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Abstract. Sterol carrier protein-2 (SCP-2) is a non- 
enzymatic protein of 13.5 kD which has been shown 
in in vitro experiments to be required for several 
stages in cholesterol utilization and biosynthesis. The 
subcellular localization of SCP-2 has not been defini- 
tively established. Using afffinity-purified rabbit poly- 
clonal antibodies against electrophoretically pure SCP- 
2 from rat liver, we demonstrate by immunoelectron 
microscopic labeling of ultrathin frozen sections of rat 
liver that the largest concentration of SCP-2 is inside 
peroxisomes. In addition the immunolabeling indicates 
that there are significant concentrations of SCP-2 in- 
side mitochondria, and associated with the endoplas- 

mic reticulum and the cytosol, but not inside the 
Golgi apparatus, lysosomes, or the nucleus. These 
results were confirmed by immunoblotting experiments 
with proteins from purified subcellular fractions of the 
rat liver ceils carried out with the anti-SCP-2 antibod- 
ies. The large concentration of SCP-2 inside peroxi- 
somes strongly supports the proposal that peroxisomes 
are critical sites of cholesterol utilization and biosyn- 
thesis. The presence of SCP-2 inside peroxisomes and 
mitochondria raises questions about the mechanisms 
involved in the differential targeting of SCP-2 to these 
organelles. 

p ~.ROXlSOMES in higher eukaryotic cells have been im- 
plicated as critical sites of cholesterol metabolism. 
Peroxisomal fractions obtained from rat liver can oxi- 

dize 3ct,7ct,12ot,trihydroxy-5/~-cholestanoic acid, an inter- 
mediate product of cholesterol metabolism, to cholic acid 
(11) and can convert cholesterol to propionic acid (8). Highly 
purified (95-98%) rat liver per oxisomes are also able to oxi- 
dize 26-hydroxycholesterol, the product of the enzymatic 
C-26 hydroxylation of cholesterol, to a C-24 bile acid (17). 
The physiological significance of peroxisomal bile acid syn- 
thesis is illustrated by the observation that in peroxisomal 
deficiency diseases (Zellweger's syndrome) there is an ac- 
cumulation of bile acid intermediates due to defective perox- 
isomal cleavage of the C-27 steroid side chain (12). Peroxi- 
somes may also play an important role in cholesterol 
biogenesis. It has been demonstrated that 3-hydroxy-3- 
methylglutaryl coenzyme A reductase, the rate-limiting en- 
zyme of the sterol biosynthetic pathway, is present not only 
in the membranes of the endoplasmic reticulum but also in 
peroxisomes. Immunoelectron microscopic labeling of ultra- 
thin frozen sections of normal liver, using two monoclonal 
antibodies to purified rat liver microsomal 3-hydroxy-3- 
methylglutaryl coenzyme A reductase, illustrated that the en- 
zyme is in fact present at a considerably larger concentration 

A preliminary account of this work has appeared in abstract form (1987. J. 
Cell Biol. 10515, Pt. 2]:157a. [Abstr.]). 

in the matrix of peroxisomes than in the endoplasmic reticu- 
lum (14). In a subsequent study, it was determined that be- 
tween 20 and 30 % of the total 3-hydroxy-3-methylglutaryl 
coenzyme A reductase activity (based on biochemical data) 
was located in the peroxisomes of cholestyramine-treated 
animals (15). In addition, it has recently been shown that rat 
liver peroxisomes in the presence of cytosolic proteins in 
vitro are able to convert t4C-mevalonic acid to t4C-choles- 
terol (31). 

It is of interest, therefore, to inquire whether other proteins 
thought to be involved in cholesterol utilization or biogenesis 
are also present in peroxisomes. In this study, we have inves- 
tigated the subcellular localization of sterol carrier protein-2 
(SCP-2).t This nonenzymatic protein has a variety of carder 
functions in vitro all associated with cholesterol biochemis- 
try. SCP-2 has been shown to be required in the enzymatic 
conversion of lanosterol to cholesterol during cholesterol 
biogenesis by rat liver microsomal enzymes (26), in the use 
of cholesterol via esterification by acyl-coenzyme A choles- 
terol acyltransferase (6), and in the synthesis of microsomal 
and mitochondrial bile acid (2). SCP-2 is also involved in the 
intracellular transfer of cholesterol which is required for 
pregnenolone production in adrenal (2, 34, 35) and ovarian 
tissues (3). As purified from a rat liver cytosol preparation 
(26), SPC-2 is a soluble protein of 13.5 kD and an isoelectric 

1. Abbreviation used in this paper: SCP-2, sterol carder protein-2. 
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Figure 1. An electron micrograph of an ultrathin frozen section of normal rat liver indirectly immunolabeled with rabbit polyclonal antibod- 
ies to SCP-2 followed by colloidal gold adducts of guinea pig antibodies to rabbit ]gG. The peroxisomes (P) are intensely and uniformly 
immunolabeled. The mitochondria (M) exhibit a lower level of labeling, as does the cytosol (as seen at the boundaries of the glycogen 
fields [GIy]). Bar, 0.5/~m. 
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Figure 2. Electron micrograpbs of fields similar to that of Fig. I exhibiting immunolabeling (arrowheads) for SCP-2 over different intracellu- 
lar compartments: (a) the rough endoplasmic reticulum (rER), (b) the smooth endoplasmic reticulum (sER), and (c) the Golgi apparatus 
(Go). Note the absence of immunogold labeling over the Golgi apparatus; the short arrows indicate the endogenous ferritin particles. Bars, 
0.1 /~m. 

point of 8.6. It has been sequenced (24, 28, 39) and shown 
to be identical to proteins isolated by several groups (25, 29, 
33). The subcellular distribution of SCP-2 in rat liver was 
previously studied using polyclonal antibodies to SCP-2 
(37); immunogold localization was reported on peroxisomes 
and in the cytosol, but the immunoblotting of the proteins 
of a peroxisomal fraction showed that the same antibodies 
labeled only a 58-kD rather than a 13.5-kD band. In the 
absence of further characterization of the 58-kD protein, 
whether the antibodies were truly monospecific for SCP-2, 
or whether they also contained antibodies directed to a per- 
oxisomal protein of 58 kD that was unrelated to SCP-2, was 
therefore not resolved. 

In this study, we have investigated the localization of SCP- 
2 inside rat hepatocytes by two methods: (a) immunoelectron 
microscopic labeling of ultrathin frozen sections of whole 
cells, using monospecific afffinity-purified polyclonal anti- 
bodies to SPC-2; and (b) immunoblotting of extracts of 
purified subcellular fractions of the fragmented cells with the 
same antibodies. Both methods gave consistent results. They 
showed that the largest concentration of SCP-2 is present in 
peroxisomes, but that significant concentrations are also 
present inside mitochondria and associated with the endo- 
plasmic reticulum. 

Materials and Methods 

Animals 

Male Sprague-Dawley rats were kept in a room from which external illumi- 
nation was excluded. Light and dark periods (12 h each) were regulated by 
electric timers; the light was turned off at 6 PM and turned on at 6 AM. 
The animals had access to food and water at all times. All rats (average 
weight 150-180 g) were fasted for 12 h and killed by decapitation. 

Purification of SCP-2 and Preparation of Antibodies 

SCP-2 was purified from rat liver by the method of Scallen et al. (30) and 
afffinity-purified rabbit polyclonal antibodies against the cytosolic SCP-2 
were prepared as described (28, 30). The monospecificity of these antibod- 
ies for SCP-2 is demonstrated in the papers cited and also by the immuno- 
blotting results described in Figs, 5 and 6. The IgG fraction of rabbit anti- 
bodies to bovine liver catalase, which cross react with other mammalian 
catalases (16), was the gift of A, Schram (University of Amsterdam), 

Immunoelectron Microscopy 

Livers from rats were perfused for 5 min through the ascending aorta with 
a fixative solution containing 3% paraformaldehyde plus 0.5% glutaralde- 
hyde in cacodylate buffer, pH 7.4. Small blocks of fixed liver were then kept 
in the same fixation solution for 2 h. Cryoultramicrotomy was performed 
according to Tokuyasu (32). The tissue blocks were infused with 2.3 M su- 
crose for 30 min, frozen in liquid nitrogen, and sectioned at - 9 0 ° C  with 
a cryoultramicrotome. Ultrathin frozen sections were transferred onto 
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parlodion-covered nickel grids and immunolabeled with afffinity-purified 
rabbit polyclonal antibodies against the cytosolic SCP-2. The primary anti- 
bodies were used at a concentration of 5 #g/ml. After washing, the sections 
were treated with colloidal gold (6-8-nm-diam) adducts of guinea pig anti- 
bodies to rabbit IgG (13). Immunolabeled frozen sections were osmicated, 
poststained with 0.5% uranyl acetate in barbital/acetate buffer, pH 5.2, de- 
hydrated in a series of ethanol solutions to pure ethanol, and infused in LR 
white acrylic resin (Polysciences, Inc., Warrington, PA). After infusion, po- 
lymerization was effected in a microwave oven for 3 rain or overnight in a 
vacuum oven at 60°C (13). The grids were observed in a transmission mi- 
croscope (model 300; Philips Electronic Instruments, Inc., Mahwah, NJ) 
at 80 kV without any poststaining. 

Isolation of Peroxisomes, Microsomes, 
and Mitochondria 
Liver homogenates were fractionated as described by Leighton et al. (20) 
except that preinjection of rats with Triton WR-1339 was omitted and the 
peroxisome-enriched fraction (which also contained lysosomes, mitochon- 
dria, and microsomes) was washed only once. The peroxisome-enriched 
fraction was then further fractionated by equilibrium density centrifugation 
on a steep linear metrizamide gradient (9). The gradient was centrifuged 
(model OTD 75B; Sorvall Instruments Div., Newton, CT) using an ultra- 
vertical rotor (model TV 850) at 40,000 rpm for 50 min at 8°C. A total of 
20-25 fractions were collected from the bottom of the centrifuge tube with 
a two-way needle. The mitochondrial and peroxisomal fractions of greatest 
purity obtained from the gradient were used for the biochemical and immu- 
noblotting assays. Rat liver microsomes were prepared by differential cen- 
trifugation (4), resulting in a microsomal and soluble fraction. All cell frac- 
tions were assayed for protein content and distribution of marker enzyme 
activities. 

Assay of Marker Enzymes 
The activities of catalase (a peroxisomal marker) and cytochrome oxidase 
(a mitochondrial marker) were measured according to Leighton et al. (20) 
and Lazarow and de Duve (19). Esterase (a microsomal marker) was mea- 
sured according to Beaufay et al. (1). Protein was determined by the method 
of Lowry et al. (22) using BSA as a standard. Since metrizamide interferes 
with the determination of protein, aliquots of the gradient samples were first 
precipitated in 10% TCA. 

SDS-PAGE and Immunoblotting 
The proteins of the peroxisomal, mitochondrial, microsomal, and soluble 
fractions were separately fractionated on 12.5% polyacrylamide slab gels 
containing 0.1% SDS, according to Laemmeli (18). Electrophoresis was per- 
formed at 35 mA/gel. Protein samples were prepared in solubilizing buffer 
(0.125 M Tris/HCl, pH 6.8, 2% SDS, 5% ~-mercaptoethanol, 5% glycerol, 
and 0.005% bromophenol blue) and incubated for 20 rain in a 37°C water- 
bath before loading the gel. A mixture of molecular weight standards was 
routinely applied to the gel. The separated proteins were electrophoretically 
transferred to nitrocellulose paper in 20 mM Tris, 150 mM glycine, and 
20 % methanol. The nitrocellulose was incubated with gentle shaking for 60 
rain at 37°C with 5% BSA in Tris-buffered saline, pH 7.4, overnight at 4°C 
with polyclonal antibody against rat liver cytosolic SCP-2, and then for 60 
min with horseradish peroxidase-conjngated goat anti-rabbit IgG. 

Purification of Antibodies Using Antigens Immobilized 
on Nitrocellulose 
Purified peroxisomal fractions (115/zg peroxisomal protein/well) were solu- 
bilized in sample buffer containing 2.5% SDS and 2%/3-mercaptoethanol. 
The protein components were separated on a 10% polyacrylamide gel. After 
electrophoresis, the proteins were transferred to nitrocellulose and stained 
with Amido black. The bands at 13.5 kD and 55 kD were 4.5 cm apart on 

the nitrocellulose. They were cut out in narrow strips and placed in 6-cm 
petri dishes. The strips were blocked for 2 h in 3 % BSA in Tris-buffered 
saline and incubated overnight with polyclonal antibodies against SCP-2 (5 
tLglrnl in 3 % BSA/Tris-buffered saline). After extensive washing in Tris- 
buffered saline, the antibody was eluted from each strip (27) with 1 ml of 
0.2 M HCl-glycine, pH 2.4, for 40 min and then immediately dialyzed 
against 10% PBS containing an equivalent concentration of Tris base. The 
eluted antibody was then lyophilized, resuspended in 100 #1 water, and used 
for the immunoelectron microscopic labeling experiments shown in Fig. 3 
and the immunoblotting experiments shown in Fig. 7. 

Materials 
Horseradish peroxidase-conjugated goat anti-rabbit IgG antibodies were 
obtained from Bio-Rad Laboratories (Richmond, CA). Other chemicals 
were from Sigma Chemical Co. (St. Louis, MO). 

Results 

Immunoelectron Microscopy 
Indirect immunolabeling using affinity-purified rabbit poly- 
clonal antibodies against rat cytosolic SCP-2 was carried out 
on ultrathin frozen sections from normal rat liver. A repre- 
sentative electron micrograph is shown in Fig. 1. The in- 
teriors of the peroxisomes are uniformly and intensely la- 
beled with gold particles. The mitochondria are also labeled 
inside, but at a substantially lower intensity than the peroxi- 
somes. The immunolabels inside the mitochondria often ap- 
peared to be associated with the inner membrane (Fig. 1; see 
also Fig. 3). In addition, the endoplasmic reticulum region 
(Fig. 2, a and b) showed low intensity, but definitely positive, 
labeling. Closer examination of many immunolabeled en- 
doplasmic reticulum fields suggested that the labels were of- 
ten bound to the membrane, predominantly on the cytoplas- 
mic surface. The cytosol was also labeled (visible in Fig. 1 
at the periphery of the glycogen fields). On the other hand, 
no significant labeling for SCP-2 above background could be 
detected in the Golgi apparatus (Fig. 2 c), lysosomes (Fig. 
3 a), or the nucleus (Fig. 3 b). 

For comparison with these results, Fig. 4 shows similar 
sections labeled with polyclonal antibodies to the exclusively 
peroxisomal protein catalase. Intense immunolabeling of the 
peroxisomes is observed, but the mitochondria are not de- 
tectably labeled as expected. This is one indication that the 
low level of labeling for SCP-2 in the mitochondria (Fig. 1 
and Fig. 3) and associated with the endoplasmic reticulum 
(Fig. 2, a and b) is specific. 

Immunoblotting of Cell Fractions 
The purity of the peroxisomal, mitochondrial, microsomal, 
and soluble fractions was determined as described in the 
Materials and Methods. The peroxisomal fractions used 
were '~95 % pure based on the measurements of marker en- 
zymes (5). The only significant contaminant was the mi- 
crosome fraction; the activity of the marker enzyme for 
mitochondria (cytochrome oxidase) was below the level of 

Figure 3. Electron micrographs  of  fields s imilar  to those  of  Figs. 1 and 2. (a) Immunolabe l ing  wi th  ant ibodies  specifically absorbed to 
and eluted from the 13.5-kD band of  peroxisomal  proteins;  and (b) immunolabe l ing  with ant ibodies  f rom the 55-kD band.  Note  that the 
labeling results are indist inguishable.  Addit ional  examples are shown of  immunolabe l ing  for SCP-2 of  peroxisomes (P )  and mi tochondr ia  
(M) ,  but  note the absence  of  labeling f rom lysosomes (Lys) and f rom the nucleus (N).  Bars, 0.1 /~m. 
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Figure 4. An electron micrograph of an ultrathin section of normal rat liver indirectly immunolabeled with rabbit polyclonal antibodies 
to catalase followed by colloidal gold adducts of guinea pig antibodies to rabbit IgG. The peroxisomes (P) are intensely and uniformly 
immunolabeled but the mitochondria (M) show no detectable labeling. Bar, 0.5 ttm. 

detection (<1% mitochondrial contamination). The mito- 
chondrial fraction contained 12% microsomal and 5 % per- 
oxisomal contaminants. The microsomal fraction contained 
"~3% mitochondrial and only 0.4% peroxisomal protein. 
The soluble fraction was contaminated with 3 % microsomal 
and 4 % peroxisomal proteins. 

The Coomassie Blue staining patterns for the proteins of 
these fractions separated on SDS-PAGE are shown in Fig. 5. 
The corresponding immunoblots made with the polyclonal 
anti-SCP-2 antibodies of these samples transferred to nitro- 
cellulose are reproduced in Fig. 6. They show that a band at 
the molecular mass of 13.5 kD corresponding to SCP-2 was 
the predominantly immunolabeled protein. This labeled 
band was clearly most prominent in the peroxisomal frac- 
tion. Another band at 55 kD was also labeled with the anti- 
bodies in several fractions; a band of similar molecular mass 
was immunoblotted in previous studies with polyclonal anti- 
SCP-2 antibodies (37). It was essential to determine whether 
the 55-kD band represented a form of SCP-2 or some un- 
related contaminant. Accordingly, antibodies absorbed by 
the 55- and 13.5-kD bands were separately eluted (27). Each 
was used in immunoelectron microscopic labeling experi- 
ments and in immunoblotting a peroxisomal fraction as de- 
scribed in the Materials and Methods. The antibodies isolated 
from the 13.5- and 55-kD band yielded identical immunola- 
beling results (Fig. 3, a and b, respectively). Each isolated 
antibody blotted both the 13.5- and 55-kD bands in the per- 
oxisomal fraction (Fig. 7). The two sets of results clearly 
demonstrate that the same antibodies recognize both the 
13.5- and 55-kD proteins. This has been confirmed subse- 
quently by the finding that a monoclonal antibody to the 
13.5-kD protein immunoblotted both the 13.5- and 55-kD 
bands (Krisans, S., and T. J. Scallen, unpublished results). 

Discussion 

We have demonstrated, using afffinity-purified polyclonal an- 
tibodies raised against electrophoretically pure SCP-2 from 
rat liver, that by far the largest concentration of SCP-2 inside 
the hepatocytes is in peroxisomes. This conclusion was ob- 
tained from immunoelectron microscopic labeling experi- 
ments carried out with these antibodies (Figs. 1-3) and then 
confirmed by immunoblotting experiments of the proteins of 
purified peroxisomal and other subcellular fractions using 
the same anti-SCP-2 antibodies (Figs. 5 and 6). One compli- 
cation observed in the immunoblotting experiments was the 
labeling not only of the expected protein band at 13.5 kD but 
also of a band at 55 kD. In previous experiments (37), a band 
corresponding to the 55-kD protein was the only immunore- 
active component in peroxisomal extracts, but the identity of 
that component and its relationship to the 13.5-kD protein 
was not established. It was possible, for example, that differ- 
ent antibody species in the polyclonal antibodies raised to the 
13.5-kD protein recognized unrelated 13.5- and 55-kD pro- 
teins. We showed, however, that antibodies specifically re- 
acting with either of these two protein bands yielded indistin- 
guishable immunoelectron microscopic labeling results (Fig. 
3, a and b) and, furthermore, each antibody blotted both 
bands (Fig. 7). The simplest interpretation of these results 
is that the two bands represent two different states of aggrega- 
tion (monomer and tetramer) of the same protein. It has not 
been ruled out, however, that the 13.5-kD protein is a subunit 
of a 55-kD protein encoded by another gene. In any event, 
our results resolve the previous ambiguity (37) and show that 
identical or closely related species of SCP-2 molecules are 
present in peroxisomes and the several other intracellular 
sites discussed below. 
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Figure 5. Electrophoresis on 0.1% SDS/12.5 % polyacrylamide gels 
and Coomassie Blue staining of the proteins of the several intracel- 
lular fractions indicated; three different amounts of each protein 
fraction were applied to the gel as noted. The Coomassie labeling 
reveals the distinctive and complex protein patterns of each frac- 
tion. 

The predominant localization (but not exclusive localiza- 
tion; see below) of SCP-2 to peroxisomes inside hepatocytes 
strongly supports a preeminent role for peroxisomes in cho- 
lesterol biochemistry. As detailed in the introduction, SCP-2 
has been critically implicated by in vitro experiments in car- 
rier functions in both cholesterol utilization and biosynthe- 
sis. It appears that SCP-2 is necessary to transfer certain 
intrinsically water-insoluble cholesterol precursors and me- 
tabolic products between one component and the next in a 
cascade of enzyme reactions. Many of these cholesterol- 
related carrier functions of SCP-2 must therefore be taking 
place inside peroxisomes. 

That peroxisomes are the major sites of localization of 
SCP-2 is also consistent with the recent finding (36) that hu- 
man SCP-2 is present in substantially reduced amount in the 
livers of infants with cerebro-hepato-renal (Zellweger) syn- 
drome, a condition in which hepatic peroxisomes are largely 
absent. 

In addition to the predominant peroxisomal localization of 
SCP-2, lower concentrations of SCP-2, or an immunochemi- 
cally indistinguishable protein, were also found inside mito- 
chondria (Figs. 1 and 3) and associated with the endoplasmic 
reticulum (Figs. 1 and 2) and the cytosol. However, there was 
no detectable labeling in the Golgi apparatus, lysosomes, or 
nuclei. The labeling for SCP-2 in the mitochondria was often 
observed to be concentrated on the inner mitochondrial 
membranes. As one control for this mitochondrial labeling 
for SCP-2, we observed that immunoelectron microscopic 
labeling for catalase is absent from mitochondria (Fig. 4), 
corresponding to the exclusively peroxisomal localization of 
that protein. In other words, the background of nonspecific 
labeling achieved by our immunoelectron microscopic meth- 
ods, as demonstrated with labeling for catalase, is substan- 
tially lower than the observed labeling of mitochondria for 
SCP-2. The latter is therefore specific. The SCP-2 labeling 
of the endoplasmic reticulum (Figs. 1 and 2) appears to be 

largely associated with the cytoplasmic face of the reticulum 
membranes and may, therefore, reflect a peripheral mem- 
brane association of the soluble cytosol form of SCP-2. This 
is supported by the observation that when the endoplasmic 
reticulum fraction is treated with NaECO3 (5), immunoblot- 
ting of the membrane-associated and solubilized proteins 
shows that SCP-2 is exclusively found in the soluble fraction 
(data not shown). A peripheral cytoplasmic association is 
consistent with the absence of SCP-2 labeling of the Golgi 
apparatus (Fig. 2 c). If the SCP-2 associated with the en- 
doplasmic reticulum was present in the reticulum lumen, one 
might have expected it to have been transferred in part to the 
Golgi apparatus along the secretory pathway. 

The association of low concentrations of SCP-2 with sev- 
eral intracellular sites other than peroxisomes is also ob- 
served in the immunoblotting experiments with the proteins 
of several purified subcellular fractions of the rat liver cells 
(Figs. 5 and 6), although the level of peroxisomal contamina- 
tion (5%) of the mitochondrial fraction presents a problem. 
The electron microscopic immunolabeling results, however, 
are definitive regarding a mitochondrial SCP-2. 

In addition to sequences of enzymatic reactions all occur- 
ring within a cellular compartment (e.g., peroxisomes) which 
may involve transfers of substrates and products via the en- 
dogenous SCP-2 at various stages, there may also be se- 
quences of reactions in which the early steps occur in one 
intracellular compartment (e.g., the cytosol) and later steps 
in another compartment (e.g., the mitochondria). This could 
be one of the reasons to have SCP-2 present in different com- 
partments. We suggest that since sterol-bound SCP-2 mole- 
cules are not likely to get across intact membranes as such, 
the transfer of the particular sterol from one compartment to 
another (say from the cytosol to mitochondria) may involve 

Figure 6. Immunoblots with antibodies to SCP-2 of transfers from 
electrophoresis gels, such as those of Fig. 5, followed by treatment 
with horseradish peroxidase-conjugated secondary antibodies. 
Bands at 13.5 and 55 kD are the only ones that are immunolabeled 
in each of the fractions. The labeling of the peroxisomal fraction 
clearly greatly exceeds that of the other fractions. At larger concen- 
trations of protein the bands at 13.5 and 55 kD in the mitochondrial 
fraction are more prominent (not shown). 
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Figure 7. Immunob lo t s  o f  a 
peroxisomal  extract with anti- 
bodies  eluted (27) f rom (A) the 
13.5-kD band and  f rom (B) 
the 55-kD band  of  a perox- 
isomal  gel fract ionation trans-  
fer. In C, the unfract ionated 
an t i -SCP-2  ant ibodies  were 
used  as a control.  Note that 
each of  the specifically ab- 
sorbed and eluted ant ibodies 
in A and B reacts with both 
bands.  These  eluted antibod- 
ies were the s ame  as used  in 
the immuno labe l ing  experi-  
ments  of  Fig. 3. 

(a) binding of the sterol to cytosolic SCP-2, (b) binding of 
the sterol-bound SCP-2 to the mitochondrial outer mem- 
brane, (c) the release of the sterol to the membrane and its 
diffusion across the membrane, and then (d) the uptake of 
the sterol by SCP-2 molecules inside the mitochondrion. 

The existence of several intracellular locations of SCP-2 
raises interesting questions about the different processes re- 
quired to target SCP-2 to these different sites. In particular, 
for a protein like SCP-2 encoded by a nuclear gene and syn- 
thesized in the cytosol, two different types of signal se- 
quences are required for targeting to peroxisomes and to mi- 
tochondria. For peroxisomal targeting, the signal appears to 
be located near the carboxy terminus of the polypeptide 
chain (7); a carboxy-terminal tripeptide sequence -ser-lys- 
ieu is often, but not exclusively, associated with peroxisomal 
entry (Gould, S. J., G.-A. Keller, and S. Subramani, per- 
sonal communication). Mitochondrial targeting, on the other 
hand, is associated with one of several kinds of signal se- 
quences located at the amino terminus of the polypeptide 
chain. This signal sequence is often cleaved off the chain af- 
ter entry into the mitochondrion to form the mature protein. 
The cDNA for mouse liver SCP-2 has been produced and its 
nucleotide sequence determined (23); this work will be 
reported in detail elsewhere. It is interesting, however, to 
briefly note two features of the amino acid sequence pre- 
dicted from the cDNA: (a) the carboxy-terminal sequence is 
-ala-lys-leu, whereas the carboxy terminus of the isolated 
mature rat liver SCP-2 has been reported variously as -ala- 
lys, missing a terminal leu (28), or as ala-lys-leu (24); and 
(b) a 20-amino acid amino-terminal sequence that is missing 

from the mature protein. An -ala-lys-leu carboxy terminus 
might serve as a peroxisomal targeting sequence (7), while 
the apparent susceptibility of the terminal leu residue to pro- 
teolytic cleavage could result in eliminating that function. 
The 20-amino acid amino-terminal sequence does not re- 
semble any of the known cleavable signal sequences for the 
endoplasmic reticulum because it lacks a long internal hy- 
drophobic stretch that characterizes such signals (38). Al- 
though it does not closely resemble any known mitochondrial 
signal sequences, it might nevertheless serve as a targeting 
signal for the mitochondrial matrix since these appear to be 
quite variable (10). Therefore, even if there is only a single 
SCP-2 gene, alternative combinations of specific posttransla- 
tional processing of a single protein could generate different 
forms of SCP-2 that could be alternatively targeted to mito- 
chondria or peroxisomes or remain in the cytosol. It is not 
yet ruled out, however, that there may be more than one 
SCP-2 gene, each of which encodes an isoform of SCP-2 with 
different targeting properties. 
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