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Ductal carcinoma in situ: a risk prediction model for the
underestimation of invasive breast cancer
Ko Woon Park 1, Seon Woo Kim2, Heewon Han2, Minsu Park 3, Boo-Kyung Han1, Eun Young Ko1, Ji Soo Choi1, Eun Yoon Cho4,
Soo Youn Cho 4 and Eun Sook Ko 1✉

Patients with a biopsy diagnosis of ductal carcinoma in situ (DCIS) may be diagnosed with invasive breast cancer after excision. We
evaluated the preoperative clinical and imaging predictors of DCIS that were associated with an upgrade to invasive carcinoma on
final pathology and also compared the diagnostic performance of various statistical models. We reviewed the medical records;
including mammography, ultrasound (US), and magnetic resonance imaging (MRI) findings; of 644 patients who were
preoperatively diagnosed with DCIS and who underwent surgery between January 2012 and September 2018. Logistic regression
and three machine learning methods were applied to predict DCIS underestimation. Among 644 DCIS biopsies, 161 (25%)
underestimated invasive breast cancers. In multivariable analysis, suspicious axillary lymph nodes (LNs) on US (odds ratio [OR],
12.16; 95% confidence interval [CI], 4.94–29.95; P < 0.001) and high nuclear grade (OR, 1.90; 95% CI, 1.24–2.91; P= 0.003) were
associated with underestimation. Cases with biopsy performed using vacuum-assisted biopsy (VAB) (OR, 0.42; 95% CI, 0.27–0.65; P <
0.001) and lesion size <2 cm on mammography (OR, 0.45; 95% CI, 0.22–0.90; P= 0.021) and MRI (OR, 0.29; 95% CI, 0.09–0.94; P=
0.037) were less likely to be upgraded. No significant differences in performance were observed between logistic regression and
machine learning models. Our results suggest that biopsy device, high nuclear grade, presence of suspicious axillary LN on US, and
lesion size on mammography or MRI were independent predictors of DCIS underestimation.
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INTRODUCTION
Ductal carcinoma in situ (DCIS) is a preinvasive or noninvasive
breast cancer defined as the proliferation of neoplastic cells within
the mammary ducts without invasion into the surrounding tissue1.
DCIS accounts for almost 30% of newly diagnosed breast cancers2.
DCIS underestimation is defined as the failure to detect invasive
cancer in a preoperative biopsy, with the actual diagnosis
becoming evident only after a pathological examination of the
surgical specimen3. The reported risk of underestimation varies
from 14 to 43%4,5, with one meta-analysis estimating the risk at
25.9%6. The standard treatment for patients diagnosed with DCIS
is wide local excision with radiation or mastectomy7,8. However,
due to concerns regarding DCIS underestimation, routine sentinel
lymph node biopsy (SLNB) may be necessary in patients with DCIS
diagnosed by core needle biopsy (CNB)9,10. Unfortunately, axillary
dissection is often accompanied by complications such as pain,
numbness, and arm swelling11. Therefore, the preoperative
prediction of upgraded diagnosis to invasive cancer could avoid
unnecessary axillary surgery, including SLNB.
Studies have attempted to identify the risk factors for under-

estimation, including nuclear grade and radiological findings such
as lesion size on imaging, mass on mammography or ultrasound
(US), and final Breast Imaging Reporting and Data System (BI-
RADS) assessment categories2,4–6,10,12–15. Previous studies have
also revealed an association between the risk of underestimation
and factors such as age, palpability, histologic suspicion of
invasion, imaging guidance method, biopsy device, and other
factors. Although several papers have analyzed or mentioned all
three imaging findings (mammography, ultrasound [US], and

magnetic resonance imaging [MRI]), they didn’t describe a
prediction model or just evaluated limited imaging findings15–17.
To our knowledge, there is no study for evaluating prediction
model using all imaging findings (mammography, US, and MRI)
Machine learning (ML) is a computational method capable of

learning to improve the performance of a task based on previous
experience. The ML field is closely related to pattern recognition
and statistical inference and has been applied to problems across
many fields, including bioinformatics18. ML overcomes or reduces
the impact of the limitations of commonly used statistical
techniques, which usually consider a limited finite set of
hypotheses in their evaluations. However, ML approaches generate
models for prediction by extensively searching the model and
parameter space; thus, these approaches have been adopted for
predictive modeling and decision-making in biomedicine19. How-
ever, there are few reports on the use of ML techniques for the
prediction of DCIS underestimation or examining the potential
improvement in prediction performance using ML11.
Therefore, the present study aimed to identify clinicopathologic

and imaging features that predicted an upgrade of DCIS to
invasive carcinoma on final pathologic diagnosis and to compare
the diagnostic performance of various statistical models, including
ML techniques.

RESULTS
Factors associated with DCIS underestimation
Among 688 patients with biopsy-confirmed DCIS in our institution,
we included 644 patients (mean age, 51.4; range, 22–87 years)
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who underwent subsequent surgery. Forty-four patients were
excluded for the reasons shown in Fig. 1. Of the 644 DCIS lesions
subjected to biopsy, 161 (25%) were underestimated invasive
ductal carcinoma (IDC), including 73 identified as microinvasive
cancers after surgery. The mean size of invasive cancer from
surgical specimens was 3.89 mm (range, 0.01–35mm, ±6.1 mm).
Tables 1 and 2 show the patient characteristics and univariable
analysis of the factors associated with the underestimation of
invasive carcinoma. Palpability (P < 0.001) and lesion size >2 cm
(P < 0.001) were significantly associated with histologic upgrade.
Cases with mammography guidance (P < 0.001), vacuum-assisted
biopsy (VAB) device (P < 0.001), thicker biopsy needle (P < 0.001),
and a larger number of specimens (P= 0.001) were less likely to
be underestimated. Pathologically, high nuclear grade (P < 0.001)
and the presence of comedo necrosis (P < 0.001) were associated
with underestimation. Imaging findings with cancer not visible on
US or MRI resulted in significantly lower underestimation (P <
0.001 and P < 0.001, respectively). Mammographic findings
indicated that combined mass/focal asymmetry with microcalci-
fications occurred significantly more frequently in the IDC group
(P= 0.002). Fine linear/fine branching microcalcifications (P <
0.001) and linear/segmental distribution (P < 0.001) were also
observed significantly more frequently in the IDC group. US
findings showed that the presence of microcalcifications (P <
0.029), irregular mass shape (P < 0.001), suspicious axillary LN
(P < 0.001), and high vascularity (P= 0.001) were significant
indicators of underestimation MRI findings of irregular mass
shape (P= 0.027), linear/segmental distribution of non-mass
enhancement (NME) (P= 0.022), clustered ring enhancement
pattern of NME (P= 0.003), and the presence of a washout
pattern in the delayed phase of the time-intensity curve (P=
0.002) were significantly associated with underestimation.
The results of the multivariable analysis showed a prediction

model with the highest Nagelkerke R2 index (0.205, range;
0.161–0.205) and the smallest Akaike’s Information Criteria (AIC)
(592.221, range; 592.221–627.243) including a biopsy device,
nuclear grade, the presence of suspicious LNs on US, and lesion
size on mammography and MRI. Underestimation was associated
with suspicious axillary LN on US (odds ratio [OR], 12.16; 95%
confidence interval [CI], 4.94–29.95; P < 0.001) and high nuclear
grade (OR, 1.90; 95% CI, 1.24–2.91; P= 0.003). Biopsy performed
using VAB (OR, 0.42; 95% CI, 0.27–0.65; P < 0.001), lesion size

<2 cm (OR, 0.45; 95% CI, 0.22–0.90; P= 0.021), and non-visible on
mammography (OR, 0.41; 95% CI, 0.22–0.76, P= 0.002) and lesion
size <2 cm (OR, 0.29; 95% CI, 0.09–0.94; P= 0.037) or non-visible
on MRI (OR, 0.52; 95% CI, 0.28–0.95; P= 0.031) were less likely to
be underestimated (Table 3 and Supplementary Figs. 1, 2). Six
different models that included up to six risk factors were used for
adjustment according to various combinations. The combinations
of risk factors for each model and their values are shown in the
Supplementary Table (online). Among them, Model 6 showed the
best performance (Fig. 2).

Performances of the prediction models
The four prediction models based on logistic regression and three
ML techniques showed similar diagnostic performance (Table 4).
All four methods showed similar results, with no significant
differences in predicting DCIS underestimation. The area under
the curves (AUCs) of the four models ranged from 0.66 to 0.78.
The three ML methods predicted the risk factors in descending
order shown in Fig. 3. All four models reported that the most
important risk factor was suspicious axillary LN on US, followed by
lesion size on MRI, (except for the random forest technique). In
the decision tree technique, only suspicious axillary LNs on US,
lesion size on MRI, and biopsy device were significant risk factors,
whereas lesion size on mammography and nuclear grade were
not used for classification.

DISCUSSION
The rate of underestimation of DCIS by percutaneous biopsy
varies from 14% to 43% depending on the imaging guidance and
needle gauge4–6. The overall DCIS underestimation rate of 25%
(161/644) in our study was within this reported range. Of the 161
invasive carcinomas, 73 were revealed as microinvasive carcinoma
(11.3%, 73/644). It was a relatively higher incidence than
the previously reported number, ~5–10% of cases of DCIS20.
The higher proportion of cases with microinvasion was likely
because the pathology slides are thoroughly read through
intensive sampling. The lower proportion of frank invasive cancer
compared to that in previous studies may have been because the
biopsies were performed by experienced breast radiologists (more
than 5 years of experience) in most cases.

Fig. 1 Flow chart of the study population. After we reviewed the biopsy database for biopsy-confirmed DCIS at our institution, we identified
688 biopsy-proven DCIS. This flowchart briefly presents how many patients were excldued and the reasons of exclusion.

K.W. Park et al.

2

npj Breast Cancer (2022)     8 Published in partnership with the Breast Cancer Research Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



Table 1. Patient characteristics and univariable analysis of factors associated with the underestimation of invasive carcinoma (clinicopathologic and
mammographic findings).

Variable DCIS
(n= 483)

IDC
(n= 161)

P Odds Ratio (95% CI) P

Age (years) 50.0 (45–58) 52.0 (47–58) 0.128

Palpability <0.001

No 463 (95.9) 133 (82.6) 1

Yes 20 (4.1) 28 (17.4) 4.87 (2.66–8.93) <0.001

Guidance method <0.001

US 320 (66.3) 139 (86.3) 1

Mammography 163 (33.7) 22 (13.7) 0.31 (0.19–0.51) <0.001

Biopsy Device <0.001

CNB 225 (46.6) 111 (68.9) 1

VAB 258 (53.4) 50 (31.1) 0.39 (0.27–0.57) <0.001

Needle gauge, median (IQR) 13 (11–14) 14 (13–14) <0.001

Number of specimens, median (IQR) 6 (4–12) 5 (4–8) 0.001

Nuclear grade <0.001

Low/Intermediate 366 (75.8) 82 (50.9) 1

High 117 (24.2) 79 (49.1) 3.01 (2.08–4.37) <0.001

Comedo necrosis <0.001

No 415 (85.9) 111 (68.9) 1

Yes 68 (14.1) 50 (31.1) 2.75 (1.81–4.19) <0.001

Mammography

Density 0.833

Fatty (grade A, B) 119 (24.6) 41 (25.5) 1

Dense (grade C, D) 364 (75.4) 120 (74.5) 0.96 (0.64–1.44) 0.832

Mammography characteristics 0.002 0.002

Mass 30 (6.2) 9 (5.6) 1

Focal asymmetry 11 (2.3) 4 (2.5) 1.21 (0.22–6.91) >0.999

Calcifications 300 (62.1) 87 (54.0) 0.97 (0.36–2.62) >0.999

Combined 50 (10.3) 38 (23.6) 2.53 (0.85–7.54) 0.133

Non- visible 92 (19.1) 23 (14.3) 0.83 (0.27–2.54) >0.999

Dichotomized mammography characteristics 0.172

Non- visible 92 (19.1) 23 (14.3) 1

Visible 391 (80.9) 138 (85.7) 1.41 (0.86–2.32) 0.174

Mass shape (N= 94) 0.477

Oval/round 21 (36.8) 11 (29.7)

Irregular 36 (63.2) 26 (70.3)

Mass margin (N= 94) 0.203

Circumscribed/obscured 21 (36.8) 9 (24.3)

Not circumscribed 36 (63.2) 28 (75.7)

Calcification morphology (N= 476) <0.001

Fine linear/fine branching 80 (22.8) 50 (40.0)

Fine pleomorphic 93 (26.5) 35 (28.0)

Coarse heterogeneous/amorphous 178 (50.7) 40 (32.0)

Calcification distribution (N= 476) <0.001

Linear/segmental 122 (34.8) 68 (54.4)

Grouped/regional/diffuse 229 (65.2) 57 (45.6)

Mammographic lesion size (cm) <0.001 <0.001

≥2 173 (35.8) 107 (66.5) 1

<2 218 (45.1) 31 (19.2) 0.40 (0.22–0.73) 0.001

Non- visible 92 (19.1) 23 (14.3) 0.23 (0.14–0.38) <0.001

Numeric data are presented as medians, with the interquartile ranges in parentheses.
Non-numeric data are presented as the number of lesions (percentage).
CI confidence interval, CNB core needle biopsy, VAB vacuum-assisted biopsy, LN lymph node.
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Table 2. Patient characteristics and univariable analysis of factors associated with the histopathologic upgrade to invasive carcinoma (US and MRI
findings).

Variable DCIS (n= 483) IDC (n= 161) P Odds Ratio (95% CI) P

US

US characteristics <0.001 <0.001

Mass 156 (32.3) 57 (35.4) 1

Non-mass 178 (36.8) 86 (53.4) 0.33 (0.17–0.64) <0.001

Non-visible 149 (30.9) 18 (11.2) 1.32 (0.84–2.08) 0.337

Dichotomized US characteristics <0.001

Non-visible 149 (30.9) 18 (11.2) 1

Visible 334 (69.1) 143 (88.8) 3.54 (2.09–6.00) <0.001

Calcifications on US (N= 477) 0.029

No 148 (44.3) 48 (33.6)

Yes 186 (55.7) 95 (66.4)

Mass shape (N= 213) <0.001

Oval/round 64 (41.0) 7 (12.3)

Irregular 92 (59.0) 50 (87.7)

Mass margin (N= 213) 0.130

Circumscribed 40 (25.6) 9 (15.8)

Not circumscribed 116 (74.4) 48 (84.2)

Mass orientation (N= 213) 0.821

Parallel 135 (86.5) 50 (87.7)

Nonparallel 21 (13.5) 7 (12.3)

Echo pattern (N= 477) 0.136

Isoechoic 91 (27.3) 26 (18.2)

Hypoechoic 232 (69.5) 113 (79.0)

Hyperechoic 1 (0.3) 0 (0)

Complex echoic 10 (2.9) 4 (2.8)

Posterior acoustic features (N= 477) 0.338

Enhancement 19 (5.7) 7 (4.9)

Shadowing 20 (6.0) 12 (8.4)

Combined 22 (6.6) 15 (10.5)

None 273 (81.7) 109 (76.2)

Vascularity (N= 477) 0.001

Low or none 98 (29.3) 20 (14.0)

High 211 (63.2) 107 (74.8)

Not available 25 (7.5) 16 (11.2)

Suspicious axillary LN <0.001

No 476 (98.6) 127 (78.9) 1

Yes 7 (1.4) 34 (21.1) 18.21(7.89–42.03) <0.001

US lesion size (cm) <0.001 <0.001

≥2 113 (23.4) 87 (54.0) 1

<2 221 (45.8.) 56 (34.8) 0.16 (0.08–0.30) <0.001

Non- visible 149 (30.8) 18 (11.2) 0.33 (0.21–0.52) <0.001

MRI

MRI characteristics <0.001 0.001

Mass 142 (29.4) 52 (32.3) 1

Non-mass enhancement 262 (54.2) 104 (64.6) 0.17 (0.06–0.52) <0.001

Non-visible 79 (16.4) 5 (3.1) 1.08 (0.69–1.69) >0.999

Dichotomized MRI characteristics <0.001

Non-visible 79 (16.4) 5 (3.1) 1

Visible 404 (83.6) 156 (96.9) 6.10 (2.43–15.35) <0.001

Mass shape (N= 194) 0.027

Oval/round 34 (23.9) 5 (9.6)

Irregular 108 (76.1) 47 (90.4)
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Compared to previous studies on DCIS underestimation, our
study included all three imaging modalities (e.g., mammography,
US, and MRI) and a large number of cases of biopsy-confirmed
DCIS (n= 644), 161 of which were upgraded to invasive cancer.

These features make this the largest study to describe the
relationship between imaging findings and underestimation, with
more meaningful results obtained through a large number of
patients and data from all three imaging modalities. Our results
revealed a significantly lower upgrade for mammography than
that for US guidance (P < 0.001). This is because mammographic
guidance is almost always used for lesions that present as

Table 2 continued

Variable DCIS (n= 483) IDC (n= 161) P Odds Ratio (95% CI) P

Mass margin (N= 194) 0.231

Circumscribed 20 (14.1) 4 (7.7)

Not circumscribed 122 (85.9) 48 (92.3)

Internal enhancement of the mass (N= 194) 0.251

Homogeneous 9 (6.3) 1 (1.9)

Heterogeneous 121 (85.2) 47 (90.4)

Rim-enhancement 12 (8.5) 3 (5.8)

Dark internal septation 0 (0) 1 (1.9)

Distribution of NME (N= 366) 0.022

Linear/segmental 158 (60.3) 76 (73.1)

Focal/regional/diffuse 104 (39.7) 28 (26.9)

Internal enhancement of NME (N= 366) 0.003

Homogeneous/heterogeneous/clumped 250 (95.4) 89 (85.6)

Clustered ring 12 (4.6) 15 (14.4)

Time–signal intensity curve (washout) (N= 560) 0.002

No 180 (44.6) 47 (30.1)

Yes 224 (55.4) 109 (69.9)

MRI lesion size (cm) <0.001 <0.001

≥2 226 (46.8) 126 (78.3) 1

<2 178 (36.9) 30 (18.6) 0.11 (0.04–0.33) <0.001

Non- visible 79 (16.3) 5 (3.1) 0.30 (0.18–0.50) <0.001

Numeric data are presented as medians (interquartile ranges).
Non-numeric data are presented as the number of lesions (percentage).
CI confidence interval, LN lymph node, MRI magnetic resonance imaging, NME non-mass enhancement, US ultrasonography.

Table 3. Multivariable analysis of factors associated with the
histopathologic upgrade to invasive carcinoma.

Variable Odds ratio (95% CI) P

Device

CNB 1

VAB 0.42 (0.27–0.65) <0.001

Nuclear grade

Low/Intermediate 1

High 1.90 (1.24–2.91) 0.003

Suspicious LN on US

No 1

Yes 12.16 (4.94–29.95) <0.001

Lesion size on mammography (cm) 0.002

≥2 1

<2 0.45 (0.22–0.90) 0.021

Non-visible 0.41 (0.22–0.76) 0.002

Lesion size on MRI (cm) 0.008

≥2 1

<2 0.29 (0.09–0.94) 0.037

Non- visible 0.52 (0.28–0.95) 0.031

CI confidence interval, CNB core needle biopsy, VAB vacuum-assisted
biopsy, LN lymph node, MRI magnetic resonance imaging, NME non-mass
enhancement, US ultrasonography.

Fig. 2 Calibration curve to predict the histologic upgrade of
logistic model 6. Notes: The x-axis represents the predicted
upgrade risk. The y-axis represents the actual histologic upgrade.
The diagonal dotted line represents a perfect prediction by an ideal
model. The solid line represents the performance of model 6. The
closer the solid line is to the diagonal, the more accurate the
prediction.
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calcifications only (without mass), which is associated with the
absence of invasion compared to invasive cancer18 and, thus,
would be consistent with an ultimate diagnosis of DCIS only.
Similar to previous studies4,5,21, our results revealed that biopsy
with VAB (P < 0.001), larger sample numbers (P= 0.001), and
thicker biopsy needles (P < 0.001) were associated with a lower
occurrence of histopathologic upgrade. Notably, non-visible
lesions on US or MRI were less likely to be upgraded to invasive
cancer (P < 0.001), whereas non-visible lesions on mammography
were not significantly associated with the upgrade (P= 0.172).

We speculate that many lesions could be masked on mammo-
graphy because most Asian patients have dense breasts.
Our results revealed a relationship between DCIS with invasive

components and the presence of suspicious axillary LNs on
US (P < 0.001). Similar to the previous reports10,14,22, clustered ring
enhancement of NME (P= 0.003) and a washout kinetic pattern at
the delayed phase (P= 0.002) on MRI were frequently observed in
the IDC group. Our results also confirmed that a larger lesion size
on mammography or MRI was a predictive factor for the
underestimation of invasive cancer6. A larger lesion size on
mammography was previously reported as an independent
predictive factor for invasion, with a cutoff ranging from 20 to
60mm2,23. These features could reflect the assumption that DCIS
and invasive cancer are more likely to coexist in large lesions.
Moreover, the results of the multivariable analysis revealed high
nuclear as a risk factor for underestimation, consistent with
previous reports14,15.
We applied three ML methods and logistic regression analysis

to assess the underestimation risk. ML techniques did not
significantly improve the prediction of underestimation. Although
the mean size of an upgraded invasive cancer was 3.89 mm in our
study, relatively smaller than those reportedly previously12,15, the
AUCs were relatively good for all models (0.66–0.78).

Table 4. Comparisons of AUCs between four prediction models.

AUC 95% CI

Logistic regression 0.78 0.74–0.82

Decision tree 0.75 0.56–0.93

Bagging 0.66 0.50–0.83

Random forest 0.75 0.58–0.91

AUC area under the receiver operating characteristic curve, CI confidence
interval.

Fig. 3 Variable importance graphs of the most important risk factors in descending order and nomogram. a decision tree, b bagging, and
c random forest-based machine learning methods and d a nomogram for the logistic regression model.
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Our study has some limitations. First, we did not perform an
observer study involving multiple readers. Second, most of our
patients routinely underwent all three imaging studies in their
preoperative evaluations. However, this could differ according to
national guidelines or insurance coverage in other countries.
Therefore, our results may not be generalizable or reflect all
clinical conditions.
In conclusion, the biopsy device, high nuclear grade, the

presence of suspicious axillary LN on US, and lesion size >2 cm
on mammography or MRI were independent predictors of DCIS
underestimation. We observed no significant differences in
performance between the conventional prediction and ML
models.

METHODS
Patients
The Institutional Review Board of Samsung Medical Center approved this
retrospective study (SMC IRB 2019-12-077-001) and waived the require-
ment for informed consent due to the retrospective nature of this study.
Between January 2012 and September 2018, we reviewed the biopsy
database for biopsy-confirmed DCIS at our institution. Once DCIS is
diagnosed using biopsy, the standard practice at our institution is to
perform mammography, US, and MRI as preoperative imaging workup in
all patients. We excluded patients who had not undergone subsequent
surgery; without any imaging modality among mammography, US, or MRI;
and who had been simultaneously diagnosed with IDC and DCIS in the
same breast.

Biopsy procedure
All needle biopsies were performed using imaging guidance by one of the
eight radiologists with 1–26 years of breast imaging experience. US-guided
CNB was performed using a 14-or 18-gauge (G) Tru-cut needle with a
22mm throw (ACECUT, TSK Laboratory, Tokyo, Japan), with a minimum of
four cores obtained from each lesion. VABs were performed for small or
non-mass lesions or lesions containing calcifications. VABs were also
indicated when precise targeting was difficult by the core needle or the in
cases in which the results might vary depending on the amount of tissue
sample. US-guided VAB was performed using an 8–18-G vacuum-assisted
probe (Mammotome, Devicor Endo-Surgery, Cincinnati, OH; Suros, Hologic
Inc. Bedford, MA). The needle gauge was determined by lesion size or
characteristics and each radiologist’s preference. Stereotactic VAB was
performed for microcalcifications that were not visible on US, using an
11-G vacuum-assisted probe (Mammotome, Devicor Endo-Surgery, Cincin-
nati, OH) and the stereotactic unit of a prone table (Lorad, Hologic Inc.,
Danbury, CT).

Data and image analysis
Radiologic variables were collected by reviewing each image retro-
spectively in consensus by two radiologists (initials blinded) with nine
and 14 years of experience in breast imaging who were blinded to
the final pathologic outcome. The BI-RADS lexicon was used to describe
the mammographic, US, and MRI features24. In cases in which the lesion
showed no imaging findings, the lesion characteristics were classified as
non-visible. The lesion sizes were dichotomized to evaluate the effect of
size on the upgrade to invasive cancer by setting a cutoff value of 2 cm,
as reported previously5,6,25. The following mammography features were
evaluated: breast density, lesion characteristics (mass/focal asymmetry,
calcifications, combined or non-visible), and lesion size. A mass detected
on mammography was evaluated for its shape (oval/round or irregular)
and margins (circumscribed/obscured or not circumscribed). Calcifica-
tions on mammography were assessed for their morphology (fine linear/
branching, fine pleomorphic, coarse heterogeneous/amorphous, or
benign appearance) and distribution (linear/segmental or grouped/
regional/diffuse).
The following US features were also evaluated: lesion characteristics

(mass, non-mass lesion [NML], or non-visible), lesion size, shape (oval/
round or irregular), margin (circumscribed or not circumscribed), orienta-
tion (parallel or nonparallel), echo pattern (isoechoic, hypoechoic,
hyperechoic, or complex/heterogeneous echoic), posterior acoustic
features (no posterior feature, enhancement, shadowing, or combined),

presence of suspicious axillary LNs, calcifications, and vascularity. An NML
was defined as a focal hypoechoic area presenting as a confined
asymmetry on two orthogonal planes that could not be characterized as
a distinct mass owing to the lack of conspicuous margins or shape that
also differed from the surrounding glandular tissue26. In addition, the
vascularity on color Doppler US was determined according to the number
of vessels within or around the lesion and was categorized as low (no flow
or only one vessel flow signal observed) or high (more than two vessel flow
signals observed)27.
Dynamic contrast-enhanced MRI (DCE-MRI) data were reviewed for

lesion size, lesion characteristics (mass, NME, or non-visible), lesion
morphology (shape, margin, and internal enhancement in mass; distribu-
tion and internal enhancement in NME), and time–signal intensity curve
pattern. Time–signal intensity curve patterns were categorized based on
the presence of washout in the delayed phase. The imaging characteristics
in all three modalities were also dichotomized as visible or non-visible to
assess whether visibility affected upgrade. The interval between the initial
diagnosis and operation was within 1 month in all patients.
All pathologic specimens including biopsy and surgery were read by

two experienced breast pathologists (E.Y.C. and S.Y.C. with 20 and 17 years
of experience, respectively). After reviewing the postoperative pathology
results, the final diagnoses of all lesions were categorized as DCIS or IDC
(including microinvasive cancer). We also reviewed the size of invasive
cancer in the surgical specimens. The patients’ medical records, including
pathological results, were reviewed and data were obtained on age,
palpability, and procedural characteristics (guidance methods: US vs.
mammography, devices: CNB vs. VAB, needle G, number of core
specimens per lesion), nuclear grade, and presence of comedo necrosis
from biopsy specimen28.

Statistical analysis
The potential risk factors were statistically compared between the DCIS and
IDC groups using Mann–Whitney U-tests for continuous variables and chi-
square or Fisher’s exact tests for categorical variables. The medians and
interquartile ranges (IQRs) were used for continuous variables. First, the risk
of the underestimation of invasive breast cancer was analyzed using logistic
regression analysis. The associations between all variables and histopatho-
logic upgrade were evaluated using univariable logistic regression analysis.
Variables showing a significant association (P < 0.05) in the univariable
analyses were used as input variables for the multivariable logistic
regression analyses. To examine the multicollinearity among these
variables, we checked whether the variance inflation factor (VIF) values
were 4 or higher. Multicollinearity between variables was considered when
building the multivariable models. If multiple multivariable models were
built, multivariable logistic regression for multiple models was performed
using backward selection. The final prediction model was selected from
among the candidate models, in which the lower AIC, the higher
Nagelkerke R2,29,30, the higher the AUC, and the calibration curve of the
actual and predicted probabilities from the model. The AUC was computed
from the original sample, from the bootstrap samples with 1000 repetitions.
The bias-corrected AUC from the bootstrap samples was also calculated
and a calibration plot was presented. The resulting association from the
logistic regression was presented with the OR and its 95% CI.
Second, three machine learning methods (decision trees, bagging, and

random forests) were applied to determine whether the performance of
the prediction of the estimated logistic model was reproduced.
Reproducibility was checked for variable importance and AUC values.
A brief description of each machine learning technique is provided in the
supplementary text (online).
P < 0.05 in the two-sided tests were considered statistically significant.

All statistical analyses were performed using R (version 3.6.4; R Foundation
for Statistical Computing, Vienna, Austria) or SAS (version 9.4, SAS Institute,
Cary, NC, USA).

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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