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A B S T R A C T

Purpose: To establish a radiomics model using radiomics features from different region of interests (ROI) based on
dosimetry-related regions in enhanced computed tomography (CT) simulated images to predict radiation
pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC).
Methods: Our retrospective study was conducted based on a cohort of 236 NSCLC patients (59 of them with
RP≥2) who were treated in 2 institutions and divided into the primary cohort (n = 182,46 of them with RP≥2)
and external validation cohort (n= 54,13 of them with RP≥2). Radiomic features extracted from three ROIs were
defined as the whole lung (WL), the dose volume histogram (DVH) of the lung V20 (V20_Lung) and the DVH of
the V30 of lung minus the planning target volume (PTV) (V30 Lung-PTV). A total of 107 radiomics features were
extracted from each ROIs. The U test, correlation coefficient and least absolute shrinkage and selection operator
(LASSO) were performed for features selection. Six models based on different classification algorithms were
developed to select the best radiomics model (R model).In addition, we built a dosimetry model then combined it
with the best R model to create a mixed model (R+D model) The receiver operating characteristic (ROC) curve
was delineated to assess the predictive efficacy of the models. Decision curve analysis could benefit from the
model proposals through the assessment of clinical utility.
Results: Among the three ROIs, the best R model constructed from the LightGBM algorithm demonstrated the
strongest discriminative ability in the ROI of V30 Lung-PTV. The corresponding area under the curve (AUC)
value was 0.930 (95 % confidence interval (CI): 0.829–0.941). The D model, R model and R+D model achieved
AUC values of 0.798 (95 %CI: 0.732–0.865), 0.930 (95 %CI: 0.829–0.941) and 0.940 (95 %CI: 0.906–0.974) in
primary cohort, and in external validation cohort, the AUC values were 0.793 (95 %CI:0.637–0.949), 0.887 (95
%CI:0.810–0.993), 0.951 (95CI%:0.891–1.000). Decision curve demonstrate that R+D model could benefit for
patients through the assessment of clinical utility.
Conclusion: The radiomics model was able to predict the acute RP more effectively in comparison with the
traditional dosimetry model. Especially the radiomics model based on the V30 Lung-PTV region was able to
achieve a higher accuracy when compared to the other regions.

Introduction

Lung cancer is the leading cause of cancer-related death in the world,

with an estimated 1.6 million deaths annually [1]. About 85 % of the
lung cancer patients have a group of histological subtypes collectively
known as non-small cell lung cancer (NSCLC) [2]. Chemoradiotherapy
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has been a standard treatment approach playing an important role in the
management of NSCLC [3]. However, during radiotherapy the healthy
lungs were inevitably irradiated and radiation pneumonitis (RP) could
be developed in consequence [4]. In thoracic chemoradiotherapy, the
side effects of RP significantly reduced the effectiveness of treatment
including a negative impact on quality of life, and in severe cases, could
lead to death [5,6]. Therefore, the development of easy-to-use tools for
the timely and effective detection of RP in patients with NSCLC after
chemoradiotherapy could provide an optimal clinical decision making
and the best personalized treatment option.

Radiomics, an emerging technology, has undergone rapid develop-
ment in recent years. It is concerned with converting medical images
into highly-specific high-throughout statistical features, known as
radiomics feature, can provide additional information for therapeutic
strategies [7,8]. Recent studies suggest that radiomics features is clini-
cally useful in predicting RP [9–11]. Nevertheless, studies have shown
that different regions of interest (ROIs) may have different roles in the
prediction of RP. Zhen Zhang et al has been emphasised that the
radiomics features based on whole lung, in combination with clinical
and dosimetric risk factors, can be effective in predicting RP. The areas
under the curve (AUC) were 0.793,0.774,0.855 in the training, boot-
strapping and external test sets [9]. In other study, it was reported that
the radiomics features of PTV-GTV(exclude gross tumor volume from
planning tumor volume) and TL-PTV(exclude planning tumor volume
from the total bilateral lung) outperformed those of the other ROIs. The
accuracy were 76.7 % and 76.7 % [10]. Although the ability of different
ROIs to predict RP has been demonstrated, however, since dosimetry has
been shown to correlate with development of RP, we should focus not
only on tumor-related regions but also on dosimetry-related regions.
According to the quantitative analyses of normal tissue effects in the
clinic(QUANTEC), on three-dimensional conformal radiation therapy
(3D-CRT), the cutoff values of lung dose constraints to be the bilateral
lung volume exceeding 20 Gy(V20) ≤ 35 % and mean lung dose(MLD)
≤ 20 Gy [12]. However, as intensity modulated radiotherapy(IMRT) and
volumetric modulated arc therapy(VMAT) become more and more
mature, Meng et al proposed that the bilateral lung volume outside
planning tumor volune(PTV) exceeding 30 Gy (V30-PTV) is superior to
predict RP [13].

In this study, we first constructed a radiomics model (R model) for
the prediction of acute RP based on radiomics features within three ROIs
(whole lung, V20_Lung, and V30 Lung-PTV) in enhanced CT-simulation
image. We employed machine learning algorithms to determine the best
ROI and features to enhance prediction accuracy, and computed their
respective proportions in the prediction model. Subsequently, we pre-
sent a dosimetry model (D model) for predicting RP based on conven-
tional dosimetry. Consequently, a dosimetry-radiomics model (R+D
model) was constructed to further improve the accuracy of predicting
RP. In the era of precision medicine, the use of these convenient and
clinically applicable tools will allow more rational and timely adoption
of proactively tailored follow-up strategies and interventions for NSCLC
patients undergoing chemoradiotherapy with different RP risk levels.

Methods and materials

Patient recruiting criteria

This study was approved by the Institutional Review Board.From
January 2014 to December 2021, A total of 182 NSCLC patients treated
in our institution were retrospectively recruited as the primary cohort to
develop models to predict RP. Meanwhile, a cohort of 54 NSCLC patients
treated in another institution were enrolled for external validation of the
propose models. The patient eligibility criteria were as the follows: 1)
confirmed pathology of non-small cell lung cancer with stage III; 2) first
time received thoracic chemoradiotherapy; 3) The radiation schedule
was 64 to 66 Gy with 2.14 to 2.20 Gy per fraction to planning gross
tumor volume (PGTV) and 53–54 Gy to planning treatment volume

(PTV) in 30 fractions. If the dose to organs at risk (OAR) was above the
limits, a total of 54 Gy to PGTV and 45 Gy to PTV in 25 fractions could be
given instead; 4) followed up for at least three months; The main
exclusion criteria were: 1) other pathological types of lung cancer; 2)
incomplete or non-standard chemoradiotherapy treatment; 3) loss of
follow-up data;4) patients treated with immunotherapy. The overall
pipeline of the study was shown as Fig. 1.

Clinical data and dosimetry parameters

The clinical data were collected from the electronic medical record
system including age, gender, smoke-state, pathology and chronic
obstructive pulmonary disease (COPD). All the patients underwent a
free-breathing scan with enhanced contrast for treatment planning. The
dosimetry parameters were analyzed from plan DVH in treatment
planning system (TPS). The lung V20, the V30 of lung minus PTV and
MLD were extracted to build dosimetry model. It’s worth mentioning
that Meng et al. demonstrated V30 lung-PTV was superior to predict RP
than other parameters for lung cancer patients treated using IMRT
technique [13]. That’s why in this study, we also included V30 Lung –
PTV in the dosimetry study.

Radiomic feature extraction

The process of radiomic features extraction was described as follows
and more details could be found in Method 1 of the supplementary
material. As mentioned earlier, the ROIs were defined as the whole lung
(WL)), V20_Lung, V30 Lung-PTV, a example was given in Fig. 1 of
Supplementary material. A total of 107 radiomic features (RFs) were
extracted for each ROI in the Pyradiomics package (version3.0.1, Python
version 3.7.6) [14], following the Image Biomarker Standardization
Initiative guidelines [15]. The methods used for RFs extraction included
U test, correlation coefficient and least absolute shrinkage and selection
operator (LASSO). More details on the RFs extraction could be found in
Method 2 of the Supplementary material.

Models construction and validation

Once, the RFs were extracted, six machine leaning approaches were
modeled in different ROIs to predict the occurrence of RR, including
Support Vector Machines (SVM), Logistic Regression (LR), Light
Gradient Boosting Machine (Light GBM), Naïve Bayes, Adaptive Boost-
ing (AdaBoosting) and Multi-Layer Perception (MLP) neutral network.
The details of the algorithms could be found in Method 3 of the sup-
plementary material. For each ROI, six models were built with a su-
pervised task based on the RP and non-RP label. The RP label was
defined as graded two or higher RP and non-RP label was defined as no
RP or grade one RP. The grading of RP was based on the National Cancer
Institute’s Common Terminology Criteria for Adverse Events (version
4.03). Models were built by each algorithm in the primary cohort of
patient and validated by the external cohort of patients. The goal was to
find the best combination of machine learning algorithm and ROI with
the most powerful prediction capability. Once the combination was
determined, it would be further combined with the dosimetry model to
build a hybrid model (R+D model). The receiver operating character-
istic (ROC) curve and decision curve were adopted to visually demon-
strate the predictive ability of the models. The diagnostic indices of the
WH, V20_Lung, V30 Lung-PTV radiomics models including area under
the ROC curve (AUC, with the 95% CI), specificity, sensitivity, accuracy,
positive predictive value (PPV) and the negative predictive value (NPV)
were also calculated. The radiomic models were evaluated in the scikit-
learning package (version 0.18 with Python version 3.7.6).

Statistical analysis

The baseline patient data were analyzed in the statistical packages of
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SPSS (version 23.0) and Python (version 3.7.6). The continuous vari-
ables were expressed as mean ± standard deviation (std) and the Stu-
dent’s t-test or Mann-Whitney U test was used to compare their inter-
group differences. The categorical variables were expressed as fre-
quencies and percentages and the Chi-squared test was used to compare
their difference. A two-tailed p test was used for statistical analysis and a
p value of < 0.05 indicated statistical significance. The DeLong testing
method was used to compare the AUCs in differences models.

Results

Baseline patient characteristics

During follow-up, 46 (25.3 %) patients in the primary cohort and 13
(24.1 %) patients in the validation cohort were diagnosed with RP. In
the primary cohort, the gender, PTV volume, V30 Lung-PTV and MLD
have the significant differences between the RP and non-RP patient
groups (p values were 0.032,0.026,0.001). No significant differences
were observed in the clinical and dosimetric parameters between the RP

and non-RP groups in the validation cohort. The detailed characteristics
of the study patients were summarized in Table 1.

Feature extraction and selection

A total of 107 radiomics features were extracted for each ROI. The
Mann-Whitney U test showed that 9 RFs in WL, 20 RFs in V20_Lung and
12 RFs in V30 Lung-PTV were significantly associated with RP and Non-
RP groups. The Spearman’s correlation coefficient method was used to
further remove the linear correlation between the RFs and to reduce the
dimension of the RFs. In consequence, the numbers RFs were reduced to
6 in WL, 11 in V20_Lung and 9 in V30 Lung-PTV. The LASSO algorithm
was used to determine the final optimal numbers of RFs for each ROI (4
in WL, 6 in V20_Lung and 5 in V30 Lung-PTV). The features selection
process by LASSO were showed in Fig. 2 (a, b, c). All the selected RFs
demonstrated significant differences (p< 0.05) using theMann-Whitney
U test between the RP and Non-RP groups in the primary cohort (Sup-
plement Table 1). The Spearman correlation coefficient map showed
that all the selected RFs were not correlated to the other features (the

Fig. 1. The flowchart of this study.
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correlation coefficient values was ± 0.9 (Fig. 2 in Supplementary ma-
terial) [16].

Model performance

For each ROI, six robust supervised models were developed to pre-
dict RP and their performances were compared to determine the most
optimal model. The prediction performance was quantified as AUC and
summarized for all the models in Fig. 3. The other diagnostic indices of
the models were provided in the Table 2 in the Supplementary material.
We found the model based on the LightGBM algorithm outperformed the
other models in all ROIs. In the primary cohort, the correspondingmodel
yielded AUCs of 0.898 (95 %CI: 0.849–0.946), 0.914 (95 %CI:

0.866–0.962) and 0.930 (95 %CI:0.889–0.972) and in the external
validation cohort, the model yielded AUCs of 0.846 (95 %CI:
0.711–0.982), 0.835 (95 %CI: 0.702–0.968), 0.887 (95 %CI:
0.799–0.976) in WL, V20_Lung and V30 Lung-PTV, respectively.

For dosimetry model, the dosimetry parameters were comprised of
V20 of the Lung, MLD and V30 of the Lung-PTV. The AUCs of the
dosimetry model were 0.798 (95 %CI: 0.732–0.865) in the primary
cohort and 0.793 (95 %CI: 0.637–0.949) in the external validation
cohort, both of which were lower than the optimal radiomics model (the
ROCs was shown in Fig. 4(a)).

Since the LightGBM algorithm showed the best predictive perfor-
mance, the same algorithm was associated with the dosimetry model to
predict RP (R+D model). It turned out that the R+D model

Table 1
Patients characteristics in primary cohort and external validation cohort.

Characteristics Primary cohort (N=182) Validation cohort (N=54) P
Non-RP2 (n = 136) RP2 (N=46) P Non-RP2 (N=41) RP2 (N=13) P

Age (Year) 0.462 0.555 0.163
Mean ± SD 63.5 ± 8.3 64.6 ± 8.2 66.2 ± 7.1 64.6 ± 8.6
Gender 0.032 1.000 1.000
Female 13(9.6 %) 10(21.7 %) 5(12.2 %) 2(15.4 %)
Male 123(90.4 %) 36(78.3 %) 36(87.8 %) 11(84.6 %)
Smoke state 0.199 0.961 0.308
Non-smoke 34(25.0 %) 16(34.8 %) 15(36.6 %) 4(30.8 %)
Smoke 102(75.0 %) 30(65.2 %) 26(63.4 %) 9(69.2 %)
Pathology 0.502 0.468 0.390
Squamous 68(50.0 %) 23(50.0 %) 13(31.7 %) 3(23.1 %)
Adenocarci-noma 41(30.1 %) 17(37.0 %) 26(63.4 %) 8(61.5 %)
Other 27(19.9 %) 6(13.0 %) 2(4.9 %) 2(15.4 %)
PTV_volume (cc) 0.026 0.448 0<.001
Mean ± SD 546.9 ± 285.5 451.9 ± 211.5 357.3 ± 195.0 403.0 ± 162.3
V30-PTV (%) 0.001 0.429 0.117
Mean ± SD 11.6 ± 2.3 12.9 ± 2.4 11.8 ± 3.1 12.5 ± 2.2
V5(%) 0.989 0.367 0.253
Mean ± SD 48.0 ± 10.5 48.1 ± 13.2 40.5 ± 12.4 44.0 ± 11.1
V10(%) 0.558 0.384 0.175
Mean ± SD 34.8 ± 7.1 35.7 ± 9.2 30.4 ± 8.7 32.8 ± 7.2
V20(%) 0.262 0.318 0.138
Mean ± SD 24.30 ± 3.5 22.30 ± 3.7 20.4 ± 4.9 21.9 ± 3.3
V30(%) 0.347 0.634 0.136
Mean ± SD 116.3 ± 3.0 16.8 ± 2.9 14.9 ± 4.0 15.5 ± 2.5
V40(%) 0.198 0.906 0.535
Mean ± SD 11.0 ± 3.6 11.8 ± 3.2 10.9 ± 3.6 11.0 ± 2.5
V50(%) 0.163 0.831 0.104
Mean ± SD 5.5 ± 3.6 6.4 ± 3.5 6.5 ± 3.2 6.7 ± 2.3
MLD(cGy) 0.002 0.434 0<.001
Mean ± SD 295.5 ± 524.2 621.8 ± 633.4 1152.8 ± 302.9 1224.0 ± 206.5
Lung_volume (cc) 0.820 0.865 0.567
Mean ± SD 3515.3 ± 957.9 3553.3 ± 1037.2 3505.7 ± 1068.5 3449.3 ± 920.4
COPD 116(85.3 %) 40(87.0 %) 0.781 36(87.8 %) 11(87.0 %) 1.000 0.806

20(14.7 %) 6(13.0 %) 5(12.2 %) 2()13.0 %)

Fig. 2. Texture features were selected using the least absolute shrinkage and selection operator (LASSO) regression model. A 5-fold cross validation was used to
select the best parameter (lambda) in the LASSO model.
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outperformed R model based on V30 Lung-PTV and dosimetry model for
prediction of RP (Fig. 4 (b) and Table 2). The Delong test showed that
the R+D model improved the model performance to predict RP (p <

0.05). The sensitivities of R+D model also outperformed the individual
model. The recall of R+D model were also high enough to identify the
RP or non-RP patients. We assigned the ranking of significance for each
feature in the model and the results were shown in the Fig. 3 of sup-
plementary material. Once the model has been built, the decision curve
analysis was used to determine the range of model scores at which pa-
tients could benefit from the proposed model through the assessment of
clinical utility. For the R+D model, when the threshold was set at
0.19–0.81, their clinical net benefits were higher than 0 in the external
validation cohort. Fig. 5(a) showed the decision curves of the R+D
model. The confusion matrix of the model also showed that R+D model

accurately justified whether patients had predicted RP or not (Fig. 5(b)).
Moreover, we also provide the calibration curves of the predictive
model, illustrating the R+D model’s potential use at primary and vali-
dation cohorts (Fig. 5(c)). To illustrate the feasibility of our best model,
we provide two typical patients in the Fig. 4 of supplementary material.

Discussion

The classical definition of dose limits for peripheral OARs was more
adapted to the tumor patients treated with radiotherapy alone. How-
ever, more and more combined treatment modes are practically applied
in a clinic, meaning lung cancer patients may be bound to receive
chemotherapy or immunotherapy or targeted therapy during, before, or
following radiotherapy. These suggest that it is urgent to explore new

Fig. 3. ROC of the models built using different classification algorithms in the primary cohort and validation cohort.

Table 2
Performance of different models for predicting TP.

Model name cohort AUC (95 %CI) ACC SEN SPE PPV NPV Precision Recall F1

Dosimetry model Primary 0.798
(0.732–0.865)

0.753 0.739 0.757 0.507 0.896 0.507 0.739 0.602

validation 0.793
(0.637–0.949)

0.778 0.692 0.805 0.529 0.892 0.529 0.692 0.600

Radiomics model Primary 0.930
(0.829–0.941)

0.868 0.717 0.919 0.750 0.906 0.750 0.717 0.733

validation 0.887
(0.810–0.993)

0.852 0.923 0.829 0.632 0.971 0.632 0.923 0.750

D+R model Primary 0.940
(0.906–0.974)

0.879 0.826 0.897 0.731 0.938 0.731 0.826 0.776

validation 0.951
(0.891–1.000)

0.907 0.923 0.902 0.750 0.974 0.750 0.923 0.828
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risk factors of dose limits or dose area, and it is preferred to establish a
predicted model including the more sensitive areas of the peripheral
normal lung and the specific volume dose rather than the traditional
focused volume dose. As per our previous report [13], V30 should be
more relevant to RP than V20. So, we further conducted this study to
find the more sensitive region for evaluating V30-related risk of RP. This
study showed that the ROI of V30 Lung-PTV is recommended to be
preferentially concerned in clinical applications. Moreover, the estab-
lished radiomics model in our study was identified to predict acute RP
more effectively than the traditional dosimetry model, especially the
radiomics model based on the V30 Lung-PTV region. Therefore, we
suggested promoting the clinical application of this radiomics model
based on the V30 Lung-PTV region. However, for the high-risk patients
who are defined by our predictive model, the future is needed to design a
series of prospective studies to explore the optimum protective strategy
to decrease RP incidence, such as further optimizing the plan, amifostine
application, adaptive radiation therapy, a new mode of dose fraction-
ation, pulmonary function monitoring, and so on.

Non-invasive medical images are economical and frequently utilized
in clinical practice. Radiomics is an advanced and automated image
analysis technique that overcomes the limitations of manual interpre-
tation by the human eye [17,18]. The application value of radiomics in
diagnostic staging [19,20], treatment response [21–23] and the moni-
toring of prognosis [24,25], which has been already explored. The
emergence and development of radiomics as a major breakthrough that
challenges traditional measurements and assessment criteria with
outstanding power has been supported by several studies. Further re-
searches found that the extraction of medical image data to characterize
normal tissue regions using radiomics approach could lead to clinically
relevant improvements in the prediction of treatment-related toxicities
such as acute RP. However, few studies have focused on this field. Our
study was conducted using traditional dosimetry to identify normal
tissue regions, which modelling done on various regions. The research
addresses this gap and provides new insights into identifying acute RP,
distinct from traditional dosimetry and clinical methods.

The primary innovation in this paper is the usage of conventional
dosimetry to determine the ROIs for radiomics research. In the era of 3D-
CRT, we focus on dosimetric indicators such as V20 and MLD of the
whole lung [12,26–28], whereas in the IMRT era, we need to focus on
another dosimetric indicator,namely V30-PTV [13]. Several previous
studies have indirectly corroborated some of what we have found
[10,11,29]. Wei Jiang et al reported that the prediction of symptomatic

RP can be improved by using a machine learning model that uses
dosimetric factors and radimics features in different ROIs from planning
computed tomography images [10]. Although the power of the radio-
mics approach to assess symptomatic RP was increased in this study,
there still had significant limitations. One of the disadvantages is that
the delineation of the ROIs in this study did not take into account
delineation by dose distribution. In addition, this study only retrospec-
tively collected 79 patients with lung cancer, the sample size is too small
and there is no external cohort for validation of the model’s robustness
and generalizability. Nevertheless, our study was able to circumvent
these limitations. As the development of acute RP is historically based on
the volume of the dose received by the whole lung, we separated the
various ROIs according to dosimetry parameters that are currently
relevant in clinical for radiomics analysis. Our research demonstrated
that radiomics models, divided into different ROIs based on dosimetry
parameters, proved to be a more effective tool for discriminating acute
RP compared to dosimetry models. In particular, the radiomics model
based on the ROI of V30 Lung-PTV achieves the best predictive perfor-
mance and provides a basis for the V30-PTV dosimetry parameter to
better predict RP in our previous study. Our sample data, on the other
hand, includes external validation data that provides evidence for the
stability of the model. The DCA and calibration curves demonstrate the
potential usefulness of the model presented in our study for clinical
decision making. For example, if the personal threshold probability of a
patients is 40 %, then the net benefit is 0.10 when using the R+D model
to make the decision of whether acute RP occurs after treatment.

The majority of the previous studies that investigate RP employed
only one machine learning algorithm. Wei Jiang et al reported that a
mixed model combining clinical, dosimetry parameters and radiomics
features was created using a support vector machine algorithm to
discriminate RP [10]. The results demonstrate that the mixed model has
an AUC value of 0.94 (95CI:0.85–1), and its model discriminations were
significantly higher than those of the individual models, which includes
clinical model(AUC[95 %CI]:0.73[0.54–0.92]), dosimetry model(AUC
[95 %CI]:0.53[0.31–0.75]), radiomics model(AUC[95 %CI]:0.82
[0.65–0.99]). Anthony et al showed that a logistic regression classifier
for radiomics model, which combines lung texture features from CTwith
a normalised uptake value from 18F-fluorodeoxyglucose positron
emission tomography, could be used to predict RP in patients with
esophageal cancer after radiation therapy [30]. However, Differences in
the algorithmsmay introduce some bias into the model. To ensure model
accuracy and stability, our study employs six machine learning

Fig. 4. (a) ROC of D model in primary cohort and validation cohort; (b) ROC of R+D model in primary cohort and validation cohort.
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Fig. 5. (a):DCA for R+D model in primary cohort and validation cohort. The y-axis means the net benefit.The blue line represents the R+D model. The thick solid
black line represents the assumption that all patients have acute RP after treatment and the black dotted line represents the assumption that no patients have acute RP
after treatment. (b): Confusion matrix for R+D model in primary cohort and validation cohort. A confusion matrix is a table that is often used to describe the
classification model on a set of data for which the true values are known. In our study, the classifier made a total 182 predictions in primary cohort, out of those 182
cases, the classifier predicted 123 patients may not have acute RP and 59 patients may have acute RP after treatment. In reality,136 patients in the cohort do not have
acute RP and 46 patients have acute RP after treatment.(c):Calibration curves of the R+D model in primary cohort and validation cohort. Calibration curve is a visual
tool to assess the agreement between predictions and acute outcome in different percentiles of the predicted values. The solid black line represents the reference line
where a model would like, the blue line corrects for any bias in the model, and the red line represents the performance of the model.

L. Hou et al.



Clinical and Translational Radiation Oncology 48 (2024) 100828

8

algorithms to build the model. This approach reduces the model’s
instability caused by the singularity of algorithms and helps identify the
optimal algorithm to build a reliable and stable model. Our results
released that LightGBM models produce optimal discriminative perfor-
mance compared to other algorithms for both the primary and external
validation sets. The reason may be explained that LightGBM utilizes a
Leaf-wise growth strategy, whereby it selects one leaf from all existing
leaves that offers the largest splitting gain, splits it, and repeats this
process [31]. This approach offers the benefit of reducing the error and
providing better accuracy with the same number of splits. However,
Leaf-wise might grow a deeper decision tree and lead to overfitting. To
prevent overfitting while ensuring high efficiency, Light GBM sets a
maximum depth limit atop of the Leaf-wise strategy.

This study has several limitations. First, the heterogeneity of the
clinical data or dosimetry parameters may be biased as a real-world
retrospective study of lung toxicity. Second, the occurrence of RP is
objectively low. In our study, its incidence is reported as 25.3 % in
primary cohort and 24.1 % in external validation cohort, respectively.
This low incidence results in an uneven dataset when modelled. In order
to address the issue of category imbalance, our study used the Synthetic
Minority Over-sampling Technique(SMOTE) algorithm [32,33]. SMOTE
operates by selecting examples that are close together in feature space,
drawing a line between these examples in feature space, and then
generating new examples at points along that line. Random under-
sampling was initially employed to reduce the number of samples in
the majority class. This was followed by the use of SMOTE to oversample
the minority class, in order to equalize the class distribution. The
effectiveness of this approach stems from the creation of new synthetic
samples in the minority class that are closely aligned with existing mi-
nority samples in the feature space. Third, this study only examined
dosimetry variables and CT-based radiomic characteristics; however, we
did not observe the biological influence (such as genetic phenotypes and
inflammatory cytokines) and clinical characteristics, although it has
been suggested to be significant on RP occurrence in previous studies.
Future research could incorporate additional data into the model to
assess whether there is potential to improve the accuracy of the pre-
dictions. Finally, more work is required to enhance the comprehensi-
bility of our radiomics model.
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