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The role of sleep for brain function has been in the focus of interest for many years.
It is now firmly established that sleep and the corresponding brain activity is of
central importance for memory consolidation. Less clear are the underlying molecular
mechanisms and their specific contribution to the formation of long-term memory. In this
review, we summarize the current knowledge of such mechanisms and we discuss the
several unknowns that hinder a deeper appreciation of how molecular mechanisms of
memory consolidation during sleep impact synaptic function and engram formation.
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INTRODUCTION

Considered to be downtime, away from external input, sleep opens a time window for synaptic
maintenance to ensure homeostasis and plasticity (Tononi and Cirelli, 2006, 2014; Niethard
et al., 2017; Turrigiano, 2017), and for the consolidation of long-term memories (Graves
et al., 2001; Maquet, 2001; Stickgold et al., 2001; Fischer et al., 2002; Walker et al., 2002;
Peigneux et al., 2004; Walker and Stickgold, 2004; Westerberg et al., 2012). Sleep is divided into

Abbreviations: Abl2, Abelson-related gene; Arc/Arg3.1, Activity Regulated Cytoskeleton Associated Protein; AMPAR,
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CA1, Cornu Ammonis 1; CamKII, Calcium/calmodulin-
dependent protein kinase type II; cAMP, Cyclic adenosine monophosphate; CDK5, Cyclin-dependent kinase 5; C-fos,
Proto-oncogene c-Fos; CREB, cAMP response element-binding protein; DCLK1, Doublecortin like kinase 1; DG, Dentate
gyrus; EEG, Electroencephalogram; Egr1/zif-268, Early growth response protein 1; EPSP, Excitatory postsynaptic potential;
ERK, Extracellular signal-regulated kinase; FRH, Firing rate homeostasis; GABAA receptor, Gamma-aminobutyric acid
receptor type A; GluAx, Glutamate ionotropic receptor AMPA type subunit x; GluNx, Glutamate ionotropic receptor
NMDA type subunit x; GSK3ß, Glycogen synthase 3β; Homer1, Homer protein homolog 1; IEG, Immediate early gene;
IP3R, Inositol trisphosphate receptor; KO, Knock-out; LFP, Local field potential; LTD, Long-term depression; LTP,
Long-term potentiation; MAP, Mitogen-activated protein; MEF2, Myocyte-specific enhancer factor 2; MD, Monocular
deprivation; mEPSC, Miniature excitatory postsynaptic currents; mGluR1/5, Group I metabotropic glutamate receptors
1 and 5; MTL, Medial temporal lobe; NMDAR, N-methyl-D-aspartate (NMDA) receptor; NT, Neurotransmitter; NREM,
Non-REM; RhoA, Ras homolog family member A; p190RhoGAP, A Rho family GTPase-activating protein; PDE4,
Phosphodiesterase 4; PKA, Protein kinase A; PKC, Protein kinase C; PLK2, Polo-like kinase 2; PrPs, Plasticity-related
proteins; PSD, Postsynaptic density; REM, Rapid eye movement; Serx, Serine residue at position x; SD, Sleep deprivation;
SPAR, Spine-associated Rap GTPase activating protein; SNARE complex, SNAP receptor complex; STC, Synaptic tagging
and capture; SO, Slow oscillations; SV, Synaptic vesicle; STDP, Spike timing-dependent plasticity; SWR, Sharp wave ripples;
SWS, Slow-wave sleep; SRF, Serum response factor; TF, Transcription factor; Thrx, Threonine residue at position x; Tyrx,
Tyrosine residue at position x; vGLUT, vesicular glutamate transporter; ZT, Zeitgeber time (ZT0 sleep/ZT12 wakefulness
period onset).
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two alternating phases, REM (rapid eye movement) and NREM
(non-REM) sleep. Both occur in repeating cycles, with NREM
always preceding REM sleep. REM sleep is characterized by vivid
dreams, muscle atonia, brought about by the inhibition of motor
neurons, and a paradoxical, wake-like electroencephalogram
(EEG), with a predominance of theta activity (4/5–7/8 Hz).
In humans, NREM sleep has been differentiated into four or
more recently three stages (Moser et al., 2009). The first two
stages represent light sleep, while the last two NREM stages,
nowadays combined into one, represent deep or slow-wave
sleep (SWS) with a predominance of delta-waves (human
1–4 Hz, rodents 2–4 Hz; high amplitude, but lower than
slow oscillations and more local) and slow oscillations (SO,
0.5–1 Hz, higher amplitude and more global) as ‘‘separate
classes of slow-waves’’ (Kim et al., 2019). The precise temporal
coordination of cortical slow oscillations, delta waves, thalamic
spindles (humans 12–16 Hz, rodents 9–15 Hz), and hippocampal
sharp wave ripples (extracellular negative waves followed by
fast ripples, ripples 140–220 Hz) is considered a key driver for
the process of long-term memory consolidation and forgetting
(Latchoumane et al., 2017; Kim et al., 2019; Klinzing et al.,
2019; Langille, 2019; Ngo and Born, 2019). This division
into NREM stages is usually not applied to rodents, even
though it was suggested that this could be useful with
regards to the understanding of temporal proceedings and
underlying mechanisms of memory consolidation (Genzel et al.,
2014; Luo and Guan, 2018). It is still a matter of debate
which role the distinct sleep phases or sleep states play in
maintaining synaptic plasticity and in consolidating previously
encoded information.

Several hypotheses have been presented of how sleep might
promote memory consolidation at the systemic, synaptic, and
molecular level, all of them presumably converging on a
scenario where the brain has to be ‘‘reset’’ on a global level,
while selected memory traces are refined and strengthened to
consolidate what is to be preserved. We will focus on the
cellular and synaptic level of memory consolidation as well
as on the molecular processes underlying it. To this end, we
will introduce synaptic scaling and intrinsic plasticity as two
synergistic mechanisms to ensure homeostasis and maintain
synaptic plasticity, and with that the ability to learn and
memorize new information. We review briefly the structural
and electrophysiological evidence that was found for synaptic
plasticity during sleep in animals that might or might not
have been subjected to behavioral tasks. Subsequently, we
will focus on molecular mechanisms in support of sleep-
dependent memory consolidation. Here, we demonstrate gene
expression patterns across the sleep-wake cycle and review
oscillating kinase activity found to facilitate increased synaptic
potentiation during wakefulness and depression during sleep.
We discuss the hypotheses that enhanced neuronal activity
and learning during wakefulness might prime neurons for
processing during sleep and that immediate early genes (IEGs)
might drive plasticity and would thus be critical for memory
consolidation before concluding with findings about increasing
IEG expression in primed neurons during sleep to promote
long-term memory consolidation.

Memory Formation—Encoding During
Wake and Consolidation During Sleep
During wakefulness, the nervous system is processing a plethora
of incoming information. Preserving memory for some of them
involves different brain regions and retention may vary greatly
in time. Here, we are reviewing the consolidation of long-term
memory from transient memory traces that are sensitive to
interference into persistent memory traces that are insensitive to
interference until recalled again. Long-term memory is divided
into declarative and procedural memories. Both involve different
brain regions. Declarative memory storage involves neocortical
structures as well as structures of the medial temporal lobe
(e.g., Squire et al., 2004; Squire and Wixted, 2011). Contrarily,
procedural memories employ the striatum and cerebellum in
addition to neocortical structures (Doyon et al., 2003), even
though the hippocampus is still involved in the initial stages
of procedural task learning (Poldrack et al., 2001). There is
strong evidence that sleep promotes the consolidation of both
kinds of memory—including putative scenarios for systems
consolidation (Diekelmann et al., 2009). Historically, many
studies that examined the role of sleep for long-term memory
consolidation, especially when working with rodents, looked into
declarative, episodic memory and here indeed mostly into spatial
(track running, Morris-water-maze, object-place recognition)
or contextual memory (conditioned fear memory). The active
systems consolidation hypothesis suggests a scenario in which
the ‘‘corticalization’’ of declarative memories would result in the
extraction of gist-like (semantic) memory representations than
to be integrated into existing cortical memory representations.
Other studies, especially those exploring structural changes in the
context of sleep promoted memory consolidation, also looked at
procedural memories (motor learning, visual cortex plasticity),
where the high cholinergic activity during REM seems to be
particularly crucial for successful consolidation (Rasch et al.,
2009).

Encoding During Wake
Synaptic plasticity has been proposed to play a central role in
the capacity of the brain to incorporate transient experiences
into persistent memory traces, so-called engrams. Among the
different types of synaptic plasticity, mainly Hebbian and
homeostatic types of plasticity are likely relevant for molecular
mechanisms of memory consolidation (see ‘‘Glossary’’ section).
The encoding of information takes place during wake and results
in stimulus-induced synapse-specific modification of synaptic
strength and cell-specific changes of neuronal excitability (Zhang
and Linden, 2003; Lisman et al., 2018). Events are presumably
encoded in an assembly of neurons (engram cells) that are
activated during the event and here, in turn, in a set of
selected synapses (Liu et al., 2012; Ramirez et al., 2013;
Cowansage et al., 2014; Denny et al., 2014; Nabavi et al.,
2014; Redondo et al., 2014; Tanaka et al., 2014; Hayashi-Takagi
et al., 2015; Josselyn et al., 2015; Ryan et al., 2015; Tonegawa
et al., 2015, 2018; Holtmaat and Caroni, 2016; Andersen
et al., 2017; Hoshiba et al., 2017; Choi et al., 2018; Clawson
et al., 2021). It was suggested that the fine-tuned modification
in synaptic weight could be a mechanism to determine the
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specific neuronal circuit that represents the encoded information
and would be employed for memory retrieval. Activation of
certain signaling pathways andmolecular reorganization of spine
synapses (e.g., actin polymerization, incorporation or removal
of AMPA-receptors into the postsynaptic membrane) can either
lead to synaptic potentiation or depression according to changes
in dendritic spine morphology, depending on the characteristics
of synaptic activation (Watt and Desai, 2010). Maintenance
of such plastic changes in synaptic strength and neuronal
connectivity essentially requires de novo protein synthesis and
gene expression. An important aspect in the context of the
encoding and consolidation of new information is the expression
of immediate early genes like arc, homer1a, c-fos, or egr1/zif-
268. Following induction of so-called rapid primary response
genes (Tullai et al., 2007; Saha et al., 2011; Saha and Dudek,
2013), mRNA expression and subsequent protein synthesis,
plasticity-related proteins (PrPs) directly or indirectly impact
synaptic structure and function. Interestingly, mRNA of PrPs
can either be translated in the soma or locally in dendrites and
synapses. The capture of mRNA or PrPs within the dendritic
periphery and specifically within previously stimulated synapses
is most likely realized through short-lived molecular tags (e.g.,
phosphorylated CAMKIIa, PKA, or CAMKIIb) as it was first
suggested with the synaptic tagging and capturing hypothesis
(Frey and Morris, 1997; Martin and Kosik, 2002; Bramham and
Wells, 2007; Redondo and Morris, 2011). PrPs will then either
support plasticity directly within the respective spine (effector
proteins) or they will initiate the activation of secondary response
genes (transcription factors), with subsequent transcription and
protein synthesis.

Consolidation During Sleep
Several attempts have been made to identify underlying
mechanisms for sleep-promoted consolidation of long-term
memory. The ‘‘synaptic homeostasis hypothesis’’ (Tononi and
Cirelli, 2006, 2014) considers sleep as an opportune time without
interference from external stimuli and postulates that sleep
is most important to ensure the brain’s energy balance and
to maintain synaptic plasticity. Both aspects are presumably
achieved through global synaptic downscaling, though the
hypothesis concedes that large, recently potentiated synapses
might be excluded from downscaling. In this scenario, sleep
would benefit memory consolidation chiefly through a reduction
in signal-to-noise ratio (de Vivo et al., 2017; Tononi and
Cirelli, 2020). The ‘‘sequential hypothesis’’ (Giuditta et al., 1995;
Giuditta, 2014) suggests that NREM sleep employs selective
processes to weaken irrelevant or competing non-adaptive
memories, while REM sleep preserves the remaining memories
to integrate them with preexisting memories. In a similar way, it
was proposed that transient neuronal changes, induced during
waking, would change neuronal CREB-dependent excitability
and prime (tag) synaptic clusters within neuronal ensembles
and circuits (Seibt and Frank, 2019). Plasticity-related genes
(i.e., mRNAs of IEGs) would be transcribed and targeted
towards dendrites, thus being ready to be captured by spines
upon reactivation for further potentiation or depression during
NREM. REM sleep would then stabilize structural plasticity

through protein-synthesis-dependent processes of synaptic
strengthening/weakening, pruning as well as synaptogenesis
(Seibt and Frank, 2012, 2019; Seibt et al., 2012; Sigl-Glockner and
Seibt, 2019). REM sleep is indeed considered to be an opportune
time for bidirectional synaptic change and refinement (Poe et al.,
2010; MacDonald and Cote, 2021) as relatively high cholinergic
activity (Marrosu et al., 1995) would favor induction of LTP
(Hasselmo and Bower, 1993) while low norepinephrinergic
activity (Aston-Jones and Bloom, 1981) would be essential
for depression (Thomas et al., 1996; Katsuki et al., 1997).
Additionally, theta activity of REM sleep has been proposed
to promote selective strengthening and weakening of memories
(Poe et al., 2000; Grosmark et al., 2012).

Ribeiro et al. (2007), pondering hippocampal disengagement
and cortical engagement of spatial and episodic memories
over time (Squire et al., 1993; Izquierdo and Medina, 1997;
Frankland and Bontempi, 2005), propose that the repetition of
wake-sleep cycles would produce the propagation of memories
from the hippocampus to the cortex (corticalization). This
is presumably accomplished with the two main sleep phases
complementing each other functionally through hippocampal-
cortical reactivation during SWS (Pavlides and Winson, 1989;
Wilson and McNaughton, 1994; Peigneux et al., 2004; Ribeiro
et al., 2004) and gene transcription dependent long-termmemory
storage during REM sleep (Ribeiro and Nicolelis, 2004; Ribeiro
et al., 2004). In support of this notion, spatiotemporally distinct
waves of enhanced mRNA expression of IEGs, indicative
of increased synaptic activity, were detected after in vivo
hippocampal LTP induction during wake and then during REM
phases, first appearing in hippocampal areas, later in areas of
the neocortex, each of them terminated in the following NREM
sleep phase. With REM sleep promoting the transcriptional
upregulation in the cortex, but not in the hippocampus, it
was suggested to be an opportune window for hippocampus
driven cortical activation, to play an instructive role in the
communication of memory traces from the hippocampus to the
cortex and being important for the stabilization of memory traces
within cortico-cortical connections (Ribeiro et al., 1999, 2002,
2007; Almeida-Filho et al., 2018).

Finally, the ‘‘active systems consolidation hypothesis’’
(Diekelmann and Born, 2010; Klinzing et al., 2019; Feld
and Born, 2020) incorporates the above-mentioned models
and proposes, mainly based on studies concerned with
declarative memories, that despite or in parallel to global
synaptic downscaling, sleep promotes long-term memory
through repeating cycles of sleep-phase dependent, systemic and
synaptic consolidation processes. Systemic consolidation would
rely on much shorter periods of synaptic consolidation as a
subroutine (Dudai, 2012) for stabilizing engram representations
in local networks over a time course of hours, days, or even years.
During sleep, particularly during NREM sleep and driven by the
precise timing of certain brain oscillations, here namely cortical
slow oscillations (SO <1 Hz), thalamic spindles (12–15 Hz),
and hippocampal sharp wave ripples (ripples 80–220 Hz, SWR:
extracellular negative wave followed by fast ripple), previously
encoded information would be ‘‘replayed’’. This means neuronal
and synaptic ensembles, that presumably comprise an engram,
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would be reactivated, in a sequentially true although time
condensed activity pattern (Wilson and McNaughton, 1994;
Kudrimoti et al., 1999; Nadasdy et al., 1999; Diba and Buzsaki,
2007; Euston et al., 2007; Ji and Wilson, 2007; Lansink et al.,
2008; O’Neill et al., 2010; Clawson et al., 2021). In other words,
several neurons, supposedly part of an engram, that fire in a
particular temporal order during a behavioral task would be
found to fire in the same order again during subsequent NREM
sleep when SWRs occur. However, although the sequence of
firing would be the same as during wake, the duration for one
such sequence to complete would be shorter [e.g., several-fold
in the hippocampus in accordance with an increased discharge
probability of pyramidal neurons during SWR bursts (Csicsvari
et al., 1999)], which was suggested to facilitate the likelihood
of neuronal co-activation and thus Hebbian synaptic plasticity
(Buzsaki, 1989; Atherton et al., 2015). Of note, replay in
correlation with SWRs is also seen during awake-states (Foster
and Wilson, 2006; Diba and Buzsaki, 2007; Karlsson and Frank,
2009), particularly during pauses in waking behavior (e.g.,
after running a track), and was interpreted to play a role in
the evaluation of event sequences (reinforcement; Foster and
Wilson, 2006). In cases of awake-replay after track running, the
sequence of firing was found to be in reversed order (Foster and
Wilson, 2006; Diba and Buzsaki, 2007).

Reactivation of neuronal ensembles and replay during NREM
sleep was shown to support memory consolidation and thus
later performance in memory retrieval (Rasch et al., 2007;
Rudoy et al., 2009; Barnes and Wilson, 2014; Euston and
Steenland, 2014; Yang et al., 2014; Ramanathan et al., 2015;
Kim et al., 2019). In addition, it was demonstrated that
inhibiting the reactivation of a subset of engram neurons
during sleep can also transform the information that is
stored, i.e., inhibiting the reactivation of sensory engram
neurons during sleep after a preceding sensory cued fear
conditioning task leads to a generalized fear response during
later retrieval that was devoid of its associative aspect (Clawson
et al., 2021). Repeated replay (possibly serving as tagging
mechanism) would eventually be followed by the induction
of plasticity-relevant gene expression during REM sleep and
protein synthesis dependent scaling processes. The latter is
presumably also implemented in periods of REM sleep, at high
cholinergic activity, to selectively strengthen or weaken those
synapses that were tagged for further processing. Temporally
organized replay in different brain regions and minimal
cholinergic activity during NREM are proposed to drive—at
least for some types of memory—‘‘redistribution’’ of encoded
information from transient to permanent storage locations
(e.g., for declarative memory from the hippocampus to cortical
areas). While ensembles within the permanent storage location
(cortex) are strengthened over time, engram representations
within the transient (e.g., hippocampal) storage location would
slowly decrease due to synaptic downscaling. Staying with the
hippocampal-cortical example of episodicmemories, progressing
independence from the hippocampus, which is associated with
storing context associations and thus details of episodic memory,
would lead to ‘‘transformed’’ more abstracted, gist like memory
representations (Figure 1).

HOMEOSTATIC PLASTICITY IN SUPPORT
OF MEMORY CONSOLIDATION DURING
SLEEP

Sleep is indisputably crucial for homeostatic regulation (Tononi
and Cirelli, 2006, 2014), which relies on the synergistic action of
slower feedback mechanisms, like global (Turrigiano et al., 1998;
Turrigiano, 2008), and local (Sutton et al., 2006; Branco et al.,
2008; Hou et al., 2008; Yu and Goda, 2009), synaptic scaling,
or the regulation of intrinsic excitability (Zhang and Linden,
2003; Frick and Johnston, 2005; Niethard et al., 2017), in order
to maintain stable function while at the same time preserving
the specificity of synaptic changes that encode information
(Turrigiano, 2012, 2017).

Synaptic scaling compensates for activity-dependent synaptic
changes by maintaining the firing rate of any given neuron
and neuronal circuit (Turrigiano, 2017) within a dynamic
range around a set-point value (Turrigiano, 2008). In doing so,
complete silencing or over-excitation and runaway potentiation,
a self-reinforcing positive feedback loop following long-term
potentiation (LTP) induction (Watt and Desai, 2010), are
avoided. As synaptic drive increases and firing rate rises above
the target level, surface expression of α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is
decreased, thus reducing (downscaling) the strength of all inputs
(Turrigiano, 2012, 2017), as the number of AMPARs on the
surface is a direct correlate of synaptic strength. Upscaling on the
other hand, after a period of silencing, increases synaptic strength
and spine size (Shepherd and Huganir, 2007; Diering and
Huganir, 2018). Global synaptic scaling applies this mechanism
in a multiplicative way for all synapses of a neuron. Local
synaptic scaling was proposed to work in a multiplicative way
as well, although here, the functional unit would be a dendritic
compartment of neighboring synapses rather than the whole
neuron (Rabinowitch and Segev, 2008; Figure 2).

Homeostatic intrinsic plasticity regulation is based on
a neuron’s ability to shift its excitability in an activity-
dependent way by changing for instance the threshold for
action potential firing. Neurons respond to low (or high)
activity patterns by becoming more (or less) responsive to
the input they receive (Karmarkar and Buonomano, 2006;
Watt and Desai, 2010). The impact of intrinsic plasticity
can be complex, involving not only alterations in gain or
threshold, but also in spike frequency adaptation, afterpotentials,
synaptic integration, local dendritic excitability, temporal
firing patterns, and resonance characteristics (van Welie et al.,
2004; Frick and Johnston, 2005; Trasande and Ramirez,
2007; Narayanan and Johnston, 2008; Watt and Desai,
2010).

Several studies reported global synaptic down-scaling and
on an average decrease in neuronal excitability across sleep
(Tononi and Cirelli, 2006, 2014; Vyazovskiy et al., 2009; Bushey
et al., 2011; Maret et al., 2011; Grosmark et al., 2012; Yang
and Gan, 2012; Miyawaki and Diba, 2016; de Vivo et al.,
2017) yet subsets of neurons also maintain or even increase in
spine number, synaptic strength, and firing rate during sleep
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FIGURE 1 | Memory formation: encoding during wake and consolidation during sleep. Encoding of new information takes place while the animal is awake and
perceptive to sensory stimulation. Events are encoded in synchronized neuronal ensembles in a set of synapses that are stimulated in close temporal proximity.
Induction of synaptic plasticity processes results in either transient or stable changes of synaptic strength and neuronal connectivity. Depending on the type of
information, different brain regions are recruited during the encoding process. In the example given here, neuronal ensembles to encode the event (red polygons) are
stimulated in the hippocampus as well as in cortical areas, with the former presumably responsible for more transient (orange polygons) preservation of associative
details and the latter already containing a plethora of neuronal ensembles that represent the memory of previous events (existing memory; green polygons). Other
neurons or neuronal ensembles, only weakly stimulated or entirely unrelated to the exemplified memory traces, are depicted in yellow and blue, respectively. Sleep is
thought to benefit the maintenance of synaptic plasticity and the consolidation of long-term memory through synaptic homeostasis processes that lead to global
synaptic downscaling in synergy with repeating cycles of sleep-phase dependent, systemic and synaptic consolidation processes. During NREM sleep, driven by the
precise timing of cortical slow oscillations (SO), thalamic spindles, and hippocampal sharp wave ripples (SWR), previously encoded information would be “replayed”,
i.e., previously stimulated neuronal ensembles (red polygons), as such tagged for maintenance, would be reactivated. In this scenario, the hippocampus is believed
to support cortical long-term memory storage by driving cortical activation and serving as an associative hub among cortico-cortico connections. Repeated replay
would subsequently be followed by the induction of plasticity-relevant gene expression and protein synthesis dependent scaling processes, presumably
implemented during REM sleep and ultimately leading to the selective refinement of memory traces (orange polygons and dashed lines indicate temporary memory
traces, solid lines indicate stable connections). The process of long-term memory consolidation can take any time from hours to years. During this time hippocampal
involvement would lessen with memory traces dissipating and associative detail of the event thus getting lost. The cortical representations on the other hand would
be stabilized and integrated into the network of pre-existing memory representations. Without the representation of associative detail, this information would however
be “transformed” in a way, merely representing the gist of the experienced event. REM, rapid eye movement; NREM, Non-rapid eye movement.
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FIGURE 2 | Homeostatic synaptic scaling. (A) Scheme of the whole neuron showing the color code for the different types of homeostatic scaling depending on the
extent of the changes. (B) Global homeostatic up- or downscaling happens at the network level after a period of lowered or elevated firing rate, respectively. The
neuron senses its own firing rate and it increases or decreases the strength of all its dendritic spines in a multiplicative manner, in such a way that the differences
between synaptic weights are preserved. (C) Local up- or downscaling at the level of dendritic segments happens when a group of neighbor spines forming a cluster
undergoes an increase or decrease in synaptic strength independently of the spines located in the neighbor dendritic segment. (D) Local up- or downscaling can
also happen at the level of single dendritic spines when individual spines are able to autonomously sense their level of activity and compensate for it by increasing or
decreasing its synaptic strength.
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(Ribeiro et al., 2007; Aton et al., 2014; Yang et al., 2014; Li et al.,
2017; Niethard et al., 2017; Clawson et al., 2018; Raven et al.,
2019).

Structural Evidence of Plasticity During
Sleep
The vastmajority of studies delineate no changes in spine density,
but a global decrease in spine size during sleep, presumably
reflecting homeostatic downscaling. Thus, in cortical areas,
spine numbers do not seem to differ between sleep and wake
(Maret et al., 2011; de Vivo et al., 2017, 2019). However, two
studies (Maret et al., 2011; Yang and Gan, 2012) examined
spine turnover in the sensorimotor and somatosensory cortex
of adolescent mice and observed higher spine elimination rates
during sleep compared to natural wake or a period of sleep
deprivation (SD). With regard to spine size, changes between
wake and sleep, with an increase during wake and decrease
during sleep, respectively, are reportedly age-dependent, either
affecting large and small sized spines (pups; motor cortex;
de Vivo et al., 2019), only small spines (adolescents; motor
and somatosensory cortex; de Vivo et al., 2017) or only big
spines (adults; motor cortex; Diering et al., 2017). Underlying
causes for these differences might lie in different sleep-
wake-patterns, a different status in the animals’ cortical and
cognitive development, and with those different requirements on
structural plasticity.

Somewhat conflicting results have been described for the
hippocampus (mostly focused on Cornu Ammonis 1, CA1),
as some studies found a decrease in spine number after SD
compared to a period of undisturbed sleep (Havekes et al., 2016;
Raven et al., 2019; Wong et al., 2019), while others reported that
spine number (Ikeda et al., 2015; Spano et al., 2019; Gisabella
et al., 2020) and size (Norimoto et al., 2018; Spano et al., 2019;
Gisabella et al., 2020) decreased following periods of sleep.

The relevance of such processes was underscored in
experiments where mice were challenged prior to sleep with
a motor task and changes were analyzed using transcranial
2-photon-imaging of the motor cortex. Subsequent REM
sleep appeared to contribute to memory consolidation by the
refinement of learning-induced new synaptic connections (Li
et al., 2017). A subset of newly formed spines was strengthened
and maintained during sleep, while other spines were selectively
eliminated (Li et al., 2017), and even new spine formation was
reported during sleep after mice had performed a motor task
(Yang et al., 2014). It was also shown that spine elimination
during REM sleep in response to monocular deprivation or after
fear conditioning would go along with reduced neuronal activity
and was eliminated by blockade of Ca2+-spikes (Zhou et al.,
2020).

Electrophysiological Evidence of Plasticity
During Sleep
How are structural changes in spine size across the wake and
sleep cycle related to electrophysiological measures of synaptic
efficacy? Several studies showed that the slope, amplitude,
frequency, and synchrony of miniature excitatory postsynaptic
currents (mEPSCs) and local field potentials (LFP) increase with

wakefulness and decrease overall during sleep (e.g., Vyazovskiy
et al., 2008, 2009; Liu et al., 2010; Gonzalez-Rueda et al., 2018;
Norimoto et al., 2018). This is notwithstanding a recent study
observing neuronal firing rates to increase in the neocortex and
to decrease in CA1 during REM sleep or to diverge during
REM and to homogenize during NREM sleep (Miyawaki et al.,
2019). Slope and amplitude were found to correlate with changes
in slow-wave activity, a marker of sleep pressure (Vyazovskiy
et al., 2008, 2009; Liu et al., 2010). In addition, cortical LTP and
LTP-like plasticity are induced more easily by tetanic stimulation
after sleep (Vyazovskiy et al., 2008; Kuhn et al., 2016). The
reduced threshold to induce LTP indirectly supports the notion
of a net increase in synaptic strength after periods of waking and a
net synaptic depression (homeostatic downscaling) after periods
of sleep.

What are underlying mechanisms? Changes in mEPSC
frequency are thought to result from modification of the
presynaptic component of synaptic transmission, while
amplitude changes indicate alterations in the postsynaptic
component (Ungless et al., 2001). Whole-cell patch-clamp
recordings from pyramidal neurons in acute slices of the
somatosensory cortex of rats showed that the number of Ca2+-
permeable AMPARs is reduced after NREM sleep compared
to wake (Lante et al., 2011) lessening synaptic weights and
thus presumably resetting cortical connections for subsequent
plasticity induction (Lante et al., 2011). In vivo whole-cell
recordings and optogenetic stimulation of presynaptic inputs in
the cortex of adolescent mice during SWS-like activity revealed
that stimulation during Down states of SWS activity leads to
conventional spike timing-dependent plasticity (STDP), while
Up states were found to be generally biased toward depression,
i.e., decrease in excitatory postsynaptic potential (EPSP) slopes
(Gonzalez-Rueda et al., 2018). During the Up states of SWS
activity, only presynaptic stimulation that contributes to
postsynaptic spiking would protect (yet not strengthen) the
respective connections (Gonzalez-Rueda et al., 2018). However,
further mechanisms by which sleep could support long-term
memory consolidationmight be related to the circuit activity that
promotes the reactivation of specific neuronal ensembles during
SWS (Kruskal et al., 2013). Memory relevant engram cells seem
to be exempt from the overall decrease in firing patterns during
sleep (Norimoto et al., 2018). Evoked potential responses in the
somatosensory cortex of awake, adult cats were enhanced after
an episode of slow-wave sleep as compared to an episode of wake
(Chauvette et al., 2012). Subsequent in vitro studies showed that
this enhancement is mediated by a postsynaptic mechanism that
is calcium-dependent and requires hyperpolarization periods
(slow waves) as well as the co-activation of both AMPA and
NMDA receptors (Chauvette et al., 2012) as would be expected
by reactivation of neuronal ensembles.

Analysis of firing rate homeostasis (FRH) in the context of
monocular deprivation in the visual cortex of rats revealed that
the typical shift in visual responses toward the non-deprived
eye, that is seen after monocular deprivation (MD), is also
sleep-dependent (Frank et al., 2001) as the activity of particular
neurons was potentiated during sleep, both in NREM and REM
phases, but not during wake, and this potentiation was prevented
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by sleep deprivation (Durkin and Aton, 2016). The assumption
that replay might be part of the underlying mechanism in this
was supported by the observation of increased neuronal activity
in V1 during post-MD sleep (Aton et al., 2009). Potentiation
was found to be dependent on NMDAR and PKA activity and
involved phosphorylation events associated with LTP, indicating
that synaptic strengthening via NMDAR and PKA activity
would be a key step in sleep-dependent consolidation of ocular
dominance plasticity (Aton et al., 2009). Hebbian depression
mechanisms that are induced by MD, occurred during both,
wake and sleep (Hengen et al., 2016). Re-opening of the
eye (ER) would then be followed by a firing rate overshoot,
consistent with Hebbian potentiation (Torrado Pacheco et al.,
2020). Both, depression after MD and potentiation after ER,
would subsequently be compensated by homeostatic processes,
which, however, occurred in different arousal states: Downward
homeostatic regulation was restricted to sleep (Torrado Pacheco
et al., 2020), whereas upward homeostatic regulation only
occurred during wake (Hengen et al., 2016).

Sleep Deprivation and Synaptic Plasticity
What are molecular mechanisms underlying LTP impairments
caused by the lack of sleep (Havekes et al., 2016)? In the CA1 area
of adolescent mice cAMP- and PKA-dependent LTP is impaired
in brain slices from animals that had been sleep deprived for
5 h (Vecsey et al., 2009). These changes were accompanied by
decreased cAMP and phosphorylated cAMP response element-
binding protein (CREB) at S133 levels and increased PDE4 levels
after sleep deprivation in the brain of adult mice. 3 hr of SD
significantly impaired LTP in the CA1 area in brain slices and
also spatial memory if sleep deprivation was imposed 1 h after
training (Prince et al., 2014). In contrast, if animals were sleep
deprived immediately after training, LTP and spatial memory
were not affected (Prince et al., 2014). These findings define
a 3-h critical period, extending from 1 to 4 h after training,
during which sleep deprivation impairs hippocampal function. In
a recent study, it was shown that SD impairs synaptic tagging and
capture (STC) in the hippocampus and behavioral tagging, two
major mechanisms of associative learning and memory (Wong
et al., 2019). Of note, SD impairs late- but not early-LTP (Kopp
et al., 2006; Vecsey et al., 2009; Havekes et al., 2016).

MOLECULAR MECHANISMS IN SUPPORT
OF MEMORY CONSOLIDATION

The distinct roles of wakefulness and sleep in memory formation
are reflected by molecular oscillations on the level of gene
expression and the activity of kinases. Below, we will review
the different cellular functions that can be deduced from these
oscillations and how they affect synaptic plasticity over the
24-h cycle. This bird’s view perspective is complemented with
a closer look at neuronal ensembles that are engaged in the
encoding of information during wakefulness and that play a
central role in memory consolidation. We discuss how neuronal
activity during initial memory acquisition might ‘‘prime’’ these
cells for extensive structural and synaptic remodeling in favor
of highly activated connections during sleep. This process may

strengthen and refine memory engrams, which would support
the consolidation process on the network- and system-level.

Gene Expression Patterns Across the
Sleep-Wake Cycle
Systematic studies revealed that in the brain of mice around
6–8% of total transcripts ‘‘cycle’’ in expression across 24 h,
with levels depending on the time of the day (Maret et al.,
2007; Hor et al., 2019; Noya et al., 2019). These oscillations
are especially pronounced at synapses. In synaptoneurosomal
fractions of the forebrain, two-thirds of the synaptically enriched
mRNAs, detected by deep sequencing, as well as around 12%
of total synaptic proteins, detected by shot-gun proteomics
were reported to cycle (Noya et al., 2019). Interestingly, the
time-points of peak changes in gene expression for the majority
of cycling transcripts and corresponding protein levels are found
at the end of the wakefulness or sleep period.

Based on the database SynGO (Koopmans et al., 2019),
analysis of the synaptically enriched, cycling transcripts from
Noya et al. (2019), which peak during wakefulness or during
sleep, reveals distinct biological function (Figure 3). During
wakefulness, there is a strong increase of transcripts that are
enriched for the functional GO-term ‘‘metabolism’’, and here in
particular ‘‘translation machinery at pre-/post-synapse’’. Thus,
many of these transcripts code for ribosomal proteins that
show high expression levels throughout wakefulness reaching
a maximum before sleep and then relatively quickly decay to
minimal expression during sleep (Noya et al., 2019). While it has
been shown that protein translation in the brain is important for
memory formation during wakefulness and sleep (Tudor et al.,
2016; Raven et al., 2020), the elevated expression of ribosomal
proteins towards the end of wakefulness might be related
to memory acquisition and an increasing need for memory
consolidation, which is dependent on the synthesis of new
proteins (Kelleher et al., 2004). In contrast, during sleep and the
first hour of wakefulness increased expression of transcripts that
are enriched for the functional GO-terms ‘‘synapse organization’’
(i.e., regulation of presynapse assembly, postsynaptic density
assembly, regulation of synapse organization, synapse adhesion
between pre- and post-synapse), ‘‘process in the postsynapse’’
(i.e., regulation of postsynaptic membrane neurotransmitter
receptor levels, regulation of postsynaptic membrane potential),
‘‘synaptic signaling’’ (i.e., modulation of chemical synaptic
transmission), and ‘‘process in the presynapse’’ (i.e., regulation
of synaptic vesicle exocytosis, synaptic vesicle proton loading)
is apparent. This indicates that during sleep the focus shifts
towards mechanisms related to synaptic restructuring and
refinement. With respect to memory formation, this may reflect
the facilitation of consolidation during sleep, while external input
is suppressed (Wang et al., 2005; Rawashdeh et al., 2007; Michel
and Lyons, 2014; Levy et al., 2016).

Oscillating Kinase Activity Facilitates
Increased Synaptic Potentiation During
Wakefulness and Depression During Sleep
Substantial oscillations across the wake-sleep cycle
were also reported for post-translational modifications
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FIGURE 3 | SynGO analysis of synaptically enriched transcripts from murine forebrain synaptoneurosomes from Noya et al. (2019). Functional terms of synaptically
enriched transcripts with peak expression during wakefulness (ZT12–24) are enriched for metabolic processes, whereas during sleep (ZT0–12) terms regarding
synaptic function and structure are enriched. SynGO (version: 20210225) annotations are based on published experimental evidence and were peer reviewed by
experts (Koopmans et al., 2019). Function- and location-terms are hierarchically ordered, with the highest hierarchical term (“function at the synapse”/“synapse”) in
the center. One-hundred and seventy out of 1,354 synaptically enriched genes with peak expression during wakefulness and 155 out of 728 synaptically enriched
genes with peak expression during sleep, respectively, were recognized and mapped to unique SynGO annotated genes. They were compared to the default
background list provided by SynGO, which contains all genes expressed in the brain. Colors indicate the significance of enrichment compared to the background
set. ZT, Zeitgeber time.

(Diering et al., 2017; Wang et al., 2018; Bruning et al.,
2019). Phosphorylation sites in around 50% of detected
synaptic phosphoproteins were shown to significantly cycle
corresponding to the time of the day and independently of
expression levels of the respective proteins (Bruning et al., 2019).
Cycling phosphorylation peaks were found to cluster, similar to
what could be observed for cycling mRNAs and proteins, either
at the end of the wakefulness/transition to sleep phase or at the
end of sleep/the beginning of wakefulness phase.

While oscillatory patterns were less apparent among
phosphatases, around half of all 128 identified synaptic kinases
contained at least one cycling phosphorylation site, indicative
for cycling activity (Bruning et al., 2019). Identification of the
kinases which were most active in either of the two clusters via

motif and interaction analysis of the phosphoproteome, revealed
two contrary landscapes with respect to synaptic plasticity. The
kinases that were most active at the transition to or during early
wakefulness, are prominent mediators of synaptic potentiation:
CamKII, PKA, and PKC (Vyazovskiy et al., 2008; Cui et al.,
2016; Diering et al., 2017; Bruning et al., 2019). Phosphorylation
profiles of substrates of CamKIIα and PKC suggest that the
activity of these kinases slowly builds up before it peaks and stays
at a high level throughout wakefulness until it rapidly drops
before sleep and then slowly builds up again (Bruning et al.,
2019). On the other hand, kinases that had their most active
period at the transition to or in early sleep are mostly associated
with synaptic depression and homeostatic downscaling: Abl2,
DCLK2, CDK5, and GSK3β (Diering et al., 2017; Bruning et al.,
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2019; see Table 1). The activity of GSK3β was shown to be high
throughout sleep, before it rapidly drops at the transition to
wakefulness, as indicated by the phosphorylation profile of one
of its substrates (Bruning et al., 2019).

These results show, that on a global scale, mechanisms
related to synaptic potentiation prevail during wakefulness and
synaptic depression-related mechanisms predominate during
sleep (Vyazovskiy et al., 2008; Tononi and Cirelli, 2014).
While this may cause a reduction of the average synaptic
strength during sleep, as proposed in the ‘‘synaptic homeostasis
hypothesis’’, it does not exclude the occurrence of synaptic
potentiation on a more local scale or generation of new spines
(Yang et al., 2014; Diering et al., 2017; de Vivo et al., 2017). It
is still a matter of debate if these effects are mainly driven by
the physiological state of sleep in a sleep-homeostatic manner or
by circadian effects that coincide with sleep (Michel and Lyons,
2014; Frank, 2016, 2021), but likely it is a combination of both.
Notably, animals in the studies discussed above (Maret et al.,
2007; Diering et al., 2017; Bruning et al., 2019; Hor et al., 2019;
Noya et al., 2019) were not subjected to any cognitive tasks before
sleep, which suggests that these mechanisms might be a default
circuit property.

The accumulation of synaptic potentiation during
wakefulness has been linked to an increase in sleep pressure
in mammals and flies. Like in mammals, sleep in Drosophila
melanogaster is regulated by circadian and homeostatic processes
and has been shown to be important for memory consolidation
following different learning tasks (Cirelli and Bushey, 2008;
Donlea et al., 2009; Bushey et al., 2011; Dag et al., 2019;
Donlea, 2019). Just like in mammals, consolidation was shown
to depend on reactivation of neurons, that were involved in
the acquisition of memory, during post-learning sleep (Dag
et al., 2019), as well as on systems-level mechanisms, that
can lead to ‘‘transfer’’ of the memory traces from one brain
region to another over time (Cervantes-Sandoval et al., 2013;
Dubnau and Chiang, 2013). Following learning, environmental
enrichment, or forced wakefulness, flies show an increase in
sleep pressure, accompanied by larger and more numerous
synapses, which are reduced during subsequent sleep (Donlea
et al., 2009; Donlea, 2019). Genetic upregulation of the synaptic
strength through overexpression of the presynaptic scaffold
protein bruchpilot, which drives plasticity of the active zone
in Drosophila, was sufficient to promote sleep in a dosage-
dependent manner in wildtype animals and different genetic
models with reduced sleep (Huang et al., 2020). Conversely,
knock-down of different active zone proteins, reducing synaptic
strength, led to a reduction in sleep duration. Furthermore, the
increase in phosphorylation of several synaptic proteins during
wakefulness could be mimicked in genetic and pharmacological
models of increased sleep pressure in mice (Wang et al.,
2018). The activity of the MAP-kinase ERK, which is induced
following synaptic potentiation and memory acquisition
during wakefulness, was shown to promote sleep (Winder
et al., 1999; Mikhail et al., 2017) and genetic deletion or
inhibition of ERK in flies and rodents led to a reduction in
total sleep duration (Vanderheyden et al., 2013; Mikhail et al.,
2017).

Enhanced Neuronal Activity and Learning
During Wakefulness Prime Neurons for
Processing During Sleep
Collectively, current evidence suggests that more synaptic
connections get potentiated across wakefulness and the need
for sleep increases, which promotes synaptic ‘‘renormalization’’
through depression and homeostatic scaling, as well as
consolidation of memory during sleep (Tononi and Cirelli,
2014). Neurons adjust their transcriptional profile to enable
plasticity and the encoding of memories, which is regulated
by activity-induced transcription factors (TFs), such as pCREB,
MEF2, and SRF (Yap and Greenberg, 2018). This is accompanied
by epigenetic modifications that further promote the activity
of these TFs. In whole brain samples both, spontaneous and
forced wakefulness (sleep deprivation) cause a similar increase in
chromatin accessibility at specific sites of the genome, which were
correlated with enhanced, wakefulness-related gene expression
(Hor et al., 2019). Furthermore, in cortical samples, SD was
found to cause vast changes in the level of DNAmethylation and
hydroxymethylation in differentially expressed genes (Massart
et al., 2014). Predicted upstream regulators that could profit
from these changes and enhance the expression of their targets
are mostly related to metabolism, synaptic transmission, and
activity-dependent signaling (Massart et al., 2014).

The TF CREB has been shown to be crucial for memory
formation (Lisman et al., 2018). It is well established, that
increased activity of pCREB leads to an increase in the excitability
of a neuron (Dong et al., 2006; Lopez de Armentia et al., 2007;
Zhou et al., 2009; Yiu et al., 2014). This in turn induces a
positive feedback loop that facilitates potentiation of spines.
Neurons with high pCREB levels and increased excitability
were shown to be more likely to become part of a memory
engram (Han et al., 2007; Yiu et al., 2014; Park et al., 2016).
Both, increased excitability and synaptic potentiation have been
proposed to be mechanisms that underlie memory replay during
sleep (Atherton et al., 2015; Lisman et al., 2018). Thus, the
experience-related increase in neuronal activity in a subset of
neurons that were engaged during previous wakefulness primes
them through transcriptional adaptations that are accompanied
by epigenetic modifications, as well as increased excitability and
synaptic strength. Primed neuronal ensembles are subjected to
replay and refinement during sleep.

Immediate Early Genes Drive Plasticity and
Are Critical for Memory Consolidation
Immediate early genes (IEGs) are among the downstream targets
of the TFs pCREB, MEF2, and SRF (Yap and Greenberg, 2018).
Characteristic for IEGs is their rapid and transient expression
in response to stimulation, which does not, in contrast to ‘‘late-
response’’ genes, require synthesis of new proteins. Many studies
over the last decades have shown that they are involved in
various forms of neuronal plasticity with a particularly important
role in memory allocation and consolidation (Guzowski et al.,
2000; Jones et al., 2001; Ramírez-Amaya et al., 2005; Plath
et al., 2006; Bekinschtein et al., 2007, 2008; Ploski et al.,
2008; Katche et al., 2010, 2012; Maddox and Schafe, 2011;
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TABLE 1 | The effects of the kinases CDK5, GSK-3β, Abl2, and DCLK2 on synaptic plasticity and evidence for their action during sleep.

Kinase Where Mechanism/Observation Outcome Publication Does it happen during
sleep?

CDK5 Post-synapse Phosphorylation of PSD95 at Thr19, Ser25 and Ser35, which reduces
multimerization of PSD scaffold and reduced clustering of ion channels

Reduced post synaptic currents Morabito et al. (2004) PSD95 Thr19 and Ser25 peak
at ZT11 (Bruning et al., 2019)

Phosphorylation of SPAR at Ser1328, which causes further
phosphorylation through PLK2, leads to degradation of SPAR. This
decreases SPAR-mediated recruitment of PSD95 to the post-synapse

Less recruitment of PSD95 to the
post-synapse by SPAR

Pak and Sheng (2003) and
Seeburg et al. (2008)

Induces interaction between GluN2B and calpain, leading to their
degradation

Reduction of surface GluN2B levels
and currents

Hawasli et al. (2007)

Enhances endocytosis of GluN2B-containing NMDAR Reduction of GluN2B-containing
NMDAR

Zhang et al. (2008)

Pre-synapse Phosphorylation of synapsin I at Ser549 and Ser551, which increases
binding of synapsin I to F-actin and sequesters SV in the resting pool

Reduced NT release Verstegen et al. (2014) Synapsin I Ser551 peaks at ZT0
(Bruning et al., 2019)

Phosphorylation of dynamin I at Ser774, which allows phosphorylation
of Ser778 by GSK-3β and enables activity-dependent bulk endocytosis
of SV

Increased capacity to release NT Clayton et al. (2010) Dynamitin I S774 and
S778 peak at ZT3–4 (Bruning
et al., 2019)

GSK-3β GSK-3β can be phosphorylated at Ser9 by kinases involved in LTP,
including CamKII, PKA and PKC

Inhibition of GSK-3β activity Sutherland et al. (1993), Li
et al. (2000), Ballou et al.
(2001), Song et al. (2010),
Bradley et al. (2012), and
Jaworski et al. (2019)

Phosphorylation of GSK-3β at
Ser9 is minimal during sleep
(Vyazovskiy et al., 2008;
Bruning et al., 2019)

Dephosphorylation of GSK-3β at Ser9 is mediated by PP1, following
induction of NMDAR-LTD

Activation of GSK-3β Szatmari et al. (2005) and
Peineau et al. (2007)

Post-synapse Phosphorylation of KLC2 at residues 601–622, which enhances AMPAR
internalization

Reduction of AMPAR currents Du et al. (2010) KLC2 Ser606 peaks at ZT5
(Bruning et al., 2019)

Phosphorylation of PSD95 at Thr19 Reduced PSD95 levels, reduction
of surface GluA1 in NMDAR
dependent LTD

Szatmari et al. (2005),
Peineau et al. (2007), and
Nelson et al. (2013)

PSD95 Thr19 and Ser25 peak
at ZT11 (Bruning et al., 2019)

Inhibitory synapses Phosphorylation of gephryn at Ser270, which leads to disintegration of
inhibitory post-synapses and GABAA receptor internalization

Reduced inhibitory currents Tyagarajan et al. (2011) and
Battaglia et al. (2018)

Gephryn Ser270 peaks at ZT2
(Bruning et al., 2019)

Pre-synapse Phosphorylation of P/Q type Ca2+ channels, leading to reduced
presynaptic Ca2+ levels and formation of the SNARE complex

Reduced NT release Zhu et al. (2010)

Overexpression reduces expression of synapsin I Reduced NT release Zhu et al. (2007)
Phosphorylation of dynamin I at Ser778, following phosphorylation of
Ser774 through CDK5, which enables activity-dependent bulk
endocytosis of SV

Increased capacity to release NT Clayton et al. (2010) Dynamitin I S774 and
S778 peak at ZT3–4 (Bruning
et al., 2019)

Abl2 Post-synapse Binds to cortactin through phosphorylation of cortactin at S421 and
S466, leading to spine stabilization and protection from severing
through cofilin

Stabilization of spines during LTP Courtemanche et al. (2015),
Mikhaylova et al. (2018),
and Shaw et al. (2021)

Phosphorylation of p190RhoGAP at Tyr1105, which reduces RhoA
activity

Regulation of actin remodelling
during structural plasticity

Hernandez et al. (2004) and
Sfakianos et al. (2007)

p190RhoGAP Tyr1105 peaks at
ZT11, 5 (Bruning et al., 2019)

DCLK1 Post-synapse Isoform DCLK1-L binds to PSD proteins and reduces PSD95 and
homer1 in spines

Reduction of post-synaptic
PSD95 and homer1 levels and
reduced surface GluA2

Shin et al. (2013)

Pre-synapse Reduced vGLUT puncta at pre-synapse Reduced SV release Shin et al. (2013)
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Ren et al., 2014; Cao et al., 2015; Nakayama et al., 2015).
IEGs that act in the nucleus as TFs, such as egr1/zif-268 or
the AP-1 family member c-fos, have a complex effect on gene
transcription and regulate the expression of many plasticity-
related genes (Pérez-Cadahía et al., 2011; Duclot and Kabbaj,
2017). Since IEGs are induced following neuronal activity and
memory acquisition, their expression levels were found to be
elevated during wakefulness and reduced during sleep (Maret
et al., 2007; da Costa Souza and Ribeiro, 2015; Noya et al., 2019).

Studies of egr1-deficient mice revealed that egr1 is required
for memory consolidation, but not memory formation. While
short-term memory of knock-out mice in different spatial and
non-spatial learning tasks was intact, they failed when tested
for long-term memory (Jones et al., 2001). Likewise, knock-out
mice showed no impairments in early LTP in the dentate
gyrus (DG) after tetanic stimulation of the perforant path, but
the potentiation was lost 24–48 h later (Jones et al., 2001).
The effects of egr1 on synaptic plasticity are mediated by its
downstream effectors and one of them is the activity-regulated
cytoskeleton-associated protein (Arc/Arg3.1; Li et al., 2005).
Similar to the role of egr1 in memory consolidation, studies
on arc-deficient mice could show that arc is not necessarily
important for memory acquisition, but for the maintenance of
long-term memory (Guzowski et al., 2000; Plath et al., 2006;
Ploski et al., 2008; Maddox and Schafe, 2011; Ren et al., 2014;
Cao et al., 2015). Originally, a role of arc in LTP maintenance
was described (Guzowski et al., 2000; Chowdhury et al., 2006;
Plath et al., 2006; Messaoudi et al., 2007), but this has been
challenged by recent results (Kyrke-Smith et al., 2021). While
its expression is a well-established indicator for neurons that
are to become part of an engram (Guzowski and Worley, 2001;
Ramírez-Amaya et al., 2005; Cao et al., 2015; Nakayama et al.,
2015), arc localizes to dendritic spines (Link et al., 1995; Lyford
et al., 1995; Chowdhury et al., 2006; Vazdarjanova et al., 2006;
Zhang et al., 2015; Fernández et al., 2017) and the nucleus
(Korb et al., 2013) to engage in various forms of plasticity,
such as LTD (Plath et al., 2006; Park et al., 2008; Waung et al.,
2008) and homeostatic plasticity (Shepherd et al., 2006; Gao
et al., 2010; McCurry et al., 2010; Korb et al., 2013; El-Boustani
et al., 2018). At the post-synapse, it mainly mediates a reduction
in synaptic strength by endocytosis of AMPARs (Chowdhury
et al., 2006; Rial Verde et al., 2006; Shepherd et al., 2006;
Waung et al., 2008). Following its induction, arc is preferentially
localized at inactive dendritic spines, suggesting a function
as an inverse tag (Okuno et al., 2012, 2018), which is likely
mediated through interaction with CamKIIβ. Corroborating its
role as inverse tag and mediator of AMPAR-endocytosis, the
synaptic content of arc was found to be negatively correlated with
surface levels of AMPARs (Okuno et al., 2012). Even though,
naïve mice show an overall reduction of arc expression during
sleep (da Costa Souza and Ribeiro, 2015), it appears that sleep
still influences the subcellular distribution of arc, to promote
homeostatic plasticity (Korb et al., 2013; Honjoh et al., 2017). In
the cortex, nuclear levels of arc were found to increase after 2 h
of sleep (Honjoh et al., 2017) and high levels of arc expression
in single neurons were negatively correlated with cytoplasmic
GluA1 levels.

The IEG homer1a is another effector that acts at the
synapse to modulate synaptic strength. Homer1a belongs to
the homer family of synaptic scaffold proteins, which connect
mGluR1/5 and their downstream effectors, the type-I inositol
triphosphate receptors (IP3R) and PKC, with each other and
couple them to the postsynaptic density (PSD; Sala et al., 2001,
2003). This allows mGluR1/5 and IP3R to act in concert, to
promote the facilitation of NMDAR-mediated LTP (Lu et al.,
1997; D’Antoni et al., 2014; Martin et al., 2019). The IEG
homer1a can abolish these effects in a dominant negative fashion,
by disrupting and disintegrating the homer scaffold complex
(Tu et al., 1998; Kammermeier et al., 2000; Sala et al., 2003;
D’Antoni et al., 2014; Diering et al., 2017; Martin et al., 2019).
This leads to a reduction in synaptic NMDAR currents and of
the LTP-promoting effects of GluR1/5 signaling (Lu et al., 1997;
Bertaso et al., 2010; D’Antoni et al., 2014). Instead, intracellular
binding of homer1a to mGluR1/5 induces an ‘‘alternative’’
form of mGluR1/5-signaling, which is constitutively active and
agonist-independent (Ango et al., 2001; Martin et al., 2019). The
exact identity of the alternative mGluR1/5 transduction pathway
is not known, but it was shown to mediate homeostatic plasticity
by increased internalization of synaptic GluA1 and -2 containing
AMPAR through a reduction in tyrosine phosphorylation levels
(Hu et al., 2010). Overexpression of homer1a in either wildtype
or arc-deficient neurons causes a similar reduction of GluA1 and
-2 surface levels, suggesting that the effects of homer1a and arc
on synaptic strength are independent.

Interestingly, during sleep, homer1a is redistributed to the
PSD. This redistribution is driven by circadian oscillations of
neuromodulators (Diering et al., 2017). The elevated activation
of noradrenaline-receptors during wakefulness actively prevents
homer1a from entering dendritic spines, while the activation
of adenosine receptors, a correlate of sleep need, leads to
synaptic accumulation (Bjorness et al., 2016; Diering et al.,
2017). Therefore, the homer scaffold complex is disintegrated
during sleep, as evidenced by the reduced association of
mGluR1/5, IP3R, and PKC with the PSD. This is accompanied
by the reduction of total GluA1 and -2 levels in PSD-fractions
and lower phosphorylation levels of GluA1—effects that are
abolished in homer1a-deficient mice. On a behavioral level, this
is reflected by the observation that wildtype mice, if treated with
mGluR1/5 inhibitors during sleep, but not wake, show impaired
memory consolidation after fear conditioning, reflected by an
increase in fear generalization (Diering et al., 2017).

In summary, IEGs act on different levels to mediate synaptic
plasticity and enable long-term memory consolidation. While
IEGs like egr1 drive the expression of genes that are relevant for
plasticity in general, others like arc and homer1a exert a direct
effect on synaptic strength, mainly by reducing synaptic strength
through LTD or homeostatic scaling. This may be of particular
importance for neurons that were involved in memory formation
during the day, as an increased load of information would require
to be stored and consolidated or might have to be discarded.
Homeostatic scaling and the function of arc as an inverse tag
might serve to clear memory from noise, i.e., traces, that are
potentially not relevant for long-term preservation, thus enabling
ongoing storage of new memories in the long run.
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IEG Expression Increases in Primed
Neurons During Sleep to Promote
Long-Term Memory Consolidation
IEG expression is driven in a sleep-homeostatic fashion. It
is enhanced by neuronal activity, peaks towards the end of
wakefulness periods, and drops during sleep (Maret et al., 2007;
da Costa Souza and Ribeiro, 2015; Noya et al., 2019). However, if
animals are exposed to experiences that elicit memory encoding,
IEG expression is found to be increased in a regionally specific
manner during and dependent on subsequent REM sleep phases
(Ribeiro et al., 1999, 2002, 2007; Calais et al., 2015). Also,
studies in the developing visual cortex of cats showed an
increase of IEG protein translation (but not transcription) during
REM (not NREM) sleep following the induction of plasticity
through monocular deprivation, which correlates with the sleep-
dependent shift in visual responses toward the nondeprived eye
(Seibt et al., 2012; Renouard et al., 2018).

Neurons that were involved in memory encoding during
wakefulness are subjected to replay during SWS sleep (Wilson
and McNaughton, 1994; Lee and Wilson, 2002; Lisman et al.,
2018), likely primed by CREB-dependent increase in neuronal
excitability and synaptic potentiation (Lisman et al., 2018).
The reactivation of neuronal ensembles might then, in turn,
promote the activation of CREB during sleep (even though
it is not known if this might occur in NREM or REM) and
facilitate the reinduction of IEGs during REM sleep. SWS
embedded replay alone was found to be insufficient to upregulate
IEG expression but required subsequent REM sleep (Ribeiro
et al., 1999, 2002, 2007; Seibt et al., 2012; Calais et al., 2015;
Renouard et al., 2018). Nevertheless, following exploration of
novel objects, sleep spindle amplitudes that were recorded in
the cortex of rats during NREM sleep showed a strong positive
correlation with subsequent increase of IEG expression during
REM sleep, suggesting a functional interplay of both sleep
states (Ribeiro et al., 2007). It might be, that replay during
SWS could act, similar to neuronal activation during awake
encoding, as a mechanism to (re)select neuronal ensembles
and tag synaptic connections for further processing during
subsequent REM sleep (Almeida-Filho et al., 2018; Seibt and
Frank, 2019). The underlying mechanisms that restrict the
increase of IEG expression to periods of wakefulness and
REM sleep are not known but may be related to shared
features, such as increased levels of acetylcholine and high theta
power.

Several studies, that did not specifically investigate sleep,
could show that, following different hippocampus-dependent
learning tasks and an initial induction of IEGs in mice,
another wave of IEG upregulation occurs in hippocampal
CA1 neurons several hours post-training (Ramírez-Amaya
et al., 2005; Bekinschtein et al., 2007, 2008; Katche et al.,
2010, 2012; Nakayama et al., 2015). Importantly, neurons
that would express arc during the initial induction were
found more likely to express arc also later on (Ramírez-
Amaya et al., 2005; Marrone et al., 2008; Nakayama et al.,
2015). Blocking the second rise of IEG expression through
hippocampal injection of either egr1, c-fos, or arc antisense

oligodeoxynucleotides, was found to result in impaired
long-term memory performance 7 days after training, which was
accompanied by reduced synaptic pruning in CA1 pyramidal
cells, while short-term memory performance 2 days after
training was intact (Katche et al., 2010, 2012; Nakayama et al.,
2015). Similarly, animals that were genetically deficient for the
respective IEGs showed impaired maintenance of memory,
but no deficit during initial memory acquisition (Guzowski
et al., 2000; Jones et al., 2001; Plath et al., 2006; Ploski et al.,
2008; Maddox and Schafe, 2011; Ren et al., 2014; Cao et al.,
2015).

Collectively published data suggest that IEG-upregulation
following initial memory acquisition occurs in waves with the
second wave being of particular importance for long-term
memory maintenance. In such a scenario one might speculate
that memory replay during NREM and subsequent REM

FIGURE 4 | The acquisition of new memories during wakefulness causes
upregulation of IEGs (green), which is followed by a second rise of IEG
expression during sleep, preferentially in neurons that were highly active,
exhibit increased intrinsic excitability and are constituents of initial memory
engrams. The upregulation of IEGs during sleep is initiated during REM,
following replay during NREM, and causes homeostatic plasticity
(i.e., downscaling) to reduce noise and interferences from “old” or redundant
memory traces (spines with blue rim). Spines that are reactivated during
replay may be strengthened and protected from downscaling (spines with red
rim; Rosanova and Ulrich, 2005; Chauvette et al., 2012; Kruskal et al., 2013;
Yang et al., 2014; Atherton et al., 2015; Li et al., 2017; Lisman et al., 2018).
This may happen in a spine- or dendrite-specific manner, as it has been
shown that during sleep dendritic segments experience Ca2+-spikes that are
separate from the cell body, as well as dendrite specific plasticity (Yang et al.,
2014; Kastellakis et al., 2015; Li et al., 2017; Seibt et al., 2017). While the
effects of IEGs during sleep may be most specific to neurons that are part of
newly formed engrams (dark green neurons), the kinases GSK3β, Abl2,
DCLK2, and CDK5 may act in concert to reduce synaptic strength on a
global scale (Table 1, Diering et al., 2017; Bruning et al., 2019). Their
combined action counterbalances the excess potentiation in the brain during
wakefulness by “renormalizing” connections and thus aids the selective
refinement of memory engrams (Cao et al., 2015; Attardo et al., 2018).
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sleep could represent excellent candidates to drive this
second wave of increased IEG expression. Accordingly,
both sleep phases would be required to work synergistically
to achieve long-term memory consolidation, even though
the exact mechanism bridging the two is still not understood
(Figure 4).

CONCLUSIONS

It is nowadays firmly established that sleep is of central
importance to maintain synaptic plasticity and to support
memory consolidation with homeostatic scaling and Hebbian
plasticity working in concert to reduce signal-to-noise ratio
on a global level, yet maintaining or refining neuronal
ensembles that comprise an engram. Less clear are the molecular
mechanisms that contribute to long-term memory formation.
Gene expression patterns and oscillating kinase activity across
the wake-sleep cycle support distinct biological functions with
increased synaptic potentiation during wakefulness and synaptic
depression during sleep. Yet, enhanced neuronal activity during
wakefulness also primes neurons for reactivation, supporting
Hebbian plasticity as well as homeostatic scaling processes,
and subsequent synaptic refinement during sleep. Immediate
early genes mediate plasticity and are critical for memory
consolidation. While IEGs like egr1 drive the expression
of plasticity relevant genes in general, others like arc and
homer1a exert direct effects, mainly reducing synaptic strength
through LTD or homeostatic scaling. This molecular framework
will set the stage for a more mechanistic understanding of
memory consolidation and opens up new avenues to integrate
findings at the systems level with the expression of plasticity
at the cellular level as well as at the level of individual
synapses.

GLOSSARY

Engram: persistent memory traces representing external or
internal experiences of the brain.

Activity-Dependent plasticity: Stimulus-induced synapse-
specific modification of synaptic strength and cell-specific
changes of neuronal excitability.

Hebbian plasticity: An input-specific form of activity-
dependent plasticity, consisting of a persistent enhancement
(long-term potentiation, LTP) or decrease (long-term
depression, LTD) of the synaptic transmission, yielding an
increase or a decrease of synaptic weights, respectively.

Homeostatic plasticity: A mechanism that allows neurons to
sense their own level of activity and to adjust their properties
to maintain a stable function and avoid extremes of complete
silence or over excitation.

• Synaptic scaling: Homeostatic plasticity mechanism
working in a feedback manner that helps neurons to maintain
stability. It responds to changes in the level of global synaptic
efficacy and membrane excitability, allowing neuronal networks
to maintain dynamic response properties. It maintains the firing
rate of a given neuronal circuit within a dynamic range: as
synaptic drive increases and firing rate rises above the target

level, homeostatic mechanisms are engaged that reduce the
strength of all inputs, that is, a downscaling process. During
downscaling, surface expression of AMPAR decreases, and in
turn synaptic strength is reduced. On the contrary, during
upscaling after a period of silencing, synaptic strength and spine
size will increase. Two types of scaling mechanisms have been
described in neurons; global homeostatic scaling, in which the
entire neuronal network is altered in a multiplicative way, thus
the relative differences in synaptic weighs are preserved, and
input-specific synaptic scaling, occurring at the level of a single
dendritic branch (quasi-local) or even at single spines (local),
without affecting neighboring synapses (Figure 2). Compared to
Hebbian plasticity, scaling operates over a longer temporal scale
(hours).

• Synaptic pruning: A mechanism used by neurons to
maintain firing rate stability via the regulation of the number
of synapses. This process is especially relevant during postnatal
development when neural circuits are shaped by activity-
dependent elimination of redundant synapses.

• Regulation of intrinsic excitability: Homeostatic plasticity
mechanism that modulates the membrane properties of the
postsynaptic neuron through the regulation upon the activity
of the ion channels at the cell membrane. It modulates the
sensitivity of the neuron thanks to activity-dependent alterations
in the properties or levels of voltage-dependent Na+, Ca2+, Cl–

and K+ channels.
• Excitation/Inhibition balance: Dynamic adjustment in the

relative strengths of excitatory and inhibitory feedback onto
pyramidal neurons, which is an important component of firing
rate homeostasis. Excitation and inhibition are regulated in
opposite directions, and probably by independent mechanisms.

Heterosynaptic plasticity: A type of plasticity not limited to
active synapses, but affecting neighboring synapses to the one
receiving the stimuli. It may happen after episodes of strong
postsynaptic activity and it does not show input specificity.

Clustered plasticity: Plasticity seems to be
compartmentalized within a given dendritic segment,
suggesting that clusters, rather than single synaptic
contacts, may be a fundamental unit for storage of
long-term memory. The spread of signaling molecules
inside a dendritic segment, or the ‘‘synaptic tagging
and capture’’ hypothesis might underlie clustered
plasticity.

Metaplasticity: Mechanism by which neural activity at one
time point alters cells or synapses in a way that it changes
their ability to undergo LTP/LTD upon another activity event
later in time, thus preventing the saturation of LTP and
LTD. The term metaplasticity means plasticity of plasticity,
as the previous history of activity at a certain synapse can
modulate upcoming plasticity events by means of modifying
the threshold for the induction of this following plasticity
event.

Silent synapses: A type of glutamatergic excitatory synapses
that possess NMDARs but lacks functional AMPARs, so it cannot
mediate neurotransmission. Chronic activity blockade leads to
the creation of new silent synapses, and they can be unsilenced
by coordinated pre- and postsynaptic activity, such as in the case
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of an LTP induction protocol, as the activation of NMDARs
promotes subsequent AMPARs recruitment to the postsynaptic
membrane.
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