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Intra-tumoral heterogeneity (ITH) is a critical factor leading to aggressive progression and
response to immunotherapy in lung adenocarcinoma (LUAD). However, the relationship
between ITH and immune cells in the tumor microenvironment (TME) has not been
systematically elucidated. In the present study, we evaluated the ITH status of LUAD
samples based on themutational data obtained from The Cancer Genome Atlas database.
First, we identified five key immune pathways with a significantly continuous downtrend
among normal, low-heterogeneous, and high-heterogeneous samples and further
excavated nine key immune cells related to the key immune pathways and tumor
heterogeneity. Then, two immune subtypes were defined by a consensus clustering
algorithm based on the infiltration of these immune cells. Differences between these two
immune subtypes were remarkable, including alterations of tumor mutation burden and
DNA copy number variation at the genomic level, various metabolic pathways, and the
different clinical outcome, which was also validated in two independent Gene Expression
Omnibus datasets. The results revealed that ITH was significantly associated with
prognosis and infiltrating immune cells in the TME. Our study provides novel insights in
understanding the relationship between ITH and immune cells and contributes to the
immunotherapy of LUAD patients.
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INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer and the leading
cause of cancer-related deaths worldwide (Bray et al., 2018). With the advances in diagnostic and
therapeutic strategies, the prognosis of LUAD patients has been significantly improved. Recent studies
have shown that LUAD emerges and develops under strong evolutionary pressures from immune,
metabolic, and therapeutic factors (Zhang et al., 2019; Liu et al., 2020; Hu et al., 2021). Of note, this
pressure promotes the diversification of malignant cells in the tumor microenvironment (TME),
ultimately leading to intra-tumoral heterogeneity (ITH). Substantial evidence showed that ITH has a
significant impact on the efficacy of various immunotherapies (Vitale et al., 2021). The infiltrating
immune cells in the TME are critical factors affecting tumor growth and progression, thus being regarded
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as a promising target in anti-cancer immunotherapy (Shen and Ren,
2018; Feng et al., 2020). Therefore, characterization of the dynamic
changes of infiltrating immune cells and ITH in the TME is of great
importance for understanding immune response and provides novel
insights into cancer immunotherapy.

In recent years, significant progresses have been made in
understanding the formation and function of ITH. ITH is
currently known to be crucial for cancer cell progression and
is highly associated with abnormal genetic events including
tumor mutational burden (TMB), aneuploidy, and metabolic
dysfunction. Considerable genetic variations may occur in
different regions within the same tumor, which is known as
spatial ITH. Meanwhile, ITH within the same region of the tumor
tissue may vary significantly over time with cancer progression.
These indicated that ITHwithin the tumor may evolve in a spatial
and temporal manner. Recent studies demonstrated that ITH
might drive tumor development, which is an evolutionary process
involving the interplay between tumor cells and the local immune
microenvironment (Berglund et al., 2021). A report has shown
that immune-related pathways can play a crucial role in the
communication between tumor cells and immune cells in the
TME (Hasso-Agopsowicz et al., 2018; Andresen et al., 2019).
Thus, the plasticity of immune cells and major components in the
TMEmay have been deeply influenced by ITH. Therefore, further
studies about the impact of ITH on immune cells in the TME are
essential for the development of effective immunotherapy.

In this study, we characterized distinct immune subtypes of
LUAD by identifying ITH-related immune pathways and
immune cells. We found that these immune subtypes were
different in mutation burden, copy number variation (CNV),
immune cell infiltration, significant mutation genes, and
prognosis. Taken together, this study will provide theoretical
evidence for personalized immunotherapy to improve the clinical
outcome of LUAD patients.

MATERIALS AND METHODS

Lung Adenocarcinoma Patient Cohorts
The transcriptome profile, somatic mutation data, CNV data, and
clinical data of lung adenocarcinoma were all downloaded from The
Cancer Genome Atlas (TCGA) database (http://cancergenome.nih.
gov/) (Cancer Genome Atlas Research Network, 2008). The
transcriptome profile included 59 normal samples and 535 cancer
samples. Somatic mutation data covered 568 cancer samples. In
addition, two other cohorts were obtained from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),
including the GSE26939 dataset which has 116 patients and the
GSE68465 dataset which has 433 patients.

Calculation of Intratumoral Heterogeneity
The heterogeneous level of each tumor sample was evaluated by
the MATH (Mutant-Allele Tumor Heterogeneity) Score (Mroz
and Rocco, 2013) using the “infer Heterogeneity” method in the
maftools package (Mayakonda et al., 2018) based on the
mutational data of LUAD patients obtained from the TCGA
database.

Evaluation of the Activity Score for Each
Immune Pathway
We collected the immune pathways and the pathway-related
genes from the KEGG (https://www.genome.jp/kegg) database.
In total, we obtained 20 types of immune pathways (Kanehisa
et al., 2017). For each immune pathway, we evaluated its activity
score in a sample group or in a sample by two approaches, as
described below, based on the expression profile.

Evaluation of Immune Pathway Activity Score by the
Jason W. Locasale Method
The activity scores of 20 immune pathways in each group (normal
group, low-heterogeneous group, and high-heterogeneous group)
were calculated with the method of Jason W. Locasale (Xiao et al.,
2019). First, we transformed the FPKM normalization data to the
TPM values, deleted those genes with more than 50% missing values
across samples, and log2-transformed the expression profile. Then, for
each immune pathway in a group, the activity score was calculated by
the weighted summation of the relative expression value of genes in
the pathway.

First, for each gene in immune pathways, we calculated its
average expression level in the j-th heterogeneous group:

Ei,j � ∑
nj
k�1gi,k

nj
, i ∈ 1/M, j ∈ 1/N

where nj is the number of samples in the jth heterogeneous group,
gi,k is the expression level of the i-th gene in the k-th sample in
this heterogeneous group, M is the number of immune-related
genes, and N is the number of heterogeneous groups. In our
study, M and N are 20 and 3, respectively.

Second, the relative expression level of the i-th gene in the j-th
heterogeneous group was then defined as the ratio of Ei,j to its
average value over all heterogeneous groups:

ri,j � Ei,j

1
N∑

N
1 Ei,j

ri,j quantifies the relative expression level of gene i in the
heterogeneous group j.

Finally, the activity score pt,j of the t-th immune pathway in
the j-th heterogeneous group is defined as the weighted average of
ri,j of all genes contained in the t-th immune pathway:

pt,j � ∑
mt
i�1wi × ri,j
∑

mt
i�1wi

mt is the number of genes in the t-th immune pathway, wi is
the weighting factor of the i-th gene, and wi is equal to the
reciprocal of the number of the i-th gene in all immune pathways.

Through the three calculation steps above, we finally obtained
the activity score of each immune pathway in three groups.

Evaluation of Immune Pathway Score by the Single
Sample Gene Set Enrichment Analysis Algorithm
In addition to the method described above, we also used the single
sample gene set enrichment analysis (ssGSEA) algorithm to
evaluate the activity score of each immune pathway in each
sample across different groups (Barbie et al., 2009).
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The Infiltration of Immune Cells in Samples
We obtained 28 immune cells and the related 782 marker genes
from Trajanoski Z et al. (Charoentong et al., 2017). These marker
genes were expressed in specific immune cells (Supplementary
Table S1). Then, the ssGSEA algorithm was used to evaluate the
infiltrative level of each immune cell in one sample based on the
expression profile of marker genes.

Identification of Immune Subtypes
Based on the obtained infiltration profile of nine key immune
cells, we used the consensus clustering algorithm to identify the
immune subtypes of LUAD patients using the
“ConsensusClusterPlus” package. The clustering was
performed with 1,000 iterations and 80% resampling, and the
Pearson correlation coefficient was used as a similar distance. As a
result, the samples were found to be clustered into two subtypes
with significantly different clinical outcomes.

Evaluation of the Activity Score for Each
Metabolic Pathway
The metabolic pathways and the related genes were also obtained
from the KEGG database. Using the ssGSEA algorithm, we
calculated the activity score of each metabolic pathway in each
tumor sample.

RESULTS

The Infiltration of Immune Cells Varies
Among Normal, Low-Heterogeneous, and
High-Heterogeneous Tumor Samples
Intra-tumoral heterogeneity enables aggressive progression and
resistance to treatment and is crucial for proliferation, invasion,

and drug resistance of tumor cells. As described in the section
“Materials and Methods”, based on the mutation data of LUAD
obtained from the TCGA database, we calculated the MATH
score of each cancer sample, which represented the
heterogeneous degree of tissue samples. According to the
median of the MATH score of cancer samples, we divided
these samples into low- and high-heterogeneity groups with
254 and 254 samples, respectively (Figure 1A).

Recent studies have found that ITH can affect the ability of the
immune system to induce tumor cells to evade immune
recognition and killing. Therefore, we calculated the
infiltration of 28 immune cells in each normal and cancer
sample. As shown in Figure 1B, the infiltration pattern of
immune cells could be classified into two groups. Most innate
immune cells (12 out of 13) and a portion of adaptive immune
cells (8 out of 15, mainly memory T cells) presented a high degree
of infiltration in normal samples but medium infiltration in low-
heterogeneity tumor samples and a low infiltration level in high-
heterogeneity tumor samples. On the other hand, other immune
cells including seven adaptive immune cells (B cells, activated
T cells, and T helper cells) and one innate immune cell showed
low levels of infiltration in normal samples, compared with
cancer.

Five Key Immune Pathways Were Identified
to be Most Related to the Cancer
Heterogeneity
Immune cells in the TME play a paramount role in tumor
development and influence the prognosis of cancer. ITH
utilizes various mechanisms to dysregulate immune pathways,
thereby affecting the biological function of immune cells (Huang
et al., 2020). Therefore, we screened the immune pathways which
had different activities among the three groups by two
approaches.

FIGURE 1 | Infiltration of immune cells in LUAD samples. (A) All LUAD samples are divided into low- and high-heterogeneous groups based on theMATH score. (B)
Infiltration of immune cells varies among normal, low-heterogeneous, and high-heterogeneous cancer. Adaptive immune cells are marked red, and innate immune cells
are marked green.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9247813

Wang et al. Differential Infiltration of Immune Cells

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


In the first method, we adjusted the method proposed by Jason
W. Locasale et al. to calculate the activity score of each immune
pathway in the three groups, as described in the section
“Materials and Methods” (Xiao et al., 2019). First, the mean
expression of each gene in each immune pathway was calculated
in each group. Second, for each gene in a certain immune
pathway of each specific group, we calculated the ratio of its
expression to the mean expression value of the three groups. The
ratio value greater than 1 meant that this gene was activated;
otherwise, it is the opposite. Finally, the weighted summation of
all genes in one immune pathway was calculated as the activity
score of this pathway in a certain group. Comparing the activity
scores of immune pathways among the three sample groups, we
found that the activity scores of these immune pathways showed
four types of variation trends, with 13 out of 20 immune pathways
presenting a continuous decrease in normal, low-heterogeneous,
and high-heterogeneous samples (Figure 2).

In the second method, we used the ssGSEA algorithm to
obtain the activity score of each immune pathway in the three
groups (Figure 3). As a result, 19 out of 20 immune pathways
showed a continuous decreasing trend in normal, low-
heterogeneous, and high-heterogeneous sample tissues
(Figure 3A). However, only the IL-17 signaling pathway
showed an upward trend, followed by a downward trend
(Figure 3B). Then, the Wilcoxon rank sum test was used to
compare the ssGSEA scores of immune pathways among the
groups. A total of 15 immune pathways were identified with a
significant difference among the three groups, of which the

activity scores were all continuously decreased in normal, low-
heterogeneous, and high-heterogeneous samples.

Integration of these two approaches revealed that those
immune pathways which presented a continuous decreasing
trend from normal samples to low- and high-heterogeneous
cancer samples might play important roles in carcinogenesis
and cancer development. We selected five key immune
pathways for subsequence analysis. These five immune
pathways showed the greatest changes in immune pathway
activity scores evaluated by the first method (Figure 4A) and
presented a significant difference of the ssGSEA scores among the
three sample groups obtained by the second method (Figures
4B–F). The five selected immune pathways included complement
and coagulation cascades (hsa04610), platelet activation
(hsa04611), hematopoietic cell lineage (hsa04640), natural
killer cell mediated cytotoxicity (hsa04650), and the Fc epsilon
RI signaling pathway (hsa04664). Apparently, all these five
immune pathways showed the continuous decreased activity
scores. These results were consistent with previous studies
(Wu et al., 2020). In addition, tumor samples with high
heterogeneity usually showed attenuated immunological
competence and have poor clinical outcomes.

Complement and coagulation cascades is a mediator of innate
immunity in plasma and plays an important role in wound repair
and hemostasis. Platelet activation mediates inflammatory and
immunomodulatory activity and plays an essential role in
intercellular interactions. Hematopoietic cells can self-renew or
differentiate into multi-lineage stereotype progenitor cells.

FIGURE 2 | Activity score of each immune pathway in three groups calculated by the Jason W. Locasale method. (A) Immune pathways which showed a
continuous decreasing trend. (B) Immune pathways which showed a downward trend, followed by an upward trend. (C) Immune pathways which showed an upward
trend, followed by a downward trend. (D) Immune pathway which showed a continuous increasing trend.
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Hematopoietic cells have been found to be involved in the
occurrence and resolution of inflammatory events. It is well
known that inflammation and cancer are inextricably linked;
we believe that this pathway plays vital roles in cancer. Natural
killer cells are lymphocytes of the innate immune system and can
target and kill abnormal cells, such as virus-infected and
tumorigenic cells. In tumor samples with higher heterogeneity,
their activity was found to be decreased in our study. The FcεRI
compound can control the secretion of allergenic mediators and
induce the transcription of cytokine genes by inducing and
activating a variety of signaling pathways and further influence
the inflammatory response and carcinogenesis. In summary, the
five immune pathways identified in our study were significantly
associated with ITH.

Identification of the Nine Key Immune Cells
Related to the Key Immune Pathways and
Tumor Heterogeneity
Based on the expression profile of 782 marker genes of 28 immune
cells, using the ssGSEA algorithm, we calculated the infiltration score
of each immune cell in each normal and cancer sample. For the three
sample groups (normal, low-heterogeneous, and high-
heterogeneous groups), we further selected those samples with
higher ssGSEA activity scores of key immune pathways as the
new subgroups, including subnormal, sub-low-heterogeneous, and
sub-high-heterogeneous samples. For each key immune pathway,
the samples in the new subgroups have relatively higher activity
scores. We analyzed the dynamic change of immune cell scores in

FIGURE 3 | Activity score of each immune pathway in three groups calculated by the ssGSEA algorithm. (A) Immune pathways which showed a continuous
decreasing trend. (B) Immune pathways which showed an upward trend, followed by a downward trend. The immune pathways whose activity scores have significant
differences among three groups are marked in dark red.

FIGURE 4 | Selected five immune pathways were most related to the LUAD cancer status. (A) Activity score of each immune pathway in three groups was
calculated by the JasonW. Locasale method. The selected five immune pathways weremarked with boxes. (B–F) Activity score of five immune pathways in three groups
was calculated by the ssGSEA algorithm. p-values were obtained by Kruskal–Wallis.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9247815

Wang et al. Differential Infiltration of Immune Cells

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


subgroups with higher pathway scores among the three sample
groups, which could identify more effective immune cells. Then, the
infiltration of immune cells was evaluated among the new
subgroups. Those cells with significantly different infiltration
among the subgroups were selected as the key immune pathway-
related immune cells (Wilcoxon test p < 0.05 between each two
subgroups, Kruskal–Wallis test p< 0.05 among the three subgroups).
Furthermore, we evaluated the correlation of immune cell
infiltration with sample heterogeneity using the Pearson
correlation test. Those cells with R < −0.4 and BH-FDR < 0.01
were selected as the heterogeneity-related immune cells. Integrating
the results of key immune pathways and heterogeneity-related
immune cells, we finally identified nine key immune cells,
including activated dendritic cells, effector memory CD4 T cells,
eosinophils, macrophages, mast cells, natural killer cells, natural
killer T cells, neutrophils, and plasmacytoid dendritic cells
(Figure 5). We suppose that these nine key immune cells may
have essential roles in the cause and development of lung
adenocarcinoma.

Notably, eight out of nine key immune cells are innate immune
cells. Only the effector memory CD4 T cell is the adaptive immune
cell. The innate immune system is a natural immune defense
mechanism in the human body and is essential for human
immunity. Innate immune cells also play an indispensable role in
immunotherapy. For example, dendritic cells can present tumor
antigens to CD8 T cells, activate specific CD8 T cells, and kill tumor
cells. Most innate immune cells have a profound influence on the
immune pathway. Generally, the nine key immune cells could be

divided into three classes, including antigen presentation cells, cells
interacting with effector T cells, and cells functioning similar to
effector T cells. Antigen presentation cells, such as activated dendritic
cells, eosinophils, and plasmacytoid dendritic cells, can present the
identified antigen to effector cells to contribute to the identification
and function of the effector cells. The second class of cells, such as
macrophages, mast cells, and neutrophils, usually plays roles with
effector T cells. Other cells, such as effector memory CD4 T cells,
natural killer cells, and natural killer T cells, have the ability to kill
cells and perform similar functions with effector T cells.

The Immune Subtypes Identified Based on
the Key Immune Cells
As the key immune cells were related to the ITH and key immune
pathways, we hold the opinion that the infiltrative level of them is
vital in cancer development. Next, we used the consensus
clustering algorithm to identify the immune subtypes for
LUAD patients based on the infiltration profile of the nine key
immune cells. According to the clustering result, the samples
were divided into two subtypes. Key immune cells showed
differential infiltration in these two sample groups
(Figure 6A). Furthermore, the survival analysis showed that
the clinical outcome of the two groups had significant
differences (Log-rank p = 0.0042, Figure 6B). This result
suggested that our identified nine key immune cells play
essential roles in cancer progress and contribute to the
prognosis of lung adenocarcinoma.

FIGURE 5 | Median values of infiltration score of the selected nine immune cells in the three groups (subnormal, sub-low-heterogeneous, and sub-high-
heterogenous tumor samples) were evaluated by the ssGSEA algorithm.
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To verify our results, we next downloaded and analyzed two
GEO datasets of lung adenocarcinoma. After data pretreatment of
expression profiles, we calculated the infiltration of nine key
immune cells in tumor samples using the ssGSEA algorithm in
two GEO datasets. We obtained two similar subtypes by the
consensus clustering algorithm and compared the overall survival
probability between subtypes for the two datasets. As a result, the
clinical outcome of two subtypes presented significant differences
(Log-rank p = 0.035 for GSE26939 and 0.0014 for GSE68465,
Figures 6C,D). These results confirmed the importance of our
identified key immune cells and the robustness of our results.

The Genomic Difference Between Two
Immune Subtypes
TMB distribution of immune cells as predictive biomarkers plays an
important role in evaluating the efficacy of targeted therapy and
immunotherapy. Some studies have shown that the infiltrating
macrophage was related to the immunophenotype, TMB, and
clinical prognosis of LUAD patients (Ma et al., 2021).
Furthermore, the combination of macrophages and TMB could
further improve the prediction accuracy. Therefore, we compared
the distribution of TMB for LUAD samples in two different immune

subtypes. The somatic mutation data of LUADwere used to calculate
the TMB for each sample.We then compared the differences in TMB
between the two immune subtypes using the Wilcoxon rank-sum
test. The results showed that the TMB level of the cluster 2 subtype
was significantly higher than that of the cluster 1 subtype (Wilcoxon
test p = 4.2e-07, Figure 7A). Recent studies have shown that patients
with high TMB were more likely to benefit from immunotherapy
(Rizvi et al., 2015). This implicated that the cluster 2 subtype might
have a better clinical response to immunotherapy. In this study, by
adopting the dNdScv method, we identified 21 significantly mutated
genes (SMGs) in LUAD (Figure 7B). Among these genes, TP53,
KEAP1, and SMARCA4 had a high mutation frequency in the cluster
2 subtype. At the same time, a high mutation frequency of the EGFR
gene was observed in the cluster 1 subtype, indicating that tumors
bearing cluster 1 subtype immune cells might be more sensitive to
EGFR-targeted therapy. Thus, determining the proportion of gene
mutation burden of cancer patients may provide guidance for the
clinical treatment of patients.

CNV frequently occurs during cancer development and may
affect patient response to immunotherapy. Therefore, we
classified the CNV data from the TCGA database according to
the group information of immune subtypes. Subsequently, we
evaluated the CNV for each immune subtype using GISTIC

FIGURE 6 | Prognostic evaluation of the selected nine immune cells. (A) Infiltration profile of the selected nine immune cells in cluster 1 and cluster 2 groups. (B–D)
Kaplan–Meier curves of overall survival in cluster 1 and cluster 2 groups of LUAD patients from TCGA (B), GSE26939 dataset (C), and GSE68465 dataset (D).
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software. The result showed that the significantly amplified or
deleted regions were generally consistent in both immune
subtypes. However, there were several exceptions, such as the
amplification in 1q22 in the cluster 1 group, the amplification in
1q21.3 in the cluster 2 group, the deletion in 1p13.2 and 14q32.33
in the cluster 1 group, and the deletion in 1p13.3 and 4q34.3 in the
cluster 2 group (Figure 7C). Previous studies have shown that
expression levels of BCL10 and GFI1 in the 1q22 region of the
cluster 1 subtype could affect the biological function of T cells
(Rosenbaum et al., 2019), and the expression levels of F3 in the
1q21.3 region of the cluster 2 subtype could strengthen the
cytotoxicity of killer cells (Chu et al., 1990). These data
suggested that CNV may account for the different clinical
outcomes of the two immune subtypes.

The Different Roles of Metabolic Pathways
in the Two Immune Subtypes
Substantial evidence has shown that most tumors emerge and
evolve under selective pressure involving metabolic and immune

reconstruction (Vitale et al., 2019; Jiang et al., 2022). For example,
highly glycolytic cancer cells can redirect glucose to anabolic
responses for supporting proliferation and also exert
immunosuppressive effects by secreting more lactate (Zhu and
Thompson, 2019). Therefore, we calculated the activity scores of
each metabolic pathway in all samples and evaluated its
contribution to the clinical prognosis by the univariate Cox
regression analysis. In total, we identified 21 metabolic
pathways that were significantly associated with clinical
outcomes of patients (cox p < 0.05, Figure 8A). Among them,
10 metabolic pathways were found to be associated with clinical
outcomes in the cluster 1 subtype. Except for fatty acid
elongation, other metabolic pathways were unique to the
cluster 1 subtype (Figure 8A). In the cluster 2 subtype, there
were a total of 12 metabolic pathways related to patient outcomes,
and 11 metabolic pathways were unique to cluster 2.
Furthermore, we found that all 10 metabolic pathways in the
cluster 1 subtype were risk factors (HR > 1), while most of the
pathways in the cluster 2 subtype were mainly protective factors
(HR < 1). These results suggest that different metabolic pathways

FIGURE 7 | Genomic difference between the samples of cluster 1 and cluster 2 groups. (A) TMB of tumor samples in each immune subtype. (B) Comparison of
significant mutated genes in different immune subtypes. (C) Comparison of CNV, including genome implication and deletion, between two immune subtypes.
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may help to determine the characteristics of two immune
subtypes.

Recent studies have shown that dysregulation of metabolic
pathways can affect the behavior of immune cells, leading to
immune dysfunction. Then, we analyzed the association
between the activity of metabolic pathways and the
infiltration of nine immune cell types in the two different
immune subtypes. Consequently, we found that eight immune
cells except the eosinophil showed significant positive
correlation with most of the 10 metabolic pathways in the
cluster 1 subtype (Figure 8B, p < 0.05). In the cluster 2 subtype,
five metabolic pathways including synthesis and degradation
of ketone bodies, mannose type O-glycan biosynthesis,
pyrimidine metabolism, fatty acid elongation, and butanoate
metabolism were negatively correlated with immune cells,
while other seven metabolic pathways were positively
correlated with immune cells (Figure 8C, p < 0.05). These
results suggest that the correlation between individual immune
cells and metabolic pathways in the two immune subtypes is
helpful to better understand the complexity of the immune
metabolism.

DISCUSSION

ITH plays an important role in tumor cell growth, metastasis,
resistance to chemotherapy, and immunotherapy of LUNG. The
diversity of tumor cells in the TME contributes to ITH
(Prasetyanti and Medema, 2017). However, few studies have
investigated the crosstalk between tumor cells and immune
cells within the TME. In this study, we identified five key
immune-related pathways in different heterogeneous groups of
LUAD samples and further found nine differential immune cells
related to the above immune pathways. Subsequently, we further
characterized two immune subtypes, of which different genomic
features such as TMB and metabolic pathways interacted with
immune cells functionally.

Immune pathways have been found to be an intermediate
between tumor cells and immune cells (DeCordova et al.,
2020). In order to obtain more robust results, we currently
adopted two computational methods of pathway score, the
Jason W. Locasale method and ssGSEA algorithm, but not the
commonly used CIBERSORT method. We identified nine
types of immune cells that differed significantly in three
heterogeneous subtypes and were also significantly
associated with the ITH status in LUAD. Most of these
immune cells belong to nonspecific immune cells, which is
essential for human immunity. Notably, some pieces of
evidence have suggested that immunotherapy approaches
have significant effects on both spatial and temporal ITH
(Gubin et al., 2018). Meanwhile, the clinical efficacy of
immune checkpoint inhibitors may involve multiple
immune cell populations in addition to cytotoxic T
lymphocytes. Therefore, it is necessary to elucidate the
exact influence of immune cell heterogenization on tumor
heterogeneity. In our results, a total of nine immune cells
were identified, which were mainly divided into three main
categories, including antigen-presenting cells, cells that
interact with effector T cells, and cells with similar
functions to effector T cells. The score of these immune
cells decreased with the increase of tumor heterogeneity.

Some studies have found that ITH is associated with the
clinical features and prognosis of LUAD samples. Nonetheless,
the ITH was not found to be different across four disease stages
(Wilcox p > 0.05) in our study. This suggests that ITH may not
increase as cancer cell progresses. However, from a genetic
perspective, the accumulation of genomic mutations drives
cancer initiation. Additionally, several studies have found
significant differences in the TMB level and CNVs in non-
small-cell carcinoma tumor samples with different ITH (Zhao
et al., 2019; Craig et al., 2022). Similarly, our analysis also showed
that TMB and MATH scores were higher in the cluster 2 subtype
than in the cluster 1 subtype. Furthermore, most of the regions
that were significantly amplified or deleted were generally

FIGURE 8 | Roles of metabolic pathways in two immune subtypes. (A) Prognosis of metabolic pathways in two immune subtypes. (B–C) Correlation between
metabolic pathways and nine immune cells of immune cluster 1 (B) and cluster 2 (C).
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consistent in both immune subtypes, with a few exceptions. The
crosstalk between ITH and immune cells plays an important role
in shaping the biological phenotypes of tumor cells, resulting in
endogenous inconsistency in immunotherapy responses.

In summary, we identified two new immune subtypes by
integrative evaluation of the ITH, immune-related pathways,
and infiltrating immune cell status of LUAD patients. We
found that these immune subtypes were characterized by
differences in mutation burden, CNV, and clinical
outcomes of patients. Taken together, the present study has
provided a further understanding of the complex
relationships between tumor cells and infiltrating immune
cells in LUAD and will contribute to the development of
personalized therapy.
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