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Abstract

Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings
(academic, small and large industrial, and the general public in industrialized nations) are either developing or
using engineered nanomaterials (ENMs) or ENM-containing products. However, our understanding of the
occupational, health and safety aspects of ENMs is still in its formative stage. A survey of the literature indicates the
available information is incomplete, many of the early findings have not been independently verified, and some
may have been over-interpreted. This review describes ENMs briefly, their application, the ENM workforce, the
major routes of human exposure, some examples of uptake and adverse effects, what little has been reported on
occupational exposure assessment, and approaches to minimize exposure and health hazards. These latter
approaches include engineering controls such as fume hoods and personal protective equipment. Results showing
the effectiveness - or lack thereof - of some of these controls are also included. This review is presented in the
context of the Risk Assessment/Risk Management framework, as a paradigm to systematically work through issues
regarding human health hazards of ENMs. Examples are discussed of current knowledge of nanoscale materials for
each component of the Risk Assessment/Risk Management framework. Given the notable lack of information,
current recommendations to minimize exposure and hazards are largely based on common sense, knowledge by
analogy to ultrafine material toxicity, and general health and safety recommendations. This review may serve as an
overview for health and safety personnel, management, and ENM workers to establish and maintain a safe work
environment. Small start-up companies and research institutions with limited personnel or expertise in
nanotechnology health and safety issues may find this review particularly useful.

1. Introduction
A. The objectives of this review
Although there has been considerable work to advance
nanotechnology and its applications, understanding the
occupational, health and safety aspects of engineered
nanomaterials (ENMs) is still in its formative stage. The
goals of this review are to describe some general fea-
tures of ENMs, how a worker might be exposed to
ENMs, some potential health effects, and approaches to
minimize exposure and toxicity. The target audience
includes industrial hygienists, investigators working with
these materials, institutes and universities conducting
research, and start-up companies that may not have the

necessary occupational health and safety expertise,
knowledge, and/or staff.
A comprehensive review described the field of nano-

toxicology six years ago, including some mechanisms of
toxicity, portals of ENM entry, their translocation, and
the state of their risk assessment at the time [1]. More
recent reviews have focused on the major challenges,
key questions, and research needs to assess ENM toxi-
city and risk [2-7]. This review addresses issues not
extensively covered in prior reviews, including recent
exposure-assessment studies, and engineering and perso-
nal protective equipment (PPE) options and their effi-
cacy to minimize ENM exposure. This review also
includes accepted but not yet published reports, recently
completed studies not yet published, and ongoing work.
Our goal was to provide up-to-date information on
ENM exposures, their health hazards, and ways to mini-
mize risk.
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B. Engineered nanomaterials
Nano is a prefix derived from the Greek word for dwarf.
The parts of the U. S. National Nanotechnology Initia-
tive (NNI) definition that are relevant for this review
define nanoscale materials as having at least one dimen-
sion in the range of 1 to 100 nanometers (nm), with
properties that are often unique due to their dimen-
sions, and that are intentionally manufactured [8]. There
are many definitions of nanoscale materials, which gen-
erally encompass the same bounds on ENM size [9,10].
This is in contrast to naturally occurring and uninten-
tionally-produced materials on the same scale, which are
referred to as ultrafine particles. The term ultrafine has
been used by the aerosol research and occupational and
environmental health communities to describe airborne
particles smaller than 100 nm in diameter [11]. Ultrafine
particles are not intentionally produced. They are the
products of combustion and vaporization processes such
as welding, smelting, fuel combustion, fires, and volca-
noes [1,12,13]. In this review, intentionally-manufac-
tured nanoscale materials will be referred to as ENMs.
They are usually produced by bottom-up processes,
such as physical and chemical vapor deposition, liquid
phase synthesis, and self-assembly [5,14].
The health and environmental effects of ENMs are not

well understood, leading some to caution development
of this technology [15-19]. Some understanding of ENM
effects can be derived, however, by analogy from ultra-
fine particles, which have been shown to produce
inflammation, exacerbation of asthma, genotoxicity, and
carcinogenesis following inhalation. The following sec-
tions describe ENMs, and some of their uses and uncer-
tainties, providing the context of this review.

C. Common ENM size, composition, and quality
Figure 1 relates ENM size to other chemical and biolo-
gical materials. There are a staggering number of ENM
compositions and shapes. Over 5000 patents have been
issued for carbon nanotubes (CNTs) and > 50,000 vari-
eties of CNTs have been produced [20]. The sheer num-
ber of ENMs contributes to the lack of our adequate
understanding of ENM health and safety. They are pri-
marily composed of carbon or metal/metal oxide, as
illustrated by the representative manufactured nanoma-
terials selected for testing by the Organisation for Eco-
nomic Co-operation and Development (OECD) [21].
Carbon-based ENMs include single-walled and multi-
walled carbon nanotubes (SWCNTs and MWCNTs),
graphene (a single sheet of carbon atoms in a hexagonal
structure), spherical fullerenes (closed cage structures
composed of 20 to 80 carbon atoms consisting entirely
of three-coordinate carbon atoms, e.g., C60 [Buckyballs,
buckminsterfullerene]), and dendrimers, which are sym-
metrical and branched. SWCNTs and MWCNTs are ~1

to 2 and 2 to 50 nm wide, respectively, and can be > 1
μm long. The C60 diameter is ~1 nm. Metal and metal
oxide ENMs most commonly studied are cadmium in
various complexes, gallium arsenide, gold, nickel, plati-
num, silver, aluminum oxide (alumina), cerium dioxide
(ceria), silicon dioxide (silica), titanium dioxide (TiO2,
titania), and zinc oxide. The size of ENMs is in the
same range as major cellular machines and their compo-
nents, such as enzymes, making it likely that they will
easily interact with biochemical functions [22].
Some ENMs contain contaminants, such as residual

metal catalysts used in the synthesis of CNTs. ENM
toxicity has been attributed to these residual metals, as
discussed in II, B, 1. ENM exposure effects in the
lung. The physico-chemical properties of ENMs, when
tested prior to their use, are often different from those
stated by the supplier [23,24]. A major cause of changes
in the physico-chemical properties of ENMs over time
and in various media is agglomeration, discussed in II,
A, 2. The physico-chemical properties of ENMs that
impact their uptake. When ENMs are not sufficiently
characterized to identify their composition or properties
it makes the prediction of toxicity, when added to the
insufficient understanding of their biological effects,
even more difficult [25].

D. Some uses of ENMs and the projected market and
workforce
There is considerable interest in developing ENMs
because their properties differ in fundamental and valu-
able ways from those of individual atoms, molecules,
and bulk matter. Nanoscale products and materials are
increasingly being used in optoelectronic, electronic (e.
g., computer hard drives), magnetic, medical imaging,
drug delivery, cosmetic and sunscreen, catalytic, stain
resistant fabric, dental bonding, corrosion-resistance,
and coating applications [26]. Major future applications
are expected to be in motor vehicles, electronics, perso-
nal care products and cosmetics, and household and
home improvement. These applications capitalize on
their electromagnetic, catalytic, pharmacokinetic, and
physico-chemical properties, including strength, stiff-
ness, weight reduction, stability, anti-fogging, and
scratch resistance. Current products contain various
ENMs including nanotubes, metal oxides, and quantum
dots (semiconductors developed as bright, photostable
fluorescent dyes and imaging agents). Nanowerk identi-
fied ~2500 commercial nanomaterials, including ~27%
metal oxides, 24% CNTs, 18% elements, 7% quantum
dots, and 5% fullerenes [http://www.nanowerk.com/
phpscripts/n_dbsearch.php]. There are > 1000 consumer
products available that contain ENMs. They are primar-
ily composed of silver, carbon, zinc, silica, titania and
gold. The main application is in health and fitness
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products [27,28]. Three to four new nanotechnology-
containing consumer products are introduced weekly
into the market, according to The Project on Emerging
Nanotechnologies [http://www.nanotechproject.org/
inventories/consumer/].
The anticipated benefits of ENM applications resulted

in expenditure of $18 billion worldwide on nanotechnol-
ogy research and development in 2008. In 2004 Lux
Research predicted that nanotechnology applications
will become commonplace in manufactured goods start-
ing in 2010 and become incorporated into 15% of global
manufacturing output in 2014 [https://portal.luxre-
searchinc.com/research/document_excerpt/2650]. The
ENM workforce is estimated to grow ~15% annually
[29]. An epidemiological feasibility study of CNT work-
ers initiated in 2008 revealed most manufacturers were
small companies that had no environmental/occupa-
tional health and safety person and little knowledge
about this topic [30]. By 2015, the global market for
nanotechnology-related products is predicted to employ
2 million workers (at least 800,000 in the U.S.) to sup-
port nanotechnology manufacturing, and $1 trillion in
sales of nanotechnology-related products [31].

E. Uncertainties regarding the adverse effects of ENMs
There have been concerns about the safety and public
acceptance of this burgeoning technology, particularly in

the past 5 years, due to the lack of much information
about potential adverse effects [32]. This resulted in an
increase from 2.9 to 6.6% of the NNI budget for envir-
onmental health and safety from 2005 to 2011. Prior to
2005 it does not seem funds were specifically allocated
for this purpose nor was the U.S. National Institute for
Occupational Safety and Health (NIOSH) a contributor
to NNI funding [33,34]. The United Nations Educa-
tional, Scientific and Cultural Organization (UNESCO)
compared the concerns of the public over new products
with their perception of genetically modified foods/
organisms to nanotechnology. They noted that the lack
of knowledge can result in restrictions, outright bans,
and international conflicts over production, sale, and
transport of such materials [35]. Public acceptance can
influence the success of an emergent technology, as
public opinion is considerably influenced by information
prior to the adoption of the technology. However, indi-
viduals form opinions often when they do not possess
much information, based on factors other than factual
information, including values, trust in science, and argu-
ments that typically lack factual content [36]. This cre-
ates a challenge to earn public acceptance of
nanotechnology.
There is a notable lack of documented cases and

research of human toxicity from ENM exposure. It is
widely recognized that little is known about ENM safety.

Figure 1 The sizes and shapes of some ENMs compared to more familiar materials. Shown for comparison are materials that are below,
within, and above the nanoscale range, to put ENM size in perspective.
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An uncertainty analysis revealed knowledge gaps per-
vade nearly all aspects of ENM environmental health
and safety [4]. Owing to their small size and large sur-
face area, ENMs may have chemical, physical, and biolo-
gical properties distinctly different from, and produce
effects distinct from or of a different magnitude than,
fine particles of similar chemical composition. This is
discussed in II, A, 2. The physico-chemical properties
of ENMs that impact their uptake. ENM properties
often differ from individual atoms, molecules, and from
bulk matter. These differences include a high rate of
pulmonary deposition, the ability to travel from the lung
to systemic sites, and a high inflammatory potential [1].
Further contributing to our lack of understanding of the
potential health effects of ENMs is that most production
is still small scale. As such, potential adverse effects
from the anticipated increase in large scale production
and marketing of ENM-containing products and use are
generally unknown. Furthermore, the number of novel
ENMs being created continues to grow at a high rate,
illustrated by the accelerating rate of nanotechnology-
related patent applications [37,38].

II. A Framework for Evaluating the Risk of ENMs
We elected to review the existing literature on ENM
effects in the context of the Risk Assessment/Risk Man-
agement framework as originally described in the U.S.
National Research Council report “Risk Assessment in
the Federal Government: Managing the Process”, often

called the Red Book, that mainly dealt with chemical
threats to health [39]. The framework is depicted in Fig-
ure 2. A similar approach was advanced by the Eur-
opean Chemicals Bureau for biocidal products (http://
eur-lex.europa.eu/pri/en/oj/dat/2003/l_307/
l_30720031124en00010096.pdf). Although the NRC fra-
mework is portrayed as a sequential approach, in prac-
tice it is dynamic with considerable interaction between
risk assessors, scientists, and often times the affected
parties. This general approach has been proposed for
evaluating the risks of ENMs [5-7]. A notable alternative
is the Nano Risk framework, a joint venture of the
Environmental Defense Fund and DuPont [40]. In addi-
tion, due to the many different ENMs, and the time and
cost to thoroughly assess their potential risks [41], there
is currently much interest in developing in vitro models
that are predictive of in vivo effects [42], although these
are not always successful [42-44], and in developing
tiered testing systems [45,46]. Additional efforts are
underway to group (band) similar ENMs in order to
promote safe handling and use of ENMs, and restrict
worker exposure, in the absence of definitive health and
safety information [47,48]. Still others are applying com-
putational approaches to predict ENM effects, including
toxicity [49,50].
In this review the Risk Assessment/Risk Management

framework will be used as a template because it suc-
cinctly codifies the diverse practices of risk assessment
into a logical framework that collects data to determine

Figure 2 The Risk Assessment/Risk Management framework. Modified from [39].
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(1) whether an agent causes an adverse effect, (2) how
the effect is related to dose, (3) whether exposure is
likely, and (4) the probability of adverse effects in the
population at current exposure levels. The framework
also embraces research that feeds each of the elements
of the risk assessment with the necessary information.
For the current review, this framework provides a sys-
tematic method to work through the many issues sur-
rounding the potential health effects of ENMs.
The first element, hazard identification, addresses

whether there is any evidence that an agent causes an
adverse effect. Hazard identification represents the low-
est hurdle in the process, since the evidence could come
from any number of sources, including laboratory or
field observations, and might only be suggestive. The
next element, dose-response assessment, is more rigor-
ous and asks whether there is a relationship between
the dose of the agent and the incidence or magnitude of
adverse effect. This element is based on the fundamental
tenet in toxicology and pharmacology of dose response;
that is, as the dose increases so does the effect. This
information is often not directly available for humans,
so laboratory animal studies are typically used. Exposure
assessment is the next element. If evidence indicates an
agent poses a hazard, and the hazard is dose-related, the
next step is to determine the extent of occupational or
daily life exposure. Information from all elements is
then combined into a risk characterization, which esti-
mates the likelihood of an adverse effect occurring in
the exposed population or a segment of the population.
The Risk Assessment/Risk Management framework is

comprised of 3 essential components; research, risk
assessment, and risk management. Risk assessment is
regarded as a scientific undertaking whereas risk man-
agement uses the science to regulate exposure to the
agent in ways that take into account social benefits, eco-
nomic costs, and legal precedents for action.
The following sections are arranged to follow the NRC

paradigm. Examples are given of adverse effects of
ENMs to show why there may be reason for concern.
Reports on exposure levels, the likelihood of adverse
effects resulting from exposure, and options for mini-
mizing risk are also summarized. This is not, however,
an all-inclusive review of the literature; interested read-
ers are referred to the reference section for a number of
comprehensive reviews of many of the topics pertaining
to ENMs and their effects.

A. Hazard identification
In the occupational context, hazard identification can be
re-stated as “What effects do ENMs have on workers’
health?” to which NIOSH has stated: “No conclusive
data on engineered nanoparticles exist for answering
that question, yet. Workers within nanotechnology-

related industries have the potential to be exposed to
uniquely engineered materials with novel sizes, shapes,
and chemical properties, at levels far exceeding ambient
concentrations...much research is still needed.” [http://
www.cdc.gov/niosh/topics/nanotech/about.html].
Information about ENMs might be obtained from

well-documented retrospective analyses of unintended
exposures. The most extensive exposures to ENMs likely
occur in the workplace, particularly research labora-
tories; start-up companies; pilot production facilities;
and operations where ENMs are processed, used, dis-
posed, or recycled [51]. Occupational hygienists can
contribute to the knowledge and understanding of ENM
safety and health effects by thorough documentation of
exposures and effects. In the U.S., NIOSH is responsible
for conducting research and making recommendations
for the prevention of work-related illnesses and injuries,
including ENMs. The U.S. Occupational Safety and
Health Administration (OSHA) is responsible for mak-
ing and enforcing the regulations.
1. The key routes of ENM exposure
Figure 3 illustrates the four routes that are most likely
to result in ENM exposure of the five organ systems
which are the major portals of ENM entry: skin, gastro-
intestinal tract, lung, nasal cavity, and eyes [22]. It also
illustrates the most likely paths of translocation (re-dis-
tribution or migration), enabling ENMs to reach organs
distal to the site of uptake.
The inhalation route has been of greatest concern and

the most studied, because it is the most common route
of exposure to airborne particles in the workplace. The
skin has also been investigated. Most studies have
shown little to no transdermal ENM absorption. Oral
(gastrointestinal) exposure can occur from intentional
ingestion, unintentional hand-to-mouth transfer, from
inhaled particles > 5 μm that are cleared via the muco-
ciliary escalator, and of drainage from the eye socket via
the nasal cavity following ocular exposure. Direct uptake
of nanoscale materials from the nasal cavity into the
brain via the olfactory and trigeminal nerves has been
shown. Each of these routes is discussed in more detail
below.
Routes that avoid first-pass clearance and metabolism

in the gastrointestinal tract and liver include uptake
(absorption) from the nasal cavity (either into systemic
circulation or directly into the brain), orotransmucosal
(e.g., buccal [from the cheek] and sub-lingual), and
transdermal. These routes may present a greater risk of
ENM-induced adverse effects because more ENM is
likely to reach the target organ(s) of toxicity.
2. The physico-chemical properties of ENMs that impact
their uptake
Hazard identification has revealed that the physico-che-
mical properties of ENMs can greatly influence their

Yokel and MacPhail Journal of Occupational Medicine and Toxicology 2011, 6:7
http://www.occup-med.com/content/6/1/7

Page 5 of 27

http://www.cdc.gov/niosh/topics/nanotech/about.html
http://www.cdc.gov/niosh/topics/nanotech/about.html


uptake. ENMs show greater uptake and are more biolo-
gically active than larger-sized particles of the same
chemistry, due to their greater surface area per mass
[52,53]. Additional ENM characteristics that may influ-
ence their toxicity include size, shape, surface functiona-
lization or coating, solubility, surface reactivity (ability
to generate reactive oxidant species), association with
biological proteins (opsonization), binding to receptors,
and, importantly, their strong tendency to agglomerate.
An agglomeration is a collection of particles that are
loosely bound together by relatively weak forces, includ-
ing van der Waals forces, electrostatic forces, simple
physical entanglement, and surface tension, with a
resulting external surface area similar to the sum of the
surface area of the individual components [9,54].
Agglomeration is different from aggregation. Aggregated
particles are a cohesive mass consisting of particulate
subunits tightly bound by covalent or metallic bonds
due to a surface reconstruction, often through melting
or annealing on surface impact, and often having an
external surface area significantly smaller than the sum
of calculated surface areas of the individual components

[9,54]. Agglomerates may be reversible under certain
chemical/biological conditions whereas an aggregate will
not release primary particles under normal circum-
stances of use or handling. Airborne ENMs behave very
much like gas particles. They agglomerate in air due to
self-association (in one study increasing from 8 to 15
nm in 16 min and to ~100 nm in 192 min) and interac-
tion with background aerosols (to ~500 nm agglomer-
ates within min) [55]. Studies of ENMs in occupational
settings showed airborne particulates were most com-
monly 200 to 400 and 2000 to 3000 nm [51,56]. ENMs
also agglomerate in liquids, resulting in micrometer
sized particles [57]. One study showed that concentra-
tion and smaller ENM size positively correlated with
speed of agglomeration [58]. Changes in ENM surface
area can profoundly uptake and effects.
The aspect ratio (length:diameter) of ENMs also plays a

major role in their toxic potential. Particles with a length >
5 μm and aspect ratio ≥ 3:1 are conventionally defined as
fibers [59]. Inhaled asbestos containing high aspect-ratio
fibers is more toxic than lower aspect-ratio fibers. Foreign
materials are often cleared by macrophage phagocytosis,
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Respiratory
Tract

Organs

Circulatory
System (Blood)

Nasal Cavity

OcularInhalationDermal Oral

Figure 3 The predominant routes of ENM exposure and uptake, and potential routes of ENM translocation. The four gray shaded boxes
indicate the primary routes of ENM exposure. The arrows down from these uptake sites show potential translocation pathways. The
translocation pathways are described in more detail in Section II, D. Clearance of ENMs, their translocation to distal sites, and persistence.
For example, the lung might be the primary route of exposure or might be a distal site after uptake from another route and translocation to the
lung. ENMs might enter the brain from the nasal cavity or from blood, across the blood-brain barrier.
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but when too large to be phagocytosed they are not effec-
tively cleared from the lung. This results in release of
inflammatory mediators, discussed below.
It appears that ~15 to 30 nm is a critical width or dia-

meter for ENMs to have properties different from the
solution and bulk chemistry of their components. Reac-
tive oxygen species generation in an acellular system to
which 4 to 195 nm titania ENMs were added was negli-
gible up to 10 nm, then increased up to ~30 nm, when
it reached a plateau [53]. A review concluded there is a
critical size for ENMs at which new properties typically
appear. These new properties are strongly related to the
exponential increase in the number of atoms localized
at the surface, making metal and metal oxide ENMs
with diameters < 20 to 30 nm most different from bulk
material [60]. For example, 1 and 3 nm gold ENMs,
which contain ~30 and 850 atoms, have nearly all and
~50% of their atoms surface exposed, respectively. Addi-
tionally, the optimal particle radius to accelerate adhe-
sion to a cell-surface lipid bilayer is 15 and 30 nm for
cylindrical and spherical particles, respectively [61,62].
Therefore, 10 to 30 nm diameter ENMs that have a
spherical or similar shape appear to have the potential
for more profound biological effects than either smaller
or larger ENMs.
It is prudent to apply the continually improving

understanding of the influence of the physico-chemical
properties of ENMs on their effects and safety to the
development of future ENMs, to enhance their benefit/
risk ratio. Second generation (active) ENMs are being
developed, such as targeted control-release systems for
drugs. There is utility in the use of CNTs as drug deliv-
ery systems. Based on the studies of the role of CNT
physico-chemical properties in biological effects it has
been concluded that the use of low aspect ratio (length
≤ 1 μm), high purity (97-99%), low metal catalyst con-
tent CNTs minimizes cytotoxicity and provides apparent
in vivo bio-compatibility [63]. Application of the contin-
ued understanding of the influence of physico-chemical
properties on biological responses can similarly enhance
the benefit/risk ratio of future ENMs, such as: applica-
tion of the most predictive dose metric; the rate and
nature of interacting proteins and effect of opsonization
on uptake, translocation and effects; the influence of
size, shape, charge, and surface reactivity on the extent
and sites of translocation; and the duration of persis-
tence of ENMs in organs and associated effects. Addi-
tionally, observations of workers exposed to ENMs can
greatly add to this understanding, to increase confidence
in the predicted effects of future ENMs.
a. The role of surface coating in ENM uptake and effects
ENMs are rapidly coated in biological milieu, primarily
by proteins [62,64-66]. Due to high energetic adhesive
forces close to the surface, ENMs can agglomerate and

adsorb to the next available surface and other small
molecules [67]. Extensive addition of polyethylene glycol
(PEG) to the surface of SWCNTs has been shown to
favor uptake into tumors compared to normal organs
[68]. Similarly, addition of PEG to poly(di-lactic acid-co-
malic acid) coated magnetic ENMs enhanced their
uptake by macrophages [69]. Commercial providers and
researchers often add a surface coating to inhibit ENM
agglomeration and/or influence their uptake and cellular
effects [70]. Cells that line the airways produce mucus.
Pulmonary type II alveolar cells secrete surfactants (a
mixture of 90% phospholipids and lung surfactant-speci-
fic proteins). Lung surfactants incorporate ENMs
[71,72]. Mucus, which is secreted by goblet cells in the
respiratory tract, eye, nasal cavity, stomach, and intes-
tine, entraps ENMs [65]. All of these surface coatings
on ENMs would be expected to affect their uptake and
effects.
b. ENM uptake from the initial sites of exposure
To understand ENM-induced effects and their mechan-
isms of action, cells in culture and other in vitro systems
have been utilized. However, these systems cannot
model the complexities of the entire organism, including
the limitation of uptake provided by such barriers as the
skin and first-pass metabolism, opsonization, metabo-
lism that may inactivate or activate a substrate, translo-
cation to distal sites, activation of homeostatic defenses,
or inflammatory processes that release cytokines and
other factors that can act at distant sites from their
release. Therefore, this review primarily cites examples
of whole-animal studies to address ENM uptake and
translocation.
i). Lungs There has been much interest in the health
effects of airborne particles, specifically PM10 (thoracic
fraction), PM2.5 (respirable fraction), PM1, and ultrafine
particles (PM0.1), which are ≤ 10, 2.5, 1 and 0.1 μm (100
nm), respectively. One- to 5-nm air-suspended ENMs
that enter the lungs are not predicted to reach the
alveoli; instead a high percentage is likely to deposit in
the mucus-lined upper airways (tracheo-bronchial
region) due to their strong diffusion properties. On the
other hand ~45% of 10-nm, ~50% of 20-nm, and ~25%
of 100-nm ENMs deposit in the alveoli [73]. Deposition
is greater during exercise. Chronic obstructive pulmon-
ary disease increases tracheo-broncheolar and decreases
alveolar particle deposition [74,75].
ii) Nasal cavity Uptake from the nasal cavity into the
olfactory nerve, followed by retrograde axonal transport
to the olfactory bulb and beyond, was shown in studies
of the polio virus (30 nm) and colloidal silver-coated
gold (50 nm) [76-78]. Uptake of ~35-nm 13C particles
along the olfactory pathway to the olfactory bulb, and to
a lesser extent into the cerebrum and cerebellum, was
shown 1 to 7 days later [79]. Exposure to ~30 nm
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agglomerates of Mn by inhalation resulted in up to a
3.5-fold increase of Mn in the olfactory bulb, and lower
(but significant) increases in 4 rat brain regions. The
increase of Mn in brain regions other than the olfactory
bulb may have resulted from translocation to the brain
by route(s) other than via the olfactory nerve, such as
through cerebrospinal fluid or across the blood-brain
barrier [80]. The nasal cavity is the only site where the
nervous system is exposed directly to the environment.
This is an often overlooked potential route of uptake of
small amounts of ENMs into the brain.
iii.) Dermal exposure Skin is composed of 3 primary
layers, the outermost epidermis (which contains the
stratum corneum, stratum granulosum and stratum spi-
nosum), dermis, and hypodermis. The hair follicle is an
invagination of the stratum corneum, lined by a horny
layer (acroinfundibulum). Dermal uptake routes are
intercellular, intracellular, and follicular penetration.
Uptake is primarily by diffusion. Materials that diffuse
through the lipid-rich intercellular space of the stratum
corneum typically have a low molecular weight (< 500
Da) and are lipophilic. Materials that penetrate the stra-
tum corneum into the stratum granulosum can induce
the resident keratinocytes to release pro-inflammatory
cytokines. Materials that penetrate to the stratum spino-
sum, which contains Langerhans cells (dendritic cells of
the immune system), can initiate an immunological
response. This is mediated by the Langerhans cells,
which can become antigen-presenting cells and can
interact with T-cells. Once materials reach the stratum
granulosum or stratum spinosum there is little barrier
to absorption into the circulatory and lymphatic sys-
tems. Whereas dry powder ENMs pose a greater risk for
inhalation exposure than those in liquids, liquid dis-
persed ENMs present a greater risk for dermal exposure.
Consumer materials most relevant to dermal exposure

include quantum dots, titania, and zinc oxide in sunsc-
reens, and silver as an anti-microbial agent in clothing
and other products. Prolonged dermal application of
microfine titania sunscreen suggested penetration into
the epidermis and dermis [81]. However, subsequent
studies did not verify penetration of titania from sunsc-
reens into the epidermis or dermis of human, porcine
or psoriatic skin [82-87], or find evidence of skin pene-
tration of zinc oxide from sunscreen or positively- or
negatively-charged iron-containing ENMs [88,89]. Nano-
particles with a dye penetrated deeper into hair follicles
of massaged porcine skin in vitro and persisted longer
in human skin in vivo than the dye in solution
[82,90,91]. Thirty-nm carboxylated quantum dots
applied to the skin of mice were localized in the folds
and defects in the stratum corneum and hair follicles. A
small amount penetrated as deep as the dermis. Ultra-
violet radiation increased penetration, raising concern

that these results might generalize to nanoscale sunsc-
reens [92]. PEG-coated ~37 nm quantum dots accumu-
lated in the lymphatic duct system after intra-dermal
injection in mice. Cadmium, determined by ICP-MS,
from cadmium-containing quantum dots was seen in
liver, spleen, and heart; however, it is uncertain if this
was from dissolved cadmium or translocation of the
quantum dots because methods were not used to show
the presence of quantum dots. The above results suggest
topically-applied ENMs that penetrate to the dermis
might enter the lymphatic system, and the ENMs or dis-
solved components distribute systemically [93]. To
address these concerns ENMs intended for dermal
application, such as titania, are often surface coated, e.g.
with silica, alumina, or manganese. One goal of the sur-
face treatments is to minimize toxicity by trapping the
free radicals of reactive oxygen species (ROS) [94].
An in vitro study showed that mechanical stretching

of human skin increased penetration of 500 and 1000
nm fluorescent dextran particles through the stratum
corneum, with some distribution into the epidermis and
dermis [95]. Similarly, mechanical flexing increased
penetration of a 3.5 nm phenylalanine-based C60 amino
acid ENM through porcine skin in vitro [96]. The con-
tribution of skin flexing and immune system response
was further addressed with three titania formulations
applied to minipigs. There was some ENM penetration
into epidermis and abdominal and neck dermis, but no
elevation of titanium in lymph nodes or liver [97]. Topi-
cal exposure of mice to SWCNTs resulted in oxidative
stress in the skin and skin thickening, demonstrating the
potential for toxicity not revealed by in vitro studies of
ENM skin penetration [98]. There are no reports of
long-term studies with topical ENM exposure.
In the absence of organic solvents, the above suggests

that topically applied ENMs do not penetrate normal
skin. Not surprisingly, organic solvents (chloroform >
cyclohexane > toluene) increased penetration of fuller-
ene into skin that had the stratum corneum removed by
tape stripping [99]. As the fullerenes were not detected
in systemic circulation, there was no evidence of sys-
temic absorption.
iv.) Oral exposure Little is known about the bioavail-
ability of ENMs from the buccal cavity or the sub-lin-
gual site, or possible adverse effects from oral ingestion.
Particle absorption from the intestine results from dif-

fusion though the mucus layer, initial contact with
enterocytes or M (microfold or membranous specialized
phagocytic enterocyte) cells, cellular trafficking, and
post-translocation events [100]. Colloidal bismuth subci-
trate particles (4.5 nm at neutral pH) rapidly penetrated
the mucosa of dyspeptic humans, resulting in bismuth
in the blood. Particles appeared to penetrate only in
regions of gastric epithelial disruption [101]. Greater
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uptake of 50 to 60 nm polystyrene particles was seen
through Peyer’s patches and enterocytes in the villous
region of the GI tract than in non-lymphoid tissue,
although the latter has a much larger intestinal surface
area [102,103]. Peyer’s patches are one element of gut-
associated lymphoid tissue, which consist of M cells and
epithelial cells with a reduced number of goblet cells,
resulting in lower mucin production [100,103]. It was
estimated that ~7% of 50-nm and 4% of 100-nm poly-
styrene ENMs were absorbed [104]. Fifty-nm polystyr-
ene ENMs fed to rats for 10 days by gavage showed 34%
absorption, of which about 7% was in the liver, spleen,
blood, and bone marrow; no ENMs were seen in heart
or lung [104]. After oral administration of 50-nm fluor-
escence-labeled polystyrene ENMs, 18% of the dose
appeared in the bile within 24 h and 9% was seen in the
blood at 24 h; none was observed in urine [105]. The
mechanism of GI uptake of 4, 10, 28 or 58 nm colloidal
(maltodextran) gold ENMs from the drinking water of
mice was shown to be penetration through gaps created
by enterocytes that had died and were being extruded
from the villus. Gold abundance in peripheral organs
inversely correlated with particle size [106].
In summary, there appears to be significant absorption

of some ENMs from the GI tract, with absorption inver-
sely related to ENM size. The absorption site seems to
be regions of compromised gastric epithelial integrity
and low mucin content.
v.) Ocular and mucous membrane exposure Ocular
exposure might occur from ENMs that are airborne,
intentionally placed near the eye (e.g., cosmetics), acci-
dently splashed onto the eye, or by transfer from the
hands during rubbing of the eyes, which was shown to
occur in 37% of 124 adults every hour [107]. This route
of exposure could result in ENM uptake through the
cornea into the eye or drainage from the eye socket into
the nasal cavity through the nasolacrimal duct. Other
than a study that found uptake of a polymer ENM into
conjunctival and corneal cells, this route has been lar-
gely ignored in research studies of ENM exposure [108].

B. The effects of ENM exposure on target organs and
those distal to the site of uptake
Public concerns about ENMs and health may arise with
reports of some effect(s) in a laboratory study or their
presence in human tissue (or another organism). Any
report must be interpreted carefully before concluding
ENMs are risky for one’s health. To start with, risk is
defined as a joint function of a chemical’s ability to pro-
duce an adverse effect and the likelihood (or level) of
exposure to that chemical. In a sense, this is simply a
restatement of the principle of dose-response; for all
chemicals there must be a sufficient dose for a response
to occur. Additionally, advances in analytical chemistry

have led to highly sensitive techniques that can detect
chemicals at remarkably low levels (e.g., in parts per bil-
lion or parts per trillion). The detectable level may be
far lower than any dose shown to produce an adverse
effect. Further, a single finding in the literature may gar-
ner public attention, and it may be statistically signifi-
cant, but its scientific importance remains uncertain
until it is replicated, preferably in another laboratory. In
this regard, a follow-up study may be warranted to char-
acterize the relevant parameters of dose, duration, and
route of exposure, as outlined in the Risk Assessment/
Risk Management framework.
The above discussion reflects many of the issues that

have gained prominence in the fields of risk perception
and risk communication (see for example [109,110]),
neither of which were dealt with by the NRC in their
landmark publication.
The knowledge of ultrafine-particle health effects has

been applied to ENMs. However, the toxicity from ultra-
fine materials and ENMs is not always the same [111].
Similarly, the effects produced by ENM components do
not reliably predict ENM effects. For example, toxicity
was greater from cadmium-containing quantum dots
than the free cadmium ion [112]. Some metal and metal
oxide ENMs are quite soluble (e.g., ZnO), releasing
metal ions that have been shown to produce many of
the effects seen from ENM exposure [113,114]. There-
fore, one cannot always predict ENM toxicity from the
known effects of the bulk or solution ENM components.
1. ENM exposure effects in the lung
Studies of ENM inhalation and intratracheal instillation
as well as with lung-derived cells in culture have
increased concern about potential adverse health effects
of ENMs. An early 2-year inhalation study of Degussa
P-25 (a ~3:1 mixture of ~85-nm anatase and 25-nm
rutile titania) resulted in lung tumors in rats [115].
SWCNTs containing residual catalytic metals produced
greater pulmonary toxicity, including epithelioid granu-
lomas and some interstitial inflammation, than ultrafine
carbon black or quartz. These effects extended into the
alveolar septa [116]. A review of eleven studies of car-
bon nanotube introduction to the lungs of mice, rats,
and guinea pigs revealed most found granuloma, inflam-
mation, and fibrosis [117]. MWCNTs produced greater
acute lung and systemic effects and were twice as likely
to activate the immune system as SWCNTs, suggesting
the former have greater toxic potential [118]. Further
adding to the concern of ENM-induced adverse health
effects are reports that inhaled CNTs potentiate airway
fibrosis in a murine model of asthma [119], and that
exposure of a cell line derived from normal human
bronchial epithelial (BEAS-2B) cells to SWCNTs and
graphite nanofibers produced genotoxicity and
decreased cell viability [120]. However, a point of
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contention is that the lung response to intratracheal and
inhaled MWCNTs differed among studies. This may
have been due to different sizes and distributions of
MWCNT agglomerations. These differences create
uncertainties regarding the utility of some routes of pul-
monary ENM exposure used in laboratory studies to
predict potential toxicity in humans [121].
Studies exposing lung-derived cells in culture to

ENMs have demonstrated similar effects. Carbon-based
ENMs produced pro-inflammatory, oxidative-stress, and
genotoxic effects [122,123].
Several groups have studied the effects of CNT intro-

duction into the peritoneal cavity. As there is CNT
translocation from the lung to other sites (see II, D.
Clearance of ENMs, their translocation to distal
sites, and persistence), and the internal surfaces of the
peritoneal and pleural cavities are lined with a mesothe-
lial cell layer, responses in the peritoneal cavity appear
to be relevant to the pleural cavity. Single ip injection of
high-aspect-ratio MWCNTs (~100 nm diameter and
2000 nm long) produced inflammation, granulomatous
lesions on the surface of the diaphragm, and mesothe-
lioma that were qualitatively and quantitatively similar
to those caused by crocidolite asbestos, also a high-
aspect-ratio fiber [124]. These effects correlated posi-
tively with the MWCNT aspect ratio [125,126].
Toxicity has also been seen from pulmonary introduc-

tion of metal and metal oxide ENMs. Ten and 20 nm
anatase titania induced in BEAS-2B cells oxidative DNA
damage, lipid peroxidation, increased H2O2 and nitric
oxide production, decreased cell growth, and increased
micronuclei formation (indicating genetic toxicity) [52].
Exposure of BEAS-2B cells to 15- to 45-nm ceria or 21-
nm titania resulted in an increase of ROS, increased
expression of inflammation-related genes, induction of
oxidative stress-related genes, induction of the apoptotic
process, decreased glutathione, and cell death [127,128].
Twenty-nm ceria increased ROS generation, lipid perox-
idation, and cell membrane leakage, and decreased glu-
tathione a-tocopherol (vitamin E) and cell viability in a
human bronchoalveolar carcinoma-derived cell line
(A549) [129]. Various metal oxides differentially inhib-
ited cell proliferation and viability, increased oxidative
stress, and altered membrane permeability of human
lung epithelial cells [130].
2. ENM exposure effects seen in the brain
Murine microglial cells were exposed to a commercial
70%:30% anatase:rutile titania (primary crystalline size
30 nm; 800 to 2400 nm agglomerations in test medium).
They displayed extracellular release of H2O2 and the
superoxide radical and hyper-polarization of mitochon-
drial membrane potential [131]. Intravenous ceria
administration to rats altered brain oxidative stress indi-
cators and anti-oxidant enzymes [23,132]. These results

demonstrate the ability of metal oxide ENMs to produce
neurotoxicity.
3. ENM exposure effects seen in the skin
Potential toxicity from dermal exposure was demon-
strated with silver ENMs, that decreased human epider-
mal keratinocyte viability [133]. These results
demonstrate the ability of metal oxide ENMs to also
produce dermatotoxicity.
4. Summary of the effects of ENM exposure on target
organs and those distal to the site of uptake
Common findings of many studies are induction of
inflammatory processes and oxidative stress. However,
correspondence between responses of cells in culture
and in vivo models is often low [24,43]. In light of the
pressure to minimize whole animal (e.g., rodent)
research, further development of cell-based or in vitro
models of the whole organism is expected. Additionally,
there has been considerable use of alternative model
organisms e.g., C. elegans, which has a genome with
considerable homology with vertebrate genomes and is
often used in ecotoxicological studies, and zebrafish
which are often used in developmental biology and
genetic studies [134-136].

C. Dose-response assessment
Exposure in experimental studies is typically expressed
as dose, usually on a mass/subject body weight basis, or
as concentration. Dose or concentration may not be the
best metric to predict ENM effects [42,53,137]. Neutro-
phil influx following instillation of dusts of various
nanosized particles to rats suggested it may be more
relevant to describe the dose in terms of surface area
than mass [138]. The pro-inflammatory effects of in
vitro and in vivo nanoscale titania and carbon black best
correlated when dose was normalized to surface area
[122]. Secretion of inflammatory proteins and induction
of toxicity in macrophages correlated best with the sur-
face area of silica ENM [139]. Analysis of in vitro reac-
tive oxygen species generation in response to different
sized titania ENMs could be described by a single S-
shaped concentration-response curve when the results
were normalized to total surface area, further suggesting
this may be a better dose metric than concentration
[53]. Similarly, using surface area as the metric, good
correlations were seen between in vivo (PMN number
after intratracheal ENM instillation) and in vitro cell-
free assays [42].
Nonetheless, most studies of ENMs have expressed

exposure based on dose or concentration. The relatively
small amount of literature has generally shown dose- or
concentration-response relationships, as is usually the
case for toxicity endpoints. Ceria ENM uptake into
human lung fibroblasts was concentration-dependent for
several sizes, consistent with diffusion-mediated uptake
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[58]. Positive, dose-dependent correlations were seen in
blood, brain, liver, and spleen following iv ceria infusion
in rats, measured by elemental analysis as cerium [23],
as well as brain titanium after ip titania injection [140],
and lung cobalt after inhalation of cobalt-containing
MWCNTs [141]. Concentration-dependent inhibition of
RAW 264.7 (murine) macrophage cell proliferation was
seen following in vitro SWCNT exposure, as was lipopo-
lysaccharide-induced COX-2 expression, up to 20 μg/ml
[142]. Intratracheal instillation of MWCNTs (average
length ~6 μm) or ground MWCNTs (average length
~0.7 μm) produced dose-dependent increases in LDH
activity and total protein, but no dose-dependent effect
on the number of neutrophils or eosinophils, or TNF-a,
in rat lung bronchoalveolar lavage fluid [143]. Activated
Kupffer cell count increased with iv ceria dose; the
increase in hippocampal 4-hydroxy-2-trans-nonenal and
decrease in cerebellar protein carbonyls (indicators of
oxidative stress) were dose-dependent up to a maximum
that did not increase further at the highest dose [23].
Some studies demonstrating adverse effects of CNT

introduction to the lung have been criticized for using
doses or concentrations that far exceeded anticipated
human exposure [144]. Most studies assessing potential
adverse effects of ENMs have utilized a single exposure.
Both of these features make extrapolation of results to
prolonged or episodic (periodic) human exposure diffi-
cult. However, the study of acute high doses/concentra-
tions to probe potential effects is a standard approach in
toxicology and experimental pathology for initially sur-
veying adverse effects (i.e., hazard identification). When
adverse effects are seen following some reasonable (e.g.,
sublethal) dose, subsequent studies must define expo-
sures that do, and do not, result in adverse effects.

D. The clearance of ENMs, their translocation to distal
sites, and persistence
As with the above studies that inform about uptake, the
clearance and translocation of ENMs from the initial
site of exposure to distal sites is best understood from
whole-animal studies.
The solutes of dissolved particles in the lung can

transfer to blood and lymphatic circulation. Some
ENMs in the airway wall that slowly dissolve or are
insoluble will be cleared within a few days from the
lung by cough or the mucociliary escalator. Slowly dis-
solving and insoluble ENMs that reach the alveoli may
be taken up by macrophages. Macrophage-mediated
phagocytosis is the main mechanism for clearing foreign
material from the deep lungs (alveoli) and from other
organs. Macrophages are ~20 μm in diameter and able
to phagocytose materials up to 15 μm in length. They
engulf the particle in a vacuole (phagosome) containing
enzymes and oxidizing moieties that catabolize it.

Particles resistant to catabolism may remain inside the
macrophage. After the death of the macrophage the
material may be engulfed by another cell. Therefore, it
may take a long time for insoluble material to be cleared
from the body. The elimination half-live of insoluble
inert particles from the lung can be years [145]. This
raises the question of the ultimate fate of “poorly diges-
tible” ENMs that are engulfed by macrophages in the
lung, liver (Kupffer cells), brain (microglia), and other
organs.
Some ENMs, e.g., those that have a high aspect ratio,

are not effectively cleared by macrophages. Alveolar
macrophages that cannot digest high-aspect-ratio CNTs
(termed “frustrated phagocytosis”) can produce a pro-
longed release of inflammatory mediators, cytokines,
chemokines, and ROS [146]. This can result in sustained
inflammation and eventually fibrotic changes. Studies
have demonstrated MWCNT-induced pulmonary
inflammation and fibrosis, similar to that produced by
chrysotile asbestos and to a greater extent than that pro-
duced by ultrafine carbon black or SWCNTs [117].
Greater toxicity from a high-aspect-ratio metal oxide
(titania) ENM has also been shown in cells in culture
and in vivo [147]. Studies such as these have raised
questions (and concern) about the long-term adverse
effects of ENM exposure.
Translocation of ENMs from the lung has been

shown. After MWCNT inhalation or aspiration they
were observed in subpleural tissue, the site of mesothe-
liomas, where they caused fibrosis [148,149]. Once
ENMs enter the circulatory system across the 0.5-μm
thick membrane separating the alveoli from blood, the
sites of reticuloendothelial system function (including
the lymph nodes, spleen, Kupffer cells, and microglia)
clear most ENMs. Thirty to 40 nm insoluble 13C parti-
cles translocated, primarily to the liver, following inhala-
tion exposure [150]. Similarly 15 and 80 nm 192iridium
particles translocated from lung to liver, spleen, heart,
and brain. The extent of translocation was < 0.2%, and
greater with the smaller ENMs [151].
ENMs have also been shown to translocate following

injection. Indirect evidence was shown of fullerene dis-
tribution into, and adverse effects in, the fetus 18 h after
its injection into the peritoneal cavity of pregnant mice
on day 10 of gestation [152]. Following subcutaneous
injection of commercial 25 to 70 nm titania particles
into pregnant mice 3, 7, 10, and 14 days post coitum,
aggregates of 100 to 200 nm titania were seen in the
testes of offspring at 4 days and 6 weeks post-partum
and in brain at 6 weeks post-partum. Abnormal testicu-
lar morphology and evidence of apoptosis in the brain
indicated fetal titania exposure had adverse effects on
development. The authors attribute these effects to
ENM translocation across the placenta [153]. ENM
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excretion into milk and oral absorption post-partum
might contribute to ENM presence in the offspring, but
we are unaware of any studies assessing ENM transloca-
tion into milk. Non-protein bound substances generally
enter milk by diffusion, and reach an equilibrium
between milk and blood based on their pKa and the pH
difference between blood and milk, described by the
Henderson-Hasselbalch equation. Given the size of most
ENMs, it is unlikely they would diffuse across the mam-
mary epithelium. Within 40 weeks after a single intras-
crotal injection of MWCNTs most rats died or were
moribund with intraperitoneal disseminated mesothe-
lioma, which were invasive to adjacent tissue, including
the pleura. Fibrous MWCNT particles were seen in the
liver and mesenteric lymph nodes, suggesting peritoneal
effects might have been due to MWCNT translocation
[154].
The distribution of carbon-, metal- and metal oxide-

based ENMs after translocation from the lung, skin or
intestine is similar to that seen after their iv administra-
tion. They generally appear as agglomerates in the liver
and spleen [23,93,132,151,155-158]. The ENMs are
usually in the cytoplasm, with little indication that they
enter the nucleus [132,134,158-160].
Due to their small size ENMs may gain access to

regions of the body that are normally protected from
xenobiotics (sanctuaries), such as the brain. This feature
has suggested their potential application for drug deliv-
ery to the brain, which is being extensively pursued
[161-164], but at the same time it raises concern about
central nervous system distribution of ENMs when
exposure is not intended. Studies have generally found
<< 1% of the administered dose of ceria and iridium
ENMs translocate to the brain after inhalation exposure
or iv injection [23,132,151]. Anionic polymer ENMs
entered the brain more readily than neutral or cationic
ones. Both anionic and cationic ENMs altered blood-
brain barrier integrity [165].
The persistence of ENMs may be a major factor con-

tributing to their effects. Many ENMs are designed to
be mechanically strong and resist degradation [22].
Referring to nanoscale fiber-like structures, it has been
stated: “The slower [they] are cleared (high bio-persis-
tence) the higher is the probability of an adverse
response” [166]. The analogy of high-aspect-ratio ENMs
to asbestos is one of the contributors to this concern.
The prolonged physical presence of ENMs, that are not
metabolized or cleared by macrophages or other defense
mechanisms, appears to elicit ongoing cell responses.
The majority of CNTs are assumed to be biopersistent.
For example, two months after the intratracheal instilla-
tion of 0.5, 2 or 5 mg of ~0.7 μm and ~6 μm
MWCNTs, 40 and 80% of the lowest dose remained in

the lungs of rats, suggesting adequate persistence to
cause adverse effects that are summarized in II, B, 1
ENM exposure effects in the lung [143]. Following
oral administration, 50-nm non-ionic polystyrene ENMs
were seen in mesenteric lymphatic tissues, liver, and
spleen 10 days later [167]. Following iv administration,
carboxylated-MWCNTs were cleared from circulation
and translocated to lung and liver; by day 28 they were
cleared from the liver, but not from the lung [168]. No
significant decrease of the amount (mass) of cerium was
seen in the liver or spleen of rats up to 30 days after iv
administration of 5 or 30 nm ceria. Hepatic granuloma
and giant cells containing agglomerates in the cytoplasm
of the red pulp and thickened arterioles in white pulp
were seen in the spleen (unpublished data, R. Yokel)
[159,169].
In summary, the persistence of ENMs in tissue raises

justifiable concerns about their potential to cause long-
term or delayed toxicity.

E. The physico-chemical properties of ENMs that impact
their hazard - The role of surface coating in ENM effects
Many surface coatings have been investigated in order
to develop ENMs as carriers for drug delivery. Surface
modifications can prolong ENM circulation in blood,
enhance uptake at a target site, affect translocation, and
alter excretion. When ENMs enter a biological milieu
they rapidly become surface coated with substances
such as fulvic and humic acids and proteins, all of
which can alter their effects [142,170,171]. When 3.5,
20, and 40 nm gold and DeGussa P-25 titania ENMs
were incubated with human plasma, proteins appeared
to form a monolayer on the ENMs. The abundance of
plasma proteins on gold approximated their abundance
in plasma, whereas some proteins were highly enriched
on titania [172]. Metal oxide and carbon-based ENMs
rapidly adsorb proteins [66], resulting in changes in
their zeta potential (electrical potential at the ENM sur-
face) and toxicity [142,171]. For circulating ENMs, the
surface coating is extremely important, because this is
what contacts cells [173].
Although it is understood that ENMs will be surface

coated with proteins, lipids or other materials, which
may or may not persist on the ENM surface when they
enter cells, little is known about the surface associated
molecules on ENMs within cells. It is likely, however,
that surface coatings profoundly influence ENM effects
within cells. Although surface functional groups are
known to modify ENM physico-chemical and biological
effects, there is little information on the influence of
functional groups on health effects. This further compli-
cates the prediction of ENM toxicity in humans from in
vitro, and perhaps in vivo, studies.
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F. The effects of ENMs at distal sites
Reported systemic effects of pulmonary-originating
CNTs include acute mitochondrial DNA damage, ather-
osclerosis, distressed aortic mitochondrial homeostasis,
accelerated atherogenesis, increased serum inflammatory
proteins, blood coagulation, hepatotoxicity, eosinophil
activation (suggesting an allergic response), release of
IL-6 (the main inducer of the acute phase inflammatory
response), and an increase of plasminogen activator
inhibitor-1 (a pro-coagulant acute phase protein) [118].
Elevation of the serum analyte ALT was reported up to
3 months after intratracheal MWCNT instillation, sug-
gesting ENM-induced hepatotoxicity [174]. The translo-
cation of ENMs and their release of cytokines and other
factors could potentially affect all organ systems, includ-
ing the brain. For example, daily ip injection of titania
for 14 days resulted in a dose-dependent increase of
titanium and oxidative stress and a decrease of anti-oxi-
dative enzymes in the brain of rats [140].

III. Hazard Assessment from Fire and Explosion of
ENMs
Some ENMs have very high reactivity for catalytic reac-
tions, thus raising the possibility of fire and/or explo-
sion. As particle size decreases and surface area
increases, the ease of ignition and the likelihood of a
dust explosion increase. The latter may create a second
hazard due to increased ENM release. There are no
reports that ENMs have been used intentionally, e.g. by
terrorists, or unintentionally to cause fires, explosions,
or an airborne obscurant effect.

IV. Exposure Assessment
Another key element of the Risk Assessment/Risk Man-
agement framework is exposure assessment, which
includes the most likely routes of ENM exposure. Not
much is known about the extent of occupational expo-
sure to ENMs. There are ~20 published studies [51]. “In
the absence of solid exposure data, no solid risk evalua-
tion can be conducted” [175]. There is obvious value in
conducting exposure assessments in the workplace to
identify the routes, extent, and frequency of ENM expo-
sure. In assessing worker exposure, the traditional
industrial hygiene sampling method of collecting sam-
ples in the breathing zone of the worker (personal sam-
pling) is preferred over area sampling. Only a few of the
studies cited [51] conducted breathing zone measure-
ments. On the other hand, area samples (e.g., size-frac-
tionated aerosol samples) and real-time (direct-reading)
exposure measurements are useful for evaluating engi-
neering controls, and their efficacy, and work practices.
When monitoring potential workplace exposure to

ENMs it is critical that background nanoscale particle
measurements be conducted before their production,

processing, or handling in order to obtain baseline data.
Nanosize particles frequently come from non-ENM
sources, such as ultrafines from internal combustion
engines and welding [176,177].
An early study of SWCNT release during its handling in

the workplace showed very low airborne concentrations of
agglomerated material [178]. The rapid agglomeration of
ENMs in air has been repeatedly shown [55,178,179]. Air-
borne ENMs associate with other airborne materials when
present, or self-associate in their absence. Once formed
there was little decrease in the resultant airborne agglom-
erations for up to 4 h [55]. An on-site monitoring study of
carbon nanofibers (CNFs) in a university-based research
laboratory showed an increase of > 500-nm particles in air
during weighing and mixing (total carbon levels in inhal-
able dust samples of 64 and 93 μg/m3, respectively). Hand-
ling the bulk partially-dry product on the lab bench
generated 221 μg/m3, and wet-saw cutting (which sprays
water on the object being cut to lessen dusts) of a CNF
composite released > 400-nm particles (1094 μg/m3).
Office background was 15 to 19 μg/m3. Surface samples
had up to 30-fold more total carbon than the office floor
[180]. Another study showed that wet cutting of a hybrid
CNT in an epoxy resin or in a woven alumina fiber cloth
using a cutting wheel with water to flush dust particles
produced no significant increase of airborne 5- to 1000-
nm particles in the operator breathing zone, whereas dry
machining did [181]. Production of a nanocomposite con-
taining alumina in a polymer by a twin-screw extrusion
process caused release of 5- to 20-nm and 50- to 200-nm
alumina in the worker’s breathing zone [182]. Covering
the top of the feeding throat and the open mouth of the
particle feeder, thorough cleaning by washing the floor,
and water-based removal of residual dust on all equipment
significantly decreased airborne particles [182,183]. These
results suggest that some engineering controls may be
appropriate to safely remove some airborne ENMs, includ-
ing maintaining the room at negative pressure relative to
the outside, avoiding the handling of dry ENMs, adequate
ventilation, and containment of the ENM material during
its use.
NIOSH researchers developed a Nanoparticle Emis-

sion Assessment Technique (NEAT) for use in the
workplace [56]. They used the technique to determine
particle number concentrations using two hand-held,
direct-reading, particle number concentration-measuring
instruments, a condensation and an optical particle
counter, to survey 12 sites working with ENMs. This
was complemented by collection of particles on filters
and transmission electron microscopic visualization. The
results demonstrated the utility of NEAT and, in some
cases, the source of ENM release and efficacy of engi-
neering controls [179]. Engineering controls are dis-
cussed in more detail below.
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There are numerous reports of adverse lung effects,
and some reports of human deaths, from nanosized
polymer fumes[26]. Two deaths were reported among
seven 18- to 47-year-old female workers exposed to
polyacrylate nanoparticles for 5 to 13 months. Cotton
gauze masks were the only PPE used, and were used
only occasionally. The workplace had one door, no win-
dows, and no exhaust ventilation for the prior 5 months
[184]. Workers presented with dyspnea on exertion,
pericardial and pleural effusions, and rash with intense
itching. Spirometry showed that all suffered from small
airway injury and restrictive ventilatory function; three
had severe lung damage. Non-specific pulmonary
inflammation, fibrosis, and foreign-body granulomas of
the pleura were seen. Fibrous-coated nanoparticles (~30
nm) were observed in the chest fluid and lodged in the
cytoplasm, nuclei, and other cytoplasmic organelles of
pulmonary epithelial and mesothelial cells. Two workers
died of respiratory failure. Although presented as the
first report of clinical toxicity in humans associated with
long-term ENM exposure, many experts have expressed
uncertainty that ENMs contributed to these outcomes
[22,185,186]. Given the poor environmental conditions
of the workplace and lack of effective PPE use, these
outcomes could probably have been prevented.

V. Risk Characterization
The giant insurance firm Lloyd’s of London conducted a
risk assessment and concluded “Our exposure to nano-
technology must therefore be considered and examined
very carefully” [http://www.nanolawreport.com/2007/12/
articles/review-lloyds-new-nano-insurance-report/].
Japan’s Ministry of Health, Labour and Welfare funded
studies starting in 2005 to establish health risk assess-
ment methodology of manufactured nanomaterials. It
was recently concluded that studies of metals and
SWCNTs from Japan are not yet sufficient to evaluate
ENM risk [187]. However, a new study incorporated a
physiologically-based lung model and data of particle
sizes of airborne titania ENM during manufacturing to
estimate anatase and rutile titania ENM burdens and
adverse effects in lung cells. The authors concluded that
workers exposed to relatively high airborne 10- to 30-
nm anatase titania are unlikely to have substantial risk
for lung inflammatory responses, but are at risk for
cytotoxicity [188]. Risk characterization and assessment
and gap analysis case studies were conducted with full-
erenes, CNTs, silver as a example of a metal, and titania
as an example of a metal oxide ENM [189]. Numerous
additional data gaps were identified for each.

VI. Risk Management
There are no existing regulations or standards for ENMs
within the three jurisdictions that have the largest

nanotechnology funding, the U.S., EU and Japan [190].
In the U.S. OSHA would set standards for occupational
exposure to ENMs. Three types of standards are rele-
vant for ENMs under the Occupational Safety and
Health Act [191]. 1) Substance-specific standards, for
which there are none for ENMs. 2) General respiratory
protection standards, under which inhalable ENMs
would be considered particulates not otherwise regu-
lated, e.g. “nuisance dust”, with a 5 mg/m3 time-
weighted average air exposure limit, determined by
breathing-zone air samples. The respiratory protection
standard requires employers provide workers with
NIOSH-certified respirators or other PPE when engi-
neering controls are not adequate to protect health. 3)
The hazard communication standard states producers
and importers of chemicals must develop Material
Safety Data Sheets [191]. The U.S. EPA, using the legis-
lative authority of the Toxic Substances Control Act has
taken steps to limit the use and exposure to ENMs,
including CNTs. EPA has required the use of PPE and
limitiation on ENM use and environmental exposures
[22]. NIOSH prepared a draft Current Intelligence Bul-
letin: “Occupational Exposure to Carbon Nanotubes and
Nanofibers” (http://www.cdc.gov/niosh/docket/review/
docket161A/pdfs/carbonNanotubeCIB_PublicReviewOf-
Draft.pdf). NIOSH recommends an 8-hour time-
weighted average exposure limit of 7 μg carbon nano-
tubes and nanofibers/m3 air, and that employers mini-
mize exposure to these materials. Suggested
implementation includes many of the primary preven-
tion measures discussed in this review and an occupa-
tional health surveillance program of exposure and
medical monitoring. Given the 7 μg/m3 level is below
total airborne carbon in non-CNT-production settings
(offices) [180], the ubiquitous presence of CNTs which
is probably due to hydrocarbon combustion [192], and
the necessity to differentiate CNTs from other carbon
sources to estimate airborne nanotube and nanofiber
concentration, assuring their airborne level of < 7 μg/m3

may be difficult.
The goal in managing the potential risks from ENMs

is to minimize exposure. In the absence of specific infor-
mation on ENMs, the extensive scientific literature on
airborne, respirable aerosols and fibers has been used to
develop interim guidance for working safely with ENMs
[193] [http://ehs.mit.edu/site/content/nanomaterials-
toxicity] [http://www.astm.org/Standards/E2535.htm].
The general approach to minimizing exposure is shown
in Figure 4, with the preferred followed by less desire-
able controls shown by the downward pointing arrow.
Occupational health surveillance, which includes hazard
and medical surveillance, is the process whereby infor-
mation from any of these activities is collected and used
to support or modify what is done at a higher step in

Yokel and MacPhail Journal of Occupational Medicine and Toxicology 2011, 6:7
http://www.occup-med.com/content/6/1/7

Page 14 of 27

http://www.nanolawreport.com/2007/12/articles/review-lloyds-new-nano-insurance-report/
http://www.nanolawreport.com/2007/12/articles/review-lloyds-new-nano-insurance-report/
http://www.cdc.gov/niosh/docket/review/docket161A/pdfs/carbonNanotubeCIB_PublicReviewOfDraft.pdf
http://www.cdc.gov/niosh/docket/review/docket161A/pdfs/carbonNanotubeCIB_PublicReviewOfDraft.pdf
http://www.cdc.gov/niosh/docket/review/docket161A/pdfs/carbonNanotubeCIB_PublicReviewOfDraft.pdf
http://ehs.mit.edu/site/content/nanomaterials-toxicity
http://ehs.mit.edu/site/content/nanomaterials-toxicity
http://www.astm.org/Standards/E2535.htm


the hierachy, as shown by the upward pointing arrow
[194]. Those steps in the hierachy that have been inves-
tigated for ENMs are further discussed below.

A. Engineering controls
ENM exposure can be reduced through the use of engi-
neering controls, such as process changes, material con-
tainment, and enclosures operating at negative pressure
compared to the worker’s breathing zone; worker isola-
tion; separated rooms; the use of robots; and local
exhaust ventilation (LEV). Given the lack of occupa-
tional exposure standards to provide guidance, the most
prudent approach is to minimize exposure. A survey
found that engineering controls in Switzerland were
more commonly used in the production of powder than
liquid ENMs. For the former, the use of PPE (masks,
gloves, safety glasses, or full protective suits) were the
norm, although used by only ~16, 19, 19, and 8% of the
workers, respectively [195]. This low use of PPE is
thought to reflect the early stage of development of the
ENM industry. It is anticipated that as this industry
matures and knowledge is gained, control will more
commonly include superior methods in the hierarchy of
exposure control [196]. An international survey of ENM
industry managers conducted in 2009-2010 by the

University of California Center for Environmental Impli-
cations of Nanotechnology that focused on industry
controls of ENM exposure, use of PPE, environmental
risks, and perceptions revealed that 46% of the compa-
nies had a nano-specific environmental health and safety
program, compared to 58% in a 2006 survey [197].
Some companies (a minority) were using inappropriate
occupational environmental clean-up methods, such as
sweeping and compressed air [198]. These results sug-
gest more widespread adoption of nano-specific environ-
mental health and safety programs and the use of PPE
in the absence of superior controls are appropriate.
1. Process containment
Process/source enclosure (i.e., isolating the ENM from
the worker) can be aided by glove boxes, chemical fume
hoods, biological safety cabinets (BSC), or an externally-
vented LEV system. However, one should also consider
that these methods can release ENMs into the environ-
ment, potentially creating environmental pollution and
loss of costly material.
ENM handling is often conducted in fume hoods.

Field sampling conducted to determine fume hood,
work zone, and background concentrations of PM2.5 (<
2.5 μm) particles during production of fullerenes and
other carbon-containing ENMs showed handling

Figure 4 Elements of occupational health protection. The continuum of prevention and the heirarchy of exposure control (left arrow) and
occupational health surveillance (right arrow). Adapted from [222] and [194].
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produced aerosolization of 5 to 100 nm particles, which
were contained by the fume hood [199]. Monitoring
aerosolized particles during chemical vapor deposition
(CVD) SWCNT synthesis and aerosol-assisted CVD
MWCNT synthesis in a fume hood showed significant
release at the source, but not outside of the hood, sug-
gesting fume hood use did not create fugitive airborne
emissions and was necessary to protect workers [144].
These authors also determined the release of dry pow-
der alumina (27 to 56 nm primary particle size, 200 nm
agglomerates) and 60 nm silver ENM into the research-
er’s breathing zone and laboratory environment when
poured or transferred in 3 fume hoods; 1) a conven-
tional hood that has a constant air flow with velocity
inversely related to sash height, 2) a by-pass hood which
attempts to maintain a constant velocity by use of a by-
pass grill above the hood which becomes uncovered,
allowing more air flow through it rather than the hood
face as the sash is lowered, and 3) a constant velocity
(variable air volume) hood that uses a motor to vary fan
speed as the sash is moved. The results showed signifi-
cant release of ENMs into the researcher’s breathing
zone and laboratory environment and identified the
variables affecting release. These included hood face
velocities < 80 ft/min (< 0.4 m/s) (due to room air cur-
rents and operator movements) and > 120 ft/min (> 0.6
m/s) (due to turbulence within the hood). The constant
velocity hood performed better than the by-pass hood,
which in turn performed better than the conventional
hood [200]. Tests were also conducted with alumina
nanoparticles (primary particle size 27 to 56 nm; present
as dry bulk material ~200 nm) to compare particles in
the breathing zone during transfer and pouring in con-
stant flow, constant velocity and air-curtain hoods. The
newly developed air-curtain hood is evidently not com-
mercially available. The results showed much lower
levels with the air curtain hood [201]. Sash height,
which affected hood face velocity, affected ENM release.
Rapid removal of the worker’s arm from a BSC also
withdrew ENMs, releasing them outside the cabinet.
Worker motion and body size affected ENM release
from a traditional, but not the air-curtain, hood. The
authors found that ENM handling in traditional fume
hoods with a face velocity of 0.4 to 0.5 m/s (~80 to 100
ft/min) and careful motions minimized fugitive ENM
emission. In 2008 the Center for High Rate Manufactur-
ing recommended locating equipment at least 6 inches
(15 cm) behind the sash, minimizing hood clutter, and
avoiding rapid or violent motions while working in the
hood [202]. In a study conducted in an industrial set-
ting, use of an exhaust hood during procedures that are
more likely to release ENMs (their production, handling,
measurement, and reactor cleanout) resulted in no sig-
nificant increase of ENMs in the workplace [203]. These

studies show that significant reduction of worker expo-
sure to ENMs can be achieved using available fume
hoods and consideration of worker activities within
these hoods.
Labconco Corporation has marketed a modified Class

I BSC for handling nanoparticles [http://www.labconco.
com/_scripts/editc20.asp?CatID=82]. It has an all stain-
less steel interior for ease of cleaning, perforated rear
baffle to reduce turbulence, and a replaceable HEPA fil-
ter. It is available with a built-in ionizer to attract parti-
cles to the interior surface of the hood, and an external
exhaust for volatiles.
2. Local exhaust ventilation (LEV)
Air-displacement ventilation in an industrial setting was
accomplished by introduction of supply air that entered
at low velocity at the floor level and was cooler than
room air. As the air rose it became warmer and was
exhausted close to the ceiling. This provided efficient
clearing of ENMs from the breathing zone [204].
A well-designed exhaust ventilation system with a

HEPA filter should effectively capture airborne nanopar-
ticles. A “down flow” booth, “elephant trunk”, or fume
hood may not provide sufficient protection because they
may cause turbulence, spinning the ENM out of the air-
flow [201].
The effectiveness of engineering controls in ENM pro-

duction and research facilities has been demonstrated in
a few cases. Prior to use of engineering-control mea-
sures, total airborne mass concentrations of MWCNTs,
measured by area sampling, were 0.21 to 0.43 mg/m3 in
a laboratory research facility where the powders were
blended to formulate composites. After enclosing and
ventilating the blending equipment and re-locating
another piece of equipment that produced considerable
vibration, the concentration decreased to below the
limit of detection [205]. In another study, the effective-
ness of LEV was assessed during clean-out of slag and
waste, which used brushes and scrapers, of reactors that
produced 15 to 50 nm diameter ENMs. A portable LEV
unit was used that had been shown to reduce welding
fume exposure [206]. The reduction in release of 300-
to 10,000-nm Ag, Co, and Mn particles during cleanout
of reactors used to make nanoscale metal catalytic mate-
rials was 75, 94, and 96%, respectively [207].
During the manual sanding of epoxy test samples

reinforced with MWCNTs, an order of magnitude more
particles, which were predominantly > 300 nm, was
observed in a worker’s breathing zone when the work
was conducted in a custom fume hood rather than on a
work table with no LEV. The poor performance of the
custom fume hood may have been due to the lack of a
front sash and rear baffles, and to low face velocity (0.39
m/sec). Respirable particles were an order of magnitude
lower when the work was conducted in a BSC than on a
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work table [208]. These results illustrate the importance
of good exhaust hood design as well as the worker pro-
tection provided by a BSC.

B. Administrative controls
When engineering controls are not feasible for reducing
exposure, administrative controls should be implemen-
ted. These are policies and procedures aimed at limiting
worker exposure to a hazard [209]. These could include
a nanoscale material hygiene plan; preparation, training
in, and monitoring use of standard operating proce-
dures; reduction of exposure time; modification of work
practices; and good workplace and housekeeping prac-
tices. For example, one laboratory was thoroughly
cleaned after high air concentrations of nanoscale mate-
rials were measured in a facility engaged in the commer-
cial compounding of nanocomposites [183]. A large
decrease of airborne 30 to 100 nm particles resulted.
Subsequent routine maintenance kept the particles
below those originally observed, leading the authors to
conclude that this administrative control was beneficial
in reducing potential exposure. Biological monitoring
and medical examination, a component of secondary
prevention (Figure 4), is another administrative control
[209]. It is discussed below.

C. Personal protective equipment
The last line of defense in the hierarchy of exposure
control is the use of PPE, such as respirators, protective
clothing, and gloves.
1. Respirators
Major types of respiratory protection include dust
masks, filtering facepiece respirators, chemical cartridge/
gas mask respirators, and powered air-purifying respira-
tors. Examples can be seen at OSHA’s Respiratory Pro-
tection Standard site [http://web.utk.edu/~ehss/pdf/rpp.
pdf].
NIOSH classifies filter efficiency levels as Type 95, 99,

and 100, which are 95, 99, and 99.7% efficient, respec-
tively. The filter’s resistance to oil is designated as N, R,
and P; N (not resistant to oil), R (resistant to oil), and P
(oil proof). Some industrial oils can remove electrostatic
charges from filter media, reducing filter efficiency. Effi-
ciency of N filters is determined using 300-nm median
aerodynamic, charge neutralized, NaCl particles at a
flow rate of 85 l/min; R and P filters are tested with
dioctyl phthalate oil. The European Standards (EN 143
and EN 149) rank filtering facepiece (FFP) respirators as
FFP1, FFP2, and FFP3, which are 80, 94, and 99% effi-
cient, respectively, indicated by CE (for Conformité Eur-
opéene) on complying products. They are tested with
non-neutralized NaCl at 95 l/min.
Particles > 100 nm are collected on filter media by

two mechanisms: 1) inertial impaction in which air flow

deviates around the fiber but large denser-than-air parti-
cles do not and impact the fiber due to their inertia,
as shown in Figure 5; and 2) interception where the
particle trajectory takes it within a particle radius of
the fiber, which captures the particle. Airborne nanopar-
ticles behave much like gas particles. Particles < 100 nm

Figure 5 The mechanisms of ENM association with fiber
materials. Each panel shows particles carried by airstreams, indicated
by the bands with right pointing arrows. Some particles are retained
by the fiber. Those that are not continue on the airstream past the
fiber. The upper panel shows a large particle that is unable to follow
the airstream around the fiber and collides with the fiber due to
inertial impaction. The particle trapped by interception comes close
enough to the fiber (within the particle radius) that it is captured by
the fiber. Electrostatic attraction is discussed in the text VI, C, 1.
Respirators. Small particles collide with each other, gas molecules,
and other suspended matter in the air stream, resulting in Brownian
motion and a random zigzagging path of movement, which may
cause the particle to hit the fiber, as shown in the diffusion panel.
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are collected by diffusion. Charged particles are trapped
by electrostatic attraction, which involves an electrically
charged particle and an electrically charged (electret)
fiber. Electret filters are constructed from charged fibers.
This appears to be a significant mechanism for respira-
tor trapping of ENMs [210]. Neutral particles that pass
through a charged fiber can be polarized by the electric
field, thereby inducing charge to the particle. In dry
conditions, ENM penetration decreases with time. With
continued use, however, ENM penetration through an
electrostatic filter increases; this was suggested to be
due to the humidity of exhalation [211]. Soaking fiber
filters in isopropanol removes electrostatic charge. Stu-
dies treating filtering facepiece respirators with isopro-
panol, and then drying them, showed increased
penetration of particles > 30 nm [210], indicating elec-
trostatic charge is a significant mechanism of fiber
entrapment of ENMs above this size.
Figure 6 shows results of some studies that assessed

the efficacy of different types of dust masks and filtering
facepiece respirators to retain ENMs. Most of the stu-
dies were conducted with different sizes of NaCl, but a
few used silver, graphite or titania. The results show
that dust masks purchased at hardware or home
improvement stores would not be expected to protect
the wearer. The results also show that the NIOSH and
CE respirators generally limit penetration of ENMs to
concentrations below their ranked efficiency level, which
is based on 300 nm particles, except for the N99 filter,
which did not retain more than 99% of nanoscale NaCl
(Panel D). Most of the results shown were obtained
with a flow rate of 85 l/min (modeling heavy work
load). Flow rate affects particle penetration; an example
is shown in Panel C where 30 l/min (modeling low/
moderate intensity work) and 85 l/min flow rates were
compared. Increasing flow rate increased penetration.
This was further shown in a comparison of 30, 85, and
150 l/min flow rates with N95 and N99 filtering face-
piece respirators [212], which is not shown in Figure 6.
This highest flow rate was intended to model an instan-
taneous peak inspiratory flow during moderate to stren-
uous work. A similar result of ENM penetration
positively correlating with air flow rate is shown in
Panel F, where 5.3 and 9.6 cm/sec face velocity rates
were compared.
The results shown in Figure 6 also indicate ENM

penetration is influenced by particle composition. Panel
G shows greater penetration of titania than graphite
through FFP3 respirators under the same experimental
conditions. Panel H shows greater penetration of 20 to
30 nm NaCl than silver ENMs of the same size through
P100 filters. These results suggest further work is war-
ranted to understand the influence of the physico-che-
mical properties of ENMs, particularly size, charge, and

shape, on their penetration through filtering facepiece
respirators. An issue that significantly impacts filtering
facepiece respirator effectiveness is its seal around the
face. “The biggest source of leakage is around the
respirator seal because of poor fit” (Ronald E. Shaffer
quoted in [213]). It has been estimated that 20% or
more leakage occurs in respirators that are not properly
fitted [214]. This underscores the importance of a
proper fit for face mask respirators.
There is a particle size that maximally penetrates each

filter material; the most penetrating particle size
(MPPS). The results shown in Figure 6 indicate that the
MPPS is ~40 to 50 nm for ENMs. This is approximately
the same size of spherical ENMs that appear to contri-
bute to their greatest differences in biological systems
from solution and bulk forms of the same materials, as
discussed in II, A, 2. The physico-chemical properties
of ENMs that impact their uptake. This feature raises
concern because the size of ENMs that may have the
greatest effects in people are those that are best able to
penetrate filtering facepiece respirators.
Until results are obtained from clinical-laboratory or

work-place studies, traditional respirator selection guide-
lines should be used. These are based on OSHA
Assigned Protection Factor values (the workplace level
of respiratory protection that a respirator is expected to
provide), the British Standards Institution Guide to
implementing an effective respiratory protective device
programme (BS 4275), and BS EN 529:2005 (Respiratory
protective devices. Recommendations for selection, use,
care and maintenance. Guidance document).
2. Protective clothing
No guidelines are available on the selection of clothing
or other apparel (e.g., gloves) for the prevention of der-
mal exposure to ENMs. This is due in part to the mini-
mal data available on the efficacy of existing protective
clothing, including gloves. Penetration of 10 to 1000 nm
NaCl through woven and fibrous fabrics showed a
MPPS between 100 and 500 nm and maximum penetra-
tion of 50 to 80% [215]. Comparison of graphite nano-
particle penetration through 650 μm thick cotton, 320
μm polypropylene, and 115 μm non-woven high-density
polyethylene textile (Tyvek®) showed ~30, 12, and 4%
penetration of the MPPS (~40 nm), respectively [216].
Tyvek® permitted ~3 orders of magnitude less penetra-
tion of ~10 nm titania and platinum than cotton or a
160 μm woven polyester [217]. A study of ten nonwoven
fabrics under conditions simulating workplace ENM
exposure showed penetration increased with increasing
air velocity and particle size (to ~300 to 500 nm). Pore
structure of the various fabrics greatly influenced pene-
tration [218]. Although nonwoven fabrics were much
more effective to protect workers from ENM exposure
than woven fabrics, they are much less comfortable to
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Figure 6 Particle penetration through dust masks and facepiece respirators. Test material was NaCl, flow rate 85 l/min and values shown
are mean, unless noted otherwise. Panel A: Dust masks. Results shown are the mean and most and least efficient of 7 commercially available
dust masks, as purchased in home improvement/hardware stores [225]. Panel B. N95 respirators. (Circle) Results from 6 3M Engineered
nanoparticles and particulate respirators [http://multimedia.3m.com/mws/mediawebserver?
mwsId=66666UuZjcFSLXTtN8T_NXM2EVuQEcuZgVs6EVs6E666666–]. (Square) Results from n = 2 [226]. (Triangle) Results from n = 1 at face
velocity of 8.6 cm/sec [210]. (Diamond) Results from n = 5 [227]. (Hexagon) Results from n = 1 [212]. Panel C. N95 respirators at two flow
rates. Results from n = 2 [226]. Panel D. N99 respirators. Results from n = 2 [212]. Panel E. FFP2 respirators. Results from n = 2 [228]. Panel
F. FFP3 respirators. (Circle) Results from n = 1 [228]. (Square) Results from n = 1, with graphite at a face velocity of 9.6 cm/sec, flow rate not
reported [211]. (Triangle) Results from n = 1, with graphite at a face velocity of 5.3 cm/sec, flow rate not reported [211]. Panel G. FFP3
respirators. (Circle) Results from n = 1, with graphite at face velocity of 5.3 cm/sec, flow rate not reported [217]. (Square) Results from n = 1,
with titania at face velocity of 5.3 cm/sec, flow rate not reported [217]. Panel H. P100 respirators. (Square) Results from n = 2 with silver
particles [229]. (Triangle) Results from n = 2 with NaCl [229]. (Circle) Results from n = 2 with NaCl [228].
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wear, suggesting improvements in fabric design or selec-
tion are needed to address this disincentive to use more
effective PPE. The selection of laboratory coat materials
can greatly influence the potential penetration of ENMs,
which may end up on or penetrating street clothing,
resulting in worker absorption or their even greater dis-
persion into the environment.
3. Gloves
An unpublished study reported in 2005 the interaction
of alumina and organoclay ENMs with powder-free (nat-
ural rubber) latex, powder-free (synthetic latex) nitrile,
and cotton gloves [219]. Scanning electron microscopy
showed that latex and nitrile gloves exhibited micro-
meter-sized surface pores/intrinsic voids. Although these
surface imperfections were not complete holes, they
may serve as pathways for the penetration of nanoparti-
cles under unfavorable conditions, such as stretching
and tearing. Stretching the latex and nitrile gloves to
200% of their original size greatly increased the pores/
intrinsic voids. The surface pores may be important if
they collect nanoparticles and the user does not remove
the gloves when going to another location, thereby
transporting the ENMs. Not surprisingly, there were
wider gaps between the fibers in cotton gloves. The
authors pointed out that ENMs may be treated with
special coatings to enhance their dispersion characteris-
tics, which may alter their permeability through glove
materials. This study, however, did not determine the
penetration of ENMs through gloves.
Nitrile, latex, and neoprene gloves prevented ~10 nm

titania and platinum ENM penetration [217]. Double
gloving has been suggested [219], which should reduce
material penetration when there is glove perforation as
well as dermal contamination when removing a con-
taminated outer glove. However, double gloving has not
been shown to significantly decrease material penetra-
tion [220].

D. Biological monitoring and medical examination
Secondary prevention in the continuum of the preven-
tion and heirarchy of exposure control (Figure 4)
includes biological monitoring and medical examination,
the early detection of asymptomatic disease, and prompt
intervention when the disease is preventable or more
easily treatable [221]. Occupational health surveillance is
the process by which information obtained from any
activity in the continuum of prevention and heirarchy of
exposure control is collected and used to support or
alter what is done at a step higher in the heirarchy, as
shown in the right upward pointing arrow in Figure 4
and discussed in [194]. Occupational health surveillance
is the ongoing systematic collection, analysis, and disse-
mination of exposure and health data on groups of
workers for the purpose of early detection and injury. It

includes hazard surveillence, the periodic identification
of potentially hazardous practices or exposures in the
workplace, assessing the extent to which they can be
linked to workers, the effectiveness of controls, and the
reliability of exposure measures. A goal is to help define
effective elements of the risk management program for
exposed workers. Occupational health surveillance also
includes medical surveillance, which examines health
status to determine whether an employee is able to per-
form essential job functions [222]. It is required when
there is exposure to a specific workplace hazard (OSHA,
29 CFR 1910.1450). This is different than medical
screening or monitoring, a form of medical surveillance
designed to detect early signs of work-related illness by
administering tests to apparently healthy persons to
detect those with early stages of disease or those at risk
of disease. NIOSH concluded: “Currently there is insuffi-
cient scientific and medical evidence to recommend the
specifc medical screening of workers potentially exposed
to engineered nanoparticles” [222].

E. Diagnosis, therapy, and rehabilitation
The third level in the continuum of prevention and
heirarchy of exposure control, tertiary prevention,
includes diagnosis, therapy, and rehabilitation. Owing to
the lack of documented episodes of ENM exposure in
humans that have resulted in adverse outcome, there is
little experience with treatments of ENM exposure. One
example that illustrates clever application of the knowl-
edge of ENM properties was the use of UV light to
visualize and treat the accidental dermal exposure of a
human to quantum dots suspended in solution [223].
Good work practices
Based on the current knowledge of ENM exposure risks,
some good workplace practices have been suggested.
They are shown in Appendix 1.
An example of risk analysis and implementation of actions
to limit ENM exposure
A recent study applied the principles of the Risk Assess-
ment/Risk Management framework to identify and eval-
uate the potential hazards in a facility manufacturing
ENMs [224]. The investigators established a measure of
risk for each potential hazard and suggested improve-
ment actions. These were then addressed with adminis-
trative controls, environmental monitoring, PPE and
good workplace practices.
Some published guidelines for safe handling and use of
ENMs
The following are some published guidelines, not regula-
tions, for safe handling and use of ENMs. The Bunde-
sanstalt für Arbeitsschutz und Arbeitsmedizin (BAUA)
provided a “Guidance for handling and use of nanoma-
terials in the workplace” in 2007 [http://www.baua.de/
en/Topics-from-A-to-Z/Hazardous-Substances/
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Nanotechnology/pdf/guidance.pdf;jsessionid=E81EE-
CA3E6B5AD1A0D3D2396C4220AF5.2_cid137?__blob=-
publicationFile&v=2]. The Environmental Health and
Safety office at the University of California provided
“Nanotechnology: Guidelines for safe research practices”
as their Safety Net #132 guidelines [http://safetyservices.
ucdavis.edu/safetynets/Safetynets-Master%20List/Safety-
nets-Master%20List/safetynet-132-nanotechnology-
guidelines-for-safe-research-practices]. Similarly, the
Office of Environment, Health & Safety at the University
of California prepared “Nanotechnology: Guidelines for
Safe Research Practices” as their publication for the Ber-
keley Campus, Publication No. 73 [http://nano.berkeley.
edu/research/73nanotech.pdf]. The Department of
Energy, Nanoscale Science Research Centers, updated
their “Approach to nanomaterial ES&H” in May 2008,
as Revision 3a [http://orise.orau.gov/ihos/nanotechnol-
ogy/files/NSRCMay12.pdf]. The Institute de recherche
Robert-Sauvé en santé et en securité du travail (IRSST)
published “Health Effects of Nanoparticles” [http://www.
irsst.qc.ca/files/documents/PubIRSST/R-469.pdf].
The Environmental Health and Safety office of Massa-

chusetts Institute of Technology prepared “Nanomater-
ials Toxicity”, which is available at [http://ehs.mit.edu/
site/content/nanomaterials-toxicity]. NIOSH has made
available “Approaches to Safe Nanotechnology. Mana-
ging the Health and Safety Concerns Associated with
Engineered Nanomaterials” [http://www.cdc.gov/niosh/
topics/nanotech/safenano/]. The British Standards Insti-
tute prepared “Nanotechnologies - Part 2. Guide to safe
handling and disposal of manufactured nanomaterials”
in 2007, as their publication PD 6699-2:2007, ICS Num-
ber Code 13.100: 71.100.99 [http://www.nanointeract.
net/x/file/PD6699-2-safeHandling-Disposal.pdf]. The
American Society for Testing and Materials prepared
A “Standard Guide for Handling Unbound Engineered

Nanoparticles in Occupational Settings”, as their publi-
cation ASTM E2535-07 [http://www.astm.org/Stan-
dards/E2535.htm]. This is a guide for use when no
specific information on ENMs or toxicity is available.
OSHA prepared “Occupational exposure to hazardous
chemicals in laboratories”, as their publication
1910.1450 [http://www.osha.gov/pls/oshaweb/owadisp.
show_document?p_table=standards&p_id=10106]. This
guidance is designed for lab scale (i.e., not industrial)
workers.
The Center for High-Rate Nanomanufacturing and

NIOSH are preparing a guide to safe practices for work-
ing with nanomaterials that is anticipated to be released
in early 2011.
Some websites that have considerable information on

nanoscale materials are Nano Safe at [http://www.
nanosafe.org], The International Council on Nanotech-
nology (ICON) [http://icon.rice.edu/], and “The

GoodNanoGuide” [http://goodnanoguide.org/tiki-index.
php?page=HomePage].

Conclusions
An extensive variety of ENMs has been created. ENMs
have already been utilized in many products and much
more extensive use is anticipated in the future. There
are reports of toxicity following in vitro and in vivo
exposure to many ENMs, albeit often after very high
doses, and generally lacking dose-response assessment.
There is a small amount of exposure assessment infor-
mation, and a paucity of information required for a risk
characterization. Until more research and workplace
monitoring information becomes available to refine the
current knowledge of ENM risks, good workplace prac-
tices and guidelines based on ultrafine materials are
guiding the occupational safety and health practices in
working with ENMs.

Appendix 1. Some good workplace practices
- Post signs indicating potential hazards, PPE
requirements, and administrative controls at
entrances to areas where ENMs are handled.
- Use appropriate PPE as a precaution whenever fail-
ure of a control, such as an engineering control,
could result in ENM exposure, or ensure that engi-
neering controls notify workers (e.g., alarms) when
equipment malfunctions. Appropriate clothing and
PPE generally includes closed-toed shoes, long pants
without cuffs, long-sleeved shirt, laboratory coat,
nitrile gloves, eye protection and perhaps a respira-
tor, e.g., a half-mask P-100 or one that provides a
higher level of protection, as appropriate to the
ENM.
- Transfer ENMs between workstations in closed,
labeled containers.
- Avoid handling ENMs in the open air in a ‘free
particle” state.
- Store dispersible ENMs, suspended in liquids or in
a dry particle form, in closed (tightly sealed) contain-
ers whenever possible.
- Clean work areas potentially contaminated with
ENMs at the end of each work shift, at a minimum,
using either a HEPA-filtered vacuum cleaner or wet
wiping methods. Do not dry sweep or use com-
pressed air.
- Consider the use of disposable absorbent bench
top coverings and laboratory coats.
- Place sticky floor mat at exit.
- Provide facilities for hand-washing, showering and
changing clothes

Prohibit food, beverages and smoking in the work
area.
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