subtypes. 
Moreover, we constructed a stemness subtype-related risk score model and nomogram 
to predict the prognosis of glioma patients. Finally, we selected one gene (ETV2) from the 
risk score model for experimental validation. The results showed that ETV2 can contribute 
to the invasion, migration, and epithelial-mesenchymal transition (EMT) process of glioma. 
In conclusion, we  identified two distinct molecular subtypes and potential therapeutic 
targets of glioma, which could provide new insights for the development of precision 
diagnosis and prognostic prediction for glioma patients.
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INTRODUCTION

Gliomas are the most common primary malignant tumor of 
the central nervous system (Ostrom et  al., 2014). Therapeutic 
strategies, including surgery, chemotherapy, and radiotherapy, 
have been widely applied, but the overall outcome of glioma 
patients is still unsatisfactory (Bush et  al., 2017; Nabors et  al., 
2017). The heterogeneity of glioma is an account of the poor 
prognosis (Klughammer et  al., 2018). Thus, exploring the 
molecular mechanism of glioma may facilitate the identification 
of prognostic biomarkers and potential targets for the treatment 
of glioma.

Cancer stem cells (CSCs) are a subset of cancer cells with 
characteristics such as the ability to self-renew long-term, 
differentiate into defined progenies, and sustain tumor growth 
(Vlashi and Pajonk, 2015; Clarke, 2019). CSCs contribute to 
glioma recurrence, radioresistance, and chemoresistance through 
multiple molecular mechanisms (Prieto-Vila et al., 2017; Schulz 
et al., 2019). Therefore, a further understanding of the biological 
behavior of glioma stem cells may facilitate to changes in the 
treatment dilemma of glioma. Recently, the mRNA expression-
based stemness index (mRNAsi), which represents the 
transcriptomic stemness expression, has been applied to assess 
CSC characteristics (Malta et  al., 2018). In some cancers, such 
as bladder, lung, breast, or endometrial carcinoma, it has been 
reported that mRNAsi is a credible marker and is associated 
with tumor stage (Pan et al., 2019; Liu et al., 2020; Pei et al., 2020). 
However, its roles in glioma are rare known.

In this study, we  collected the RNA-sequencing (RNA-seq) 
data and clinical information of glioma patients from The Cancer 
Genome Atlas (TCGA) and Chinese Glioma Genome Atlas 
(CGGA) databases. We found that glioma patients could be divided 
into two significant stemness subtypes (S1 and S2 groups) based 
on mRNAsi-related genes. We  identified that the clinical 
characteristics, such as age, IDH status, and WHO grades, were 
different in the S1 and S2 groups. The tumor microenvironments 
in the two groups were also different. Furthermore, based on 
differentially expressed genes (DEGs) between the two stemness 
subtypes, a prognostic prediction model was constructed and 
could effectively divide patients into different prognoses in both 
TCGA and CGGA datasets. Finally, we selected one gene (ETV2) 
from the risk score model for further experimental validation. 
The results showed that ETV2 was more highly expressed in 
glioma and contributed to the invasion, migration, and epithelial-
mesenchymal transition (EMT) process of glioma. Thus, our 
study provides novel molecular subtypes based on the stemness 
index to predict prognosis in glioma patients who may promote 
the clinical diagnosis and treatment of glioma.

MATERIALS AND METHODS

Data Preparation
Figure  1 shows the workflow of data analysis. The RNA-seq 
data and corresponding clinical data of glioma (lower-grade 
glioma, LGGs and glioblastoma, GBM) and normal samples 
in TCGA database were downloaded from the UCSC Xena 

database1 (dataset ID: TCGA.GBMLGG.sampleMap/HiSeqV2). 
In addition, another glioma dataset (RNA-seq and clinical data) 
was downloaded from the CGGA2 (dataset ID: mRNAseq_693). 
The mRNAsi indices of glioma in TCGA were obtained from 
a previous study (Malta et  al., 2018). The tumor purity of 
glioma is calculated based on the Estimation of STromal and 
Immune cells in MAlignant Tumors using Expression data 
(ESTIMATE) algorithm, which can predict the level of infiltrating 
stromal and immune cells and then infer the tumor purity of 
tumor tissue (Yoshihara et  al., 2013).

Differentially Expressed Genes Analysis
The “limma” R package was utilized to perform the DEG 
analysis between glioma and normal samples in TCGA database. 
|Log2(Fold change)|  >  1 and false discovery rate (FDR)  <  0.05 
were considered as the cutoff criteria. The volcano plot was 
drawn to show the DEGs.

Weighted Gene Correlation Network 
Analysis
The selected DEGs were used in weighted gene correlation 
network analysis (WGCNA) by the WGCNA R package 
(Langfelder and Horvath, 2008). After filtering the outliers in 
RNA-seq data, a Pearson correlation matrix was constructed 
for paired genes. Then, we  established a weighted adjacency 
matrix by the power function amn  =  |cmn|β, as a previous 
study described (Yu et al., 2012). A proper β value was selected 
to increase the matrix similarity and establish a co-expression 
network. Next, the adjacency matrix was converted into a 
topological overlap matrix (TOM) to measure gene connectivity 
in the network. Based on TOM-based dissimilarity measurements, 
average linkage hierarchical clustering was performed with a 
minimum gene dendrogram size over 30. Finally, their 
dissimilarity was calculated, and module dendrograms were 
constructed for further analysis.

Gene significance (GS), representing the correlation between 
genes and sample traits, was calculated for each module. In 
the principal component analysis of each module, module 
eigengenes (MEs) were considered as the first principal 
component of a clustered module representing the gene expression 
profiles. Module membership (MM) was defined as the correlation 
between the module genes and gene expression profiles. In 
our study, mRNAsi and epigenetically regulated mRNAsi (EGER-
mRNAsi) were the selected clinical phenotypes for further 
analysis. When GS and MM were highly correlated (more 
than 0.7), the module’s own genes were considered as significantly 
correlated with clinical traits.

Consensus Clustering
After finding the genes highly correlated with mRNAsi and 
EGER-mRNAsi, we  performed consensus clustering to divide 
patients into different stemness subtypes based on these genes. 
The R package “ConsensusClusterPlus” was adopted to perform 

1 https://xena.ucsc.edu/public
2 http://www.cgga.org.cn/index.jsp
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the consensus clustering (Wilkerson and Hayes, 2010). 
The optimal number of subgroups was determined by the 
cumulative distribution function (CDF) and consensus matrices. 
In addition, the CGGA dataset was used to validate this clustering.

Protein-Protein Interaction Analysis
To explore the protein-protein interaction (PPI) network of 
the selected genes, they were imported into the STRING 

database,3 which is a web tool used to explore the interactions 
between multiple proteins.

Comparison of Stemness Subtypes
To investigate the difference between the two stemness subtypes 
in TCGA and CGGA datasets, we  used two-sample t-tests to 

3 https://string-db.org/

FIGURE 1 | Flowchart presenting the process of analysis.
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compare different clinical variables such as age, IDH status, 
and WHO grades in the subtypes. Moreover, stratified survival 
analysis in different WHO grades was also used to evaluate 
the prognostic predictive value of the stemness subtypes.

Profiling of Immune Infiltrates in the Two 
Stemness Subtypes
Becht et  al. (2016) designed the microenvironment cell 
populations-counter (MCP-counter) method, which can 
robustly quantify the absolute abundance of eight immune 
(T cells, CD8 T cells, cytotoxic lymphocytes, NK cells, B 
lineage, monocytic lineage, myeloid dendritic cells, and 
neutrophils) and two stromal cell (endothelial cells and 
fibroblasts) populations in heterogeneous tissues from 
transcriptomic data. The MCPs were analyzed by the 
“MCPcounter” R package. Based on this package, the 
proportions of eight tumor-infiltrating immune cells (T cells, 
CD8 T cells, cytotoxic lymphocytes, NK cells, B lineage, 
monocytic lineage, myeloid dendritic cells, and neutrophils) 
and two non-immune cells (endothelial cells and fibroblasts) 
were calculated based on the normalized RNA-seq data in 
TCGA and CGGA databases.

Functional Enrichment Analysis
First, DEG analysis between two stemness subtypes was 
performed. Then, Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses were performed with 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID) to explore the different mechanisms and 
pathways between the two subtypes (Huang et  al., 2009a,b).

Gene set enrichment analysis (GSEA) was performed between 
the two stemness subtypes with GSEA software. The reference 
gene set (c2.cp.kegg.v7.1.symbols.gmt) was acquired from the 
MSigDB database.4 Only enriched KEGG pathways with a 
p < 0.05 and FDR < 0.25 were considered statistically significant.

Construction and Validation of a Stemness 
Subtype-Related Prognostic Signature
First, DEG analysis between two stemness subtypes was 
performed in TCGA dataset as previously described. Then, 
univariate Cox hazard analysis was performed with p  <  0.05 
as a threshold parameter for the DEGs between the two 
stemness subtypes. By applying the “glmnet” R package, the 
least absolute shrinkage and selection operator (LASSO) 
algorithm was used to construct the stemness subtype-related 
prognostic signature (Goeman, 2010). This signature was 
created utilizing Cox regression coefficients to multiply the 
expression values of the select genes. According to the 
median of risk score, the patients were divided into high 
and low-risk groups. In addition, the time-dependent ROC 
curve and Kaplan-Meier survival curve analyses were used 
to evaluate the accuracy of the signature. The signature 
was also validated with CGGA dataset.

4 http://software.broadinstitute.org/gsea/msigdb/

Nomogram Construction
To evaluate the predictive value of the prognostic signature, 
univariate and multivariate Cox regression analyses were 
performed together with the clinical information (grade, age, 
sex, IDH1, and 1p/19q status). Then, a nomogram was constructed 
to predict the survival probability by using the “rms” R package 
(Yin et al., 2020). Calibrations were used to evaluate the accuracy 
of the nomogram.

Cell Culture, Real-Time Quantitative PCR
HEB, SHG44, and A172 glioma cells were provided by Xiangya 
Medical School of Central South University, Changsha, China. 
HEB, A172, and SHG44 cells were cultured in DMEM high 
glucose medium (Gibco/Thermo Fisher Scientific, Inc.) with 
10% fetal bovine serum at 37°C, 5%CO2. SiRNAs were transfected 
with Lipofectamine 2000 (Thermo Fisher Scientific) 48 h before 
analysis. The siRNAs against the ETV2 gene were synthesized 
by RiboBio Corporation (Product number: siG000002116A-1-5, 
Guangzhou, China). Total RNA from HEB, SHG44, and A172 
cells was extracted by the Trizol lysis method. cDNA synthesis 
was performed according to the Thermo Scientific RevertAid 
First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, 
MA). The RNA levels of ETV2 were detected by using real-
time quantitative PCR (qRT-PCR) according to the manufacturer’s 
protocol. The expression of ETV2 and GAPDH was analyzed 
by the 2-ΔΔCt method. The primers were obtained from Sangon 
(Shanghai, China) and the sequences were designed as follows: 
for ETV2, the forward primer was 5'-CTGGAAAGGTA 
CAAGCTCATCC-3' and the reverse primer was 5'-AACTTCTG 
GGTGCAGTAACGC-3'. For GAPDH, the forward primer was 
5'-CATTGACCTCAACTACATGGTT-3' and the reverse primer 
was 5'-CCATTGATGACAAGCTTCCC-3'.

Wound Healing and Transwell assay
Wound healing and transwell assays were performed as previously 
described (Jia et  al., 2018).

Western Blots
A172 and SHG44 cells were lysed with RIPA buffer for half 
an hour at 4°C. The supernatant was collected and boiled at 
95°C for 5–8  min in SDS loading buffer. Then, they were 
subjected to electrophoresis in 10% SDS-polyacrylamide gels 
and transferred to the polyvinylidene difluoride membranes. 
The membranes were blocked with 5% non-fat milk in phosphate-
buffered saline (PBS) for 1  h before being incubated with the 
primary antibody at 4°C overnight. The primary antibodies 
for western blotting used in this study were GAPDH, ETV2 
(ab181847, Abcam), N-cadherin (22018-1-AP, proteintech), and 
vimentin (10366-1-AP, Proteintech). Then the cells were washed 
three to four times with 0.1% PBST and incubated with 
horseradish peroxidase (HRP)-conjugated secondary antibody 
(1:10,000) for 1  h at room temperature. The membranes were 
washed in 0.1% PBST four times before exposure. 
Chemiluminescent HRP substrate was purchased from Millipore 
(Catalog: WBKLS0500). Images were acquired in a Bio-Rad 
Universal Hood II machine with Image Lab software.
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Immunohistochemistry
These experiments were approved by the Human Ethics 
Committee of Xiangya Hospital, and informed consent was 
obtained from all patients. Based on polyformalin-fixed and 
paraffin-embedded tissues obtained from GBM patients, 
immunohistochemistry analysis was conducted. The tissue 
sections were first deparaffinized and hydrated for antigen 
retrieval. They were then incubated with 0.3% hydrogen peroxide 
for 10  min at room temperature and washed twice with PBS. 
After blocking with 5% goat serum for 10  min, the sections 
were washed with PBS and incubated overnight with a primary 
antibody against the ETV2 antibody (1:100, Abcam, ab181847) 
at 4°C. A horseradish peroxidase-labeled secondary antibody 
(1:400, Abcam, United  States) was added dropwise to the 
sections, and incubation was carried out at 37°C for 30  min. 
After washing with PBS, the sections were developed using a 
DAB substrate kit (Sangon Biotech, Shanghai, China) and 
counterstained with hematoxylin (Sangon Biotech).

Statistical Analysis
The R software (version 3.5.1) and GraphPad Prism (version 
7.0.0) were used in statistical analyses, and a p  <  0.05 was 

considered significant. The log-rank test was conducted in the 
Kaplan-Meier survival analysis. The Student’s t-test was used 
to compare two groups comparing.

RESULTS

The mRNAsi and Clinical Characteristics in 
Glioma
mRNA expression-based stemness index is a useful indicator 
that can estimate the number of CSCs by assessing the 
similarity and heterogeneity between the tumor cells and stem 
cells. To explore mRNAsi in glioma, the mRNAsi between 
normal and glioma samples was calculated using TCGA 
dataset. However, there was no significant difference of mRNAsi 
between normal and tumor samples (Figure  2A). Next, the 
correlation between mRNAsi and WHO grades was analyzed. 
The results showed that different stages of glioma had 
significantly different mRNAsi values (Figure 2B). Furthermore, 
the predictive potency of mRNAsi for patient survival prediction 
was also examined. The Kaplan-Meier analysis showed that 
higher mRNAsi was significantly associated with a better 
prognosis of glioma patients (Figure  2C).

A B C

D E F

FIGURE 2 | The mRNA expression-based stemness index (mRNAsi), corrected mRNAsi and clinical characteristics in glioma. (A) The expression level of mRNAsi in 
normal (five samples) and tumor (606 samples) tissues. (B) Expression level of mRNAsi in gliomas of different WHO grades. (C) Kaplan-Meier survival analysis of the 
relationship between mRNAsi and overall survival (OS). (D) The expression level of corrected mRNAsi (mRNAsi/tumor purity) in normal (five samples) and tumor (583 
samples) tissues (23 samples cannot calculate the tumor purity). (E) The expression level of corrected mRNAsi in glioma of different WHO grades. (F) Kaplan-Meier 
survival analysis of the relationship between corrected mRNAsi and OS.
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Because tumor tissues consist of not only tumor cells but 
also stromal and immune cells, it reminds us that tumor purity 
is an important factor interfering with the evaluation of mRNAsi 
in clinical characteristics. To exclude the potential confounding 
effect of tumor purity on the analysis, the corrected mRNAsi 
(mRNAsi/tumor purity) was calculated as previously reported 
(Pan et  al., 2019). We  reanalyzed the corrected mRNAsi in 
normal and glioma samples, but still found no significant difference 
between them (Figure 2D). However, we found that the corrected 
mRNAsi values were positively correlated with WHO grades of 
glioma (Figure 2E). Moreover, we found that patients with higher 
corrected mRNAsi values had poor prognosis (Figure  2F).

Screening of DEGs and Identification of 
Key Genes-Related to mRNAsi
First, DEG analysis was performed to compare glioma and 
normal samples. From this analysis, 3,918 DEGs were 
screened, of which 1,409 were upregulated, and 2,509 were 
downregulated (Figure  3A).

To identify the key genes related to mRNAsi, WGCNA 
analysis was applied based on the selected DEGs. In total, 
we  identified 11 modules (Figures  3B,C), among which the 
blue and magenta modules exhibited positive correlations with 
mRNAsi and the red module showed a negative correlation 
with mRNAsi, with the correlations greater than 0.5 or less 
than −0.5 (Figure 3D). After calculating the correlations between 
GS and MM of the three modules, we found that the correlations 
between GS and MM in the red and magenta modules were 
highly correlated (more than 0.7; Figures  3E,F). Therefore, 
the two modules were chosen for further analyses.

Molecular Subtypes of Glioma Based on 
mRNAsi-Related Genes
In total, the expression profiling of 86 mRNAsi-related genes 
in 583 samples from TCGA RNA-seq dataset was obtained. 
The clinical features of these patients are shown in Table  1. 
Consensus clustering was performed in the 584 samples, and 
patients could be divided into two significantly different subtypes 
(S1 and S2 groups; Figures  4A–C). The heatmap of the two 
subtypes is also been shown in Figure  4D. Compared with 
patients in the S1 group, glioma patients in the S2 group 
showed a shorter overall survival (OS; p  <  0.0001; Figure  4E). 
The PPI network analysis showed that most of the mRNAsi-
related genes were closely correlated and centered on the 
stemness-related molecules, such as CD44, CD68, IL6, and 
CXCR4 (Wang et al., 2019; Ma et al., 2020; Osman et al., 2020).

To validate that mRNAsi-related genes could predict prognostic 
subtypes, the same method with consensus clustering was 
applied to the CGGA dataset. Interestingly, the patients also 
could be  divide into two distinct subtypes (S1 and S2 groups; 
Figures  5A–C). Patients in the S2 group also had significantly 
worse OS (p  <  0.0001; Figure  5D).

Clinical Characteristics of Two Stemness 
Subtypes in the Glioma
To identify the clinical characteristics of the two stemness 
subtypes, we  compared the age, IDH status, and WHO grades 

of the two stemness subtypes in TCGA dataset. There were 
significantly more elderly patients (age  >=  60) in the S2 group 
than in the S1 group (p  <  0.0001; Figure  6A). Moreover, 
we  found that the S1 group had more patients with IDH 
mutantions (p < 0.0001; Figure 6B). Furthermore, the S1 group 
had more patients with WHO grade II glioma and fewer 
patients with WHO IV glioma. However, the S2 group had 
more patients with WHO grade IV glioma and fewer patients 
with WHO II glioma (p < 0.0001; Figure 6C). More importantly, 
these clinical characteristics of the two stemness subtypes could 
also be  validated in the CGGA dataset (Figures  6D–F).

Subsequently, we  evaluated the prognostic predictive value 
of the stemness subtypes in different grades. Considering that 
almost all the WHO IV glioma patients belong to the S2 group, 
survival analyses were only performed in patients with WHO 
grade II and III glioma. Stratified survival analyses showed that 
patients in the S2 group have a better prognosis than patients 
in the S1 group in both WHO II and III glioma patients in 
TCGA database (Figure  6G) and CGGA database (Figure  6H).

Immunological Microenvironment in 
Stemness Subtypes of Glioma
The tumor microenvironment consists of the stromal and 
immune cells and plays a vital role in the aggressiveness of 
solid tumors. To measure the level of infiltrating immune cells 
in the tumor microenvironment, we  also used MCP-counter 
estimates to examine the glioma samples in TCGA database. 
MCP analysis demonstrated that tumor-associated fibroblasts 
(CAFs) were significantly higher in the S2 group than in the 
S1 group (Figures 7A,B). Moreover, there was a similar finding 
in the CGGA dataset (Figures  7C,D).

Functional Enrichment Analysis Between 
Two Stemness Subtypes
To explore potential vital molecules and pathways contributing 
to different subtypes, we  performed GO, KEGG, and GSEA 
analysis between the two stemness subtypes. Figures 8A–C shows 
the top  20 enriched GO terms in biological processes (BP), 
cellular components (CC), and molecular functions (MF). GO 
analysis revealed that immune response and cell adhesion were 
the main terms involved in BP; plasma membrane and extracellular 
matrix were significantly enriched in CC; calcium ion binding 
and channel activity were most enriched in MF (Figures 8A–C). 
The results of the KEGG pathway analysis showed that cell 
adhesion and immunological related pathways were mainly 
enriched (Figure  8D). GSEA showed the significantly enriched 
hallmark terms, including complement and coagulation cascades, 
cytokine receptor interaction, intestinal immune network for 
IgA production, and primary immunodeficiency (Figure  8E).

Development and Validation of a Stemness 
Subtype-Related Prognostic Signature
Among the 3,129 candidate DEGs between the two stemness 
subtypes in TCGA dataset, 3,118 were identified as 
being independently associated with OS in univariate Cox 
regression analysis. The top  20 genes were used to perform 
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A

C D

E F

B

FIGURE 3 | Screening of critical genes related by mRNAsi. (A) Volcano plot of differentially expressed genes (DEGs); red represents upregulated genes, 
and green indicates downregulated genes. (B,C) Weighted gene correlation network analysis (WGCNA) of DEGs. Different colors represent different 
modules. (D) Correlation analysis of the modules and clinical traits with mRNAsi or EREG-mRNAsi. Scatter plot analysis of modules in the red (E) and 
magenta (F) modules.
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multivariate Cox analysis. Based on the results of LASSO Cox 
regression analysis, a stemness subtype-related prognostic 
signature was developed. The risk score was calculated as 
follows: [Expression of PTRF  ×  0.08845  +  Expression of 
ELF4  ×  0.01153  +  Expression of ELF5  ×  0.2005  +  Expression 
of BTN2A2  ×  0.06099  +  Expression of HMX1  ×  (−0.04178)   
+  Expression level of FAAH  ×  (−0.13481)  +  Expression of 
RGS16 × 0.10462 + Expression of IL4I1 × 0.12804 + Expression 

of LUZP2  ×  (−0.08583)  +  Expression of PLAT  ×  0.2138   
+  Expression of ETV2  ×  0.15523].

In this prognostic signature, eight genes were negatively associated 
with OS, and three were positively associated with OS (Figure 9A). 
Based on this prognostic signature, the risk score for each patient 
was calculated. According to the median cutoff value of risk 
scores, all patients were divided into high‐ and low-risk groups 
in both the training (TCGA dataset) and validation cohorts (CGGA 
dataset). The distribution of living status and time for each patient 
in the training and validation cohorts are shown in Figures 9B,C. 
Patients in the high-risk group had a shorter OS than patients 
in the low-risk group in the training cohort (p < 0.001; Figure 9D). 
The time-dependent ROC curve analysis showed that the AUC 
values of 1, 3, and 5  years were 0.897, 0.892, and 0.826  in the 
training cohort, respectively (p < 0.001; Figure 9E). Furthermore, 
glioma samples (both LGGs and GBM) with an IDH1-mutant 
type have lower risk scores than IDH1wild-type samples, and 
the risk scores in LGGs with IDH1-mutant and 1p/19q codeletion 
samples have lower risk scores than IDH1-mutant and 1p/19q 
non-codeletion samples (Figure  9F). Moreover, we  assessed this 
risk score formula in the CGGA dataset and also found that 
patients with high-risk scores had poor prognosis in the validation 
cohort (p  <  0.001; Figure  9G). The time-dependent ROC curve 
analysis showed that the AUC values of this risk score formula 
at 1, 3, and 5 years were 0.779, 0.858, and 0.822  in the validation 
cohort, respectively (Figure 9H). The risk scores were also consistent 
well with the molecular subtypes of glioma (Figure  9I).

Development and Evaluation of the 
Nomogram
In the univariate Cox analysis, the results showed that the 
risk score, grade, age, IDH status and 1p/19q status were 
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FIGURE 4 | The mRNAsi-related genes could classify glioma into two groups by consensus clustering of TCGA dataset. (A) Cumulative distribution function (CDF) 
for k = 2 to k = 6. (B) Relative change in area under the CDF curve according to different k values. (C) Consensus clustering matrix of 583 samples from TCGA 
dataset for k = 2. (D) Heatmap of two clusters defined by the expression of mRNAsi genes. (E) Survival analysis of patients in the S1 group and S2 group in TCGA 
cohort. (F) Protein-protein interaction (PPI) network of the mRNAsi-related genes.

TABLE 1 | Clinical characteristics of 583 glioma patients from The Cancer 
Genome Atlas (TCGA) cohort included in this study.

Variables Number (%)

Vital status
Alive 370 (63.46%)
Dead 213 (36.54%)
Age

<60 460 (78.90%)
≥60 123 (21.10%)
Sex

Female 248 (42.54%)
Male 335 (57.46%)
Tumor grade

WHO II 224 (38.42%)
WHO III 238 (40.82%)
WHO IV 121 (20.76%)
Molecular subtypes

IDH mutant and 1p/19q codeletion (LGG) 145 (24.87%)
IDH mutant and 1p/19q non-codel (LGG)

IDH wildtype (LGG)

IDH mutant (GBM)

IDH wildtype (GBM)

234 (40.14%)

80 (13.73%)

7 (1.20%)

101 (17.32%)
Others 16 (2.74%)

LGG, lower-grade glioma; GBM, glioblastoma.
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significantly associated with OS. Then, we  performed 
multivariate Cox regression analyses and the results showed 
that risk score (HR 1.612; 95% CI 1.258–2.067; p  =  1.62E-
04), grade (HR 1.488; 95% CI 1.111–1.995; p  =  7.76E-03), 
age (HR 1.035; 95% CI 1.022–1.048; p  =  8.85E-08), and 
1p/19q status (HR 0.571; 95% CI 0.333–0.980; p  =  0.042) 
were independently related to OS (Figure  10A). Based on 
the risk score and independent prognostic factors (grade, 
age, and 1p/19q status) in TCGA dataset, we  constructed a 
nomogram model to predict the prognosis of glioma 
(Figure  10B). The calibration plot showed that the predicted 
values of OS at 1-, 3-, and 5-years for glioma patients had 
a good correlation with the actual values (Figure 10C). Then, 
the ROC curve analysis of the nomogram also showed a 
satisfactory evaluation for sensitivity and specificity with a 
1-year AUC of 0.909, 3-years AUC of 0.922, and 5-year AUC 
of 0.874 (Figure  10D).

ETV2 Is Involved in the Migration, Invasion, 
and EMT Process of Glioma Cells
Among the eight genes that were negatively associated with 
OS, we tested the expression of ETV2 in clinical tissue samples 

and glioma cell lines. First, we tested the expression of ETV2 in 
clinical tissue samples with immunohistochemistry. We  found 
that the expression of ETV2  in clinical patients was correlated 
with WHO grade (Figure  11A). We  also tested the expression 
of ETV2  in the SHG44 and A172 cell lines with q-PCR, and 
the expression of ETV2 in glioma cell lines (SHG44 and A172) 
was higher than that in the normal human cell line (HEB; 
Figure  11B). Next, we  evaluated the effect of ETV2 on glioma 
cancer cell migration and invasion. Our results revealed that 
ETV2 knockdown dramatically impaired the cell migration 
ability of SHG44 and A172 cells relative to the control 
(Figures  11C,D). In in vitro invasion assays, the invasion 
potential was obviously suppressed due to the depletion of 
ETV2 (Figures  11E,F). These findings showed that ETV2 was 
a significant oncogene associated with the metastatic phenotypes 
of glioma cells.

EMT may promote the increased migratory capacity and 
invasiveness of tumor cells (Zhang et  al., 2020b). Therefore, 
we  investigated whether ETV2 mediates EMT in glioma. 
Considering the reduction in epithelial cells, E-cadherin was 
poorly expressed in glioma, so we  tested the expression of 
vimentin and N-cadherin to analyze the EMT process in 

A B
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FIGURE 5 | The mRNAsi-related genes could classify glioma into two groups by consensus clustering of the Chinese Glioma Genome Atlas (CGGA) dataset. 
(A) CDF for k = 2 to k = 6. (B) Relative change in area under the CDF curve according to different k values. (C) Consensus clustering matrix of 408 samples from 
TCGA dataset for k = 2. (D) Survival analysis of patients in the S1 group and S2 group in TCGA cohort.
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glioma (Liu et  al., 2019). The expression of a mesenchymal 
marker, N-cadherin, decreased after ETV2 knockdown via 
siRNA. Vimentin is an intermediate filament protein that plays 
key roles in the integration of cytoskeletal functions and cellular 
migration. N-cadherin was also decreased after ETV2 knockdown 
both in both SHG44 and A172 cells. These results indicated 
that ETV2 is required for the EMT process of glioma.

DISCUSSION

Glioma is the most common and invasive primary brain tumor 
in adults. Tumor recurrence and treatment resistance are the 
obstacles to the treatment of glioma. CSCs play essential roles 
in these processes. Investigating the characteristics of CSCs 
may facilitate diagnosis, treatment, and prognostic prediction 
(Chai et al., 2018). In this study, we found that novel molecular 
subtypes, which based on the stemness index, could effectively 
predict prognosis in glioma patients. Moreover, the clinical 
characteristics (age, IDH status, and WHO grades) and tumor 
microenvironment of the two stemness subtypes are different. 
This typing could also be  validated by the external dataset. 

Based on the DEGs of the two subtypes, we  established a risk 
score model and a nomogram that could effectively predict 
the OS of glioma patients. Finally, we selected one gene (ETV2) 
from the risk score model for experimental validation. To our 
knowledge, this is the first study to provide a new type of 
glioma based on the mRNAsi-related genes.

Cancer stemness signatures, which are based on gene 
expression differences, have been applied to assess the clinical 
prognosis of some types of tumors (Ben-Porath et  al., 2008; 
Eppert et  al., 2011; Pinto et  al., 2015). In 2018, Malta et  al. 
(2018) proposed the conception of mRNAsi, which is considered 
as a more comprehensive index to uncover the characteristics 
of CSCs. Subsequently, mRNAsi was widely applied to reveal 
the stemness-related characteristics of different cancers, such 
as lung cancer (Qin et  al., 2020; Zhang et  al., 2020a), bladder 
cancer (Pan et  al., 2019), endometrial carcinoma (Liu et  al., 
2020), medulloblastoma (Lian et  al., 2019), and breast cancer 
(Pei et  al., 2020). Moreover, mRNAsi was also used to identify 
the prognostic biomarkers and therapeutic targets associated 
with CSC characteristics of glioma (Lvu et  al., 2020; Xia et  al., 
2020). Compared with a previous study, we  performed the 
consensus clustering and identified novel molecular subtypes 
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FIGURE 6 | Comparison of the clinical characteristics between the two subtypes using TCGA and CGGA datasets. Histograms to showing that the S2 
group of TCGA dataset had significantly more elderly patients (A) and more patients with IDH wild-type (B). (C) Pie charts show that the S2 group of TCGA 
datasets has more patients with WHO grade IV glioma and fewer patients with WHO II glioma than the S1 group (p < 0.001). Histograms to show that the 
S2 group of CGGA dataset has significantly more elder patients (D) and more patients with IDH wild-type (E). (F) Pie charts show that the S2 group of 
TCGA datasets has more patients with WHO grade IV glioma and fewer patients with WHO II glioma than the S1 group (p < 0.001). (G) Kaplan-Meier 
survival curve of S1 and S2 group in different WHO grades (TCGA dataset). (H) Kaplan-Meier survival curve of S1 and S2 group in different WHO grades 
(TCGA dataset).
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(S1 and S2 group) of glioma based on mRNAsi-related genes. 
We also constructed a nomogram model to predict the prognosis 
of glioma, which has potential for clinical application. More 
importantly, we performed some in vitro experiments to confirm 
the function of ETV2  in glioma cells.

Gliomas are the most frequent intrinsic tumors of the 
central nervous system. In the revised fourth edition of the 
WHO classification of CNS tumors published in 2016, the 
status of IDH and 1p/19q codeletion was applied in classification 
(Zhang et  al., 2013). In our study, patients in subtype I  (S1 
group) were younger, more likely to have IDH-mutant status, 
lower WHO grades and poor prognosis than those in the 
subtype II (S2 group). Based on our risk score model, we found 
that glioma samples (both LGGs and GBM) with an 

IDH1-mutant type have lower risk scores than IDH1wild-type 
samples, and the risk scores in LGGs with IDH1-mutant and 
1p/19q codeletion samples have lower risk scores compared 
with than IDH1-mutant and 1p/19q non-codeletion samples. 
The immunological microenvironments between the two 
subtypes were also different. Gliomas in subtype II (S2 group) 
are more likely to have a higher proportion of tumor-related 
immune and stromal cells, especially CAFs. CAFs, one of 
the main cellular components of the tumor microenvironment, 
play an important role in promoting cancer cell invasion 
and dissemination (Hurtado et al., 2020). These results indicated 
that this new typing could provide novel mechanistic and 
clinical insights for the diagnosis, treatment, and prognostic 
prediction of glioma patients.

A B

C D

FIGURE 7 | The immune cell infiltrate distribution of the two stemness subtypes. (A) Heatmap of immune infiltration cells in the two stemness subtypes of TCGA 
dataset. (B) The proportion of cancer-related fibroblasts in S1 and S2 group of TCGA dataset. ***represents p value of less than 0.001. (C) Heatmap of immune 
infiltration cells in the two stemness subtypes of CGGA dataset. (D) The proportion of cancer-related fibroblasts in S1 and S2 group of CCGA dataset. ***represents 
p value of less than 0.001.
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FIGURE 8 | Functional enrichment analysis between two stemness subtypes of TCGA dataset. (A) The top 20 terms of biological processes (BP) in DEGs of two 
stemness subtypes. (B) The top 20 terms of cellular components (CC). (C) The top 20 terms of molecular functions (MF). (D) The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway in DEGs of two stemness subtypes. (E) The top four significantly enriched pathways of gene set enrichment analysis (GSEA).
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FIGURE 9 | Construction and validation of the stemness subtype-related risk score model. (A) The 11 genes were selected by least absolute shrinkage and 
selection operator (LASSO) Cox analysis in TCGA dataset. Risk scores and living status for each patient in the training cohort (B) and the validation cohort (C). 
(D) Kaplan-Meier curves of the OS of each patient in the training cohort. (E) Time-dependent ROC curve analysis of the risk score model in the training cohort 
(TCGA dataset). (F) The risk score distributions in different molecular subtypes of glioma (TCGA dataset). (G) Kaplan-Meier curves of the OS of each patient in the 
validation cohort (CCGA dataset). (H) Time-dependent ROC curve analysis of the risk score model in the validation cohort (CCGA dataset). (I) The risk score 
distributions in different molecular subtypes of glioma (CGGA dataset). ***p < 0.001 and ****p < 0.0001.
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Functional enrichment analysis of the DEGs between two 
stemness subtypes showed that immune and ECM-related 
GO terms and pathways were mainly enriched. This implied 
that the immunological microenvironment and ECM 
components might have a close relationship with the stemness 
characteristics of glioma. Previous studies have shown that 
glioma stem cells interact with immune cells and simulate 
the early microenvironment during tumorigenesis (Zhai et al., 
2020). CSCs can protect cancer cells from immune attack 
by producing immune inhibitory factors to communicate with 
tumor microenvironment components (Khosravi et al., 2020). 

Moreover, CSCs contribute to glioma invasiveness, which is 
closely correlated with the extracellular matrix (Ortensi et al., 
2013). These findings were in accordance with our findings.

In the present study, we also developed a stemness subtype-
related prognostic signature. There were 11 essential prognostic 
genes in this signature, which have not been reported in 
previous glioma stemness index related publications (Lvu et al., 
2020; Xia et  al., 2020). Our results are a good supplement to 
the existing research about the prognosis prediction of patients 
with glioma. Among the three prognostic genes that were 
positively associated with OS, LUZP2 is a protein limitedly 
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FIGURE 10 | The nomogram based on TCGA dataset for survival prediction in glioma patients. (A) Univariate and multivariate Cox regression analysis of clinical 
features. (B) Development a nomogram for the quantitative prediction of 1-, 3-, and 5-years survival for LGG patients. (C) The calibration curves for predicting 
glioma patient 1-, 3-, 5-years survival. (D) The 1-, 3-, and 5-year time-dependent ROC curves of the nomogram.
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FIGURE 11 | ETV2 is involved in the migration, invasion, and epithelial-mesenchymal transition (EMT) process of glioma cells. (A) Expression of ETV2 in IHC 
stained images of glioma tissues compared with adjacent non-tumor tissues was showed. For quantification, three para-cancerous tissues and five glioma sample 
for tumor groups were counted, mean values with SD are given, p-value is calculated by unpaired t-test, **p < 0.01 and ***p < 0.001. (B) q-PCR showed the relative 

(Continued)
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expressed in the brain and spinal cord. A recent study showed 
that low LUZP2 expression independently predicted poor OS 
in LGG (Li et  al., 2020). Fatty-acid amide hydrolase (FAAH), 
an intracellular serine hydrolase, plays an important role in 
the inhibition of stem cell migration (Wollank et  al., 2015). 
Among the eight genes that were negatively associated with 
OS, ETV2, ELF5, IL4I1, and BTN2A2 were novel prognostic 
biomarkers for glioma, which have not yet been reported yet. 
ETV2 is a critical factor for vascular development and 
regeneration, which may contribute to tumorigenesis (Baltrunaite 
et  al., 2017; Choi, 2018). In GBM, ETV2 is sufficient and 
necessary for the trans-differentiation of GBM stem cells to 
an endothelial lineage (Humm and Sylvia, 1965). In our study, 
we  found that ETV2 is negatively associated with OS. The 
expression of ETV2 is closely associated with WHO grade. 
More importantly, in vitro experiment revealed that ETV2 is 
involved in the migration, invasion, and EMT process of glioma 
cells. ELF5 is an epithelial-specific member of the E26 
transforming sequence (ETS) transcription factor family, which 
plays critical roles in malignancy, particularly in basal-like and 
endocrine-resistant forms of breast cancer (Piggin et  al., 2016; 
Singh et  al., 2020). IL4I1 and BTN2A2 are both involved in 
the regulation of the immunologic microenvironment in different 
tumors (Smith et al., 2010; Sarter et al., 2016; Molinier-Frenkel 
et  al., 2019; Sadik et  al., 2020). However, what is their roles 
in tumorigenesis and progression of glioma are still need 
further investigation.

There were some limitations in our study. First, there were 
only very limited normal samples (only five normal samples) 
included in our study, which might lead to there being no 
difference in mRNAsi between normal and tumor samples. 
Second, DEG analysis might neglect some potential mRNAs 
that were closely related to the mRNAsi. Third, this study is 
a retrospective study, and the stemness-related typing of glioma 

should be  further confirmed by prospective studies. Finally, 
the underlying mechanisms of the selected genes in the model 
affecting the prognosis of glioma should be elucidated by more 
experiments in vivo.

In this study, we  identified two distinct stemness-related 
molecular subtypes of glioma, which could provide new insights 
for the development of precision diagnosis and prognostic 
prediction for glioma patients. Moreover, we  developed a 
stemness subtype-related prognostic signature that could 
effectively predict the prognosis of glioma patients.
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