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Gene correlation network analysis to identify 
regulatory factors in sciatic nerve injury
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Abstract 

Background:  Sciatic nerve injury (SNI), which frequently occurs under the traumatic hip and hip fracture dislocation, 
induces serious complications such as motor and sensory loss, muscle atrophy, or even disabling. The present work 
aimed to determine the regulating factors and gene network related to the SNI pathology.

Methods:  Sciatic nerve injury dataset GSE18803 with 24 samples was divided into adult group and neonate group. 
Weighted gene co-expression network analysis (WGCNA) was carried out to identify modules associated with SNI 
in the two groups. Moreover, differentially expressed genes (DEGs) were determined from every group, separately. 
Subsequently, co-expression network and protein–protein interaction (PPI) network were overlapped to identify hub 
genes, while functional enrichment and Reactome analysis were used for a comprehensive analysis of potential path-
ways. GSE30165 was used as the test set for investigating the hub gene involvement within SNI. Gene set enrichment 
analysis (GSEA) was performed separately using difference between samples and gene expression level as phenotype 
label to further prove SNI-related signaling pathways. In addition, immune infiltration analysis was accomplished by 
CIBERSORT. Finally, Drug–Gene Interaction database (DGIdb) was employed for predicting the possible therapeutic 
agents.

Results:  14 SNI status modules and 97 DEGs were identified in adult group, while 15 modules and 21 DEGs in neo-
nate group. A total of 12 hub genes was overlapping from co-expression and PPI network. After the results from both 
test and training sets were overlapped, we verified that the ten real hub genes showed remarkably up-regulation 
within SNI. According to functional enrichment of hub genes, the above genes participated in the immune effector 
process, inflammatory responses, the antigen processing and presentation, and the phagocytosis. GSEA also sup-
ported that gene sets with the highest significance were mostly related to the cytokine–cytokine receptor interaction. 
Analysis of hub genes possible related signaling pathways using gene expression level as phenotype label revealed 
an enrichment involved in Lysosome, Chemokine signaling pathway, and Neurotrophin signaling pathway. Immune 
infiltration analysis showed that Macrophages M2 and Regulatory T cells may participate in the development of SNI. 
At last, 25 drugs were screened from DGIdb to improve SNI treatment.

Conclusions:  The gene expression network is determined in the present work based on the related regulating fac-
tors within SNI, which sheds more light on SNI pathology and offers the possible biomarkers and therapeutic targets 
in subsequent research.

Keywords:  Sciatic nerve injury, Weighted gene co-expression network analysis, Gene set enrichment analysis, 
Protein–protein interaction, Immune infiltration, Potential therapeutic agents
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Introduction
Sciatic nerve injuries (SNI) are one of common periph-
eral nerve injury (PNI), which often cause severe disabil-
ity, decreased life quality, as well as tremendous social 
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and economic burdens [1]. Sciatic nerve injuries of trau-
matic and iatrogenic etiologies can lead to dramatic neu-
rological functional loss [2–4]. However, even though the 
best medical treatment is applied, the neurological func-
tion recovery is difficult to predict. Most existing studies 
have investigated the morphologies of injury and regen-
eration of peripheral nerves [5–7]. Nonetheless, there 
are still numerous barriers to be solved to attain nerve 
injury recovery, including target innervation specificity, 
low regeneration rate, target end-organ degeneration and 
segmental nerve defect following the extended denerva-
tion period. Consequently, to better promote the preven-
tion and treatment of SNI, it is necessary to shed more 
lights on potential molecular mechanisms that regulate 
peripheral nerve regeneration at a broader level.

Previous research has used transcriptome analysis 
in rats to report that dynamic alterations in core genes 
and biological processes may take place within sciatic 
nerve stumps in the process of nerve regeneration [8, 
9]. Another earlier study has used gene expression pro-
file to explore potential hub genes and biological path-
ways related to the pathogenesis of SNI [10]. However, 
approaches adopted in such articles usually examine indi-
vidual genes, whereas genes exert their functions through 
the co-expression gene network showing consistent bio-
logical functions in  vivo. SNI is a complex pathological 
process, which may probably cause by multiple genes. 
Therefore, measuring the impacts of multiple variants 
genes together should be beneficial for identifying causal 
factors for diseases. Additionally, PNI exhibits stereo-
typic histopathological reactions, which indicate that the 
harmonious gene expression procedure is activated [11]. 
WGCNA is a new tool for analyzing the gene expres-
sion signature of various samples [12]. Unlike previous 
screening out DEGs, WGCNA clusters highly relevant 
genes into one module and relates it to clinical features, 
which may be more conductive to identify diagnostic 
markers and therapeutic targets [13]. To date, WGCNA 
has been extensively utilized in genomic research, such as 
glioblastoma [14], Kawasaki disease [15], schizophrenia 
spectrum [16], and so on. It is speculated that identifica-
tion of such co-expression patterns can shed more lights 
on the disease-related biological pathways. Consequently, 
it may be of greater importance to analyze the changes in 
gene co-expression network during the injury and regen-
eration of peripheral nerves, from which to examine the 
molecular foundation for such morphological changes as 
well as modulation of local microenvironment.

In the present study, weighted gene co-expression 
network analysis (WGCNA) was employed to analyze 
the hub genes and pathways involved in SNI pathogenic 
mechanism in rats of different ages. Then, the expres-
sion levels of core genes were detected using a training 

set and a test set, respectively. Subsequently, Reactome, 
Gene Ontology (GO) functional annotations, together 
with Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment were adopted for investigat-
ing molecular mechanisms underlying SNI. To further 
prove SNI-related signaling pathways, GSEA was per-
formed separately using difference between samples and 
gene expression level as phenotype label. Furthermore, 
immune infiltration analysis was carried out using CIB-
ERSORT convolution algorithm. Finally, potential drugs 
or molecular compounds were predicted for improv-
ing SNI treatment by DGIdb database. These findings 
will help to identify the novel significant biomarkers to 
explore the mechanism underlying SNI development, 
thereby facilitating SNI diagnosis and treatment. The 
flow chart of the study design is presented in Fig. 1.

Methods
Search strategy and eligibility criteria
In the present study, we obtained the mRNA expression 
data of sciatic nerve injury (SNI) based on GEO data-
base by use of keywords “sciatic nerve injury” in NCBI 
database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/) until June 
10, 2021. The search strategy of the study was designed 
as follows: (a) datasets of gene expression profiles con-
cerning the use of the microarray chip technique; (b) 
studies that compared the expression data in SNI sam-
ples versus NON-SNI samples. Studies not satisfying the 
above-mentioned criteria were eliminated. Two review-
ers searched the database independently.

Establishment of co‑expression network and analysis 
of module functions
Firstly, DEGs expression profiles were examined for 
screening the appropriate genes and samples. Secondly, 
the R language ‘WGCNA’ package was employed to 
establish the co-expression network of DEGs [17, 18]. 
Afterward, each pair-wise gene was functioned using 
Pearson’s correlation matrix. Thirdly, we adopted the 
power function amn = |cmn|β (amn represents the adja-
cency of gene m relative to gene n, whereas cmn stands 
for Pearson correlation of gene m with gene n) to cre-
ate the weighted adjacency matrix, while β was the soft 
threshold factor adopted to stress the strong associations 
across genes and to penalize those weak relationships. 
Fourth, topological overlap matrix (TOM) adjacency 
was converted for measuring the gene network con-
nectivity deemed to be the total value of the adjacency 
to the remaining genes in generating the network. The 
mean linkage hierarchical clustering was created by the 
dissimilarity measure based on TOM, and the minimal 
size (gene group) was set at 50 for gene dendrogram. 
Thereafter, genes that had akin expression patterns were 
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clustered as the same gene module. Lastly, the module 
eigengene dissimilarity was determined. Then, such gene 
modules were performed functional enrichment analy-
ses to identify the SNI-related modules. The above gene 
modules were conducted functional enrichment analysis 
for identifying related modules affecting SNI in rats of 
different ages.

Identification of SNI status hub module
For identifying modules showing significant associations 
with illness state traits (SNI vs. NON-SNI), MEs (which 
represent first-principle component in one module) 
[12] were associated with the external traits to identify 
correlations with the highest significance. In addition, 
Gene significance (GS) determines the absolute value 
associations between genes and external characteristics. 

Meanwhile, module membership (MM) suggests the 
association of gene expression profiles with MEs. In this 
study, genes that showed the greatest GS and MM values 
in the interested modules were identified as the natural 
candidates in later analysis [19–22].

Hub genes validation
A hub gene is substantially related to other genes within 
the module, which is suggested in previous studies to dis-
play functional significance. Firstly, this study screened 
hub genes within the co-expression network from the 
SNI phenotype-related module. Besides, we imported 
DEGs into the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) (https://​string-​db.​org/) [23], 
and the confidence > 0.4 was chosen for creating the pro-
tein–protein interaction (PPI) network. Later, Cytoscape 

Fig. 1  Study flow diagram

https://string-db.org/
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(www.​cytos​cape.​org/) [24] was carried out for PPI net-
work visualization. Subsequently, the Cytoscape plug-in 
CytoHubba was adopted for calculating every protein 
node degree. Nodes that had great connectivity degree 
were more important to maintain the network stability. 
Any gene within PPI network with the connectivity of ≥ 6 
(node/edge) was screened to be the hub gene. Later, we 
deemed those shared PPI network and co-expressed hub 
genes as the “real” hub genes, which were selected for 
subsequent analysis. The Venn diagram was constructed 
using Venny 2.1.0 (https://​bioin​fogp.​cnb.​csic.​es/​tools/​
venny/​index.​html) for visualizing those common hub 
genes in PPI and co-expression networks between adult 
group and neonate group.

Functional enrichment analyses of hub genes
GO analysis has been developed as an efficient way to 
carry out functional enrichment on a large scale. Besides, 
KEGG is also an extensively applied database that pre-
serves excessive data on drugs, chemical substances, dis-
eases, biological processes, and signaling pathways. In 
the current work, the Metascape software (http://​metas​
cape.​org) [25] was employed for GO and KEGG analy-
ses on the DEGs. P < 0.05 indicated statistical signifi-
cance. Besides, Reactome knowledgebase (https://​react​
ome.​org/) [26–28] offers the detailed molecular data 
for signaling, DNA replication, transport, metabolism, 
along with additional cell processes as the well-organized 
molecular transformation network, and it represents the 
modified version for the classical metabolic map within 
the single consistent data model. In the present study, 
Reactome knowledgebase (https://​react​ome.​org/) [26–
28] was employed to identify 10 most significant biologi-
cal functions.

Gene set enrichment analysis
GSEA (https://​softw​are.​broad​insti​tute.​org/​gsea/​index.​
jsp) [29] has been developed as a computation approach 
on the basis of genesets (namely, gene groups with shared 
biological functions). GSEA was adopt to investigate the 
enrichment of previously determined biological pro-
cesses within the DEG-derived gene rank. In line with 
gene expression levels, samples from both adult group 
and neonate group were separately classified as SNI sam-
ples and NON-SNI samples. To further prove the role of 
10 hub genes in the development of SNI, the phenotype 
label was set to the expression level for each of hub genes. 
Metrics for ranking hub genes were calculated using 
Pearson’s correlation. Differential expression enrich-
ment analysis of 10 hub genes was performed using 
KEGG gene sets biological process database (c2.KEGG.
v4.0) from Molecular Signatures Database (MSigDB) 
(http://​www.​broad.​mit.​edu/​gsea/​msigdb/​index.​jsp) as a 

reference. Terms enriched in each gene were recognized 
with the thresholds for nominal P < 0.05 and false discov-
ery rate (FDR) q < 0.25.

Immune infiltration analysis
The CIBERSORT deconvolution algorithm was used to 
analyze the difference in immune infiltration between 
SNI and NON-SNI samples in 22 types of immune cells 
and immune-associated features [30]. The overlapped 
items that possessed the same tendency were regarded 
as the changes in immune characteristic. In order to fur-
ther explore the effect of immune infiltration of SNI in 22 
immune cells, single-sample gene set enrichment analy-
sis (ssGSEA) was carried out in GSE18803 datasets [31]. 
P < 0.05 was considered as statistically significant.

Identification of the potential drugs
Drug Gene Interaction Database (DGIdb) (version 4.2.0, 
https://​www.​dgidb.​org) [32], one of the openly accessible 
database, covers information on drug–gene interaction, 
drug-sensitive and targeted genome. In this study, DGIdb 
v4.2.0 was searched for predicting the possible hub gene-
interacting molecule compounds or drugs and visual-
izing the drug–gene interaction network through using 
Cytoscape.

Results
Included study characteristics
GSE18803 and GSE30165 microarray datasets were 
obtained from GEO database [9, 33]. Of them, GSE30165 
dataset contained 24 samples (6 sham operation and 6 
SNI samples from both neonate group and adult group) 
was obtained from the platform of GPL7294 Agi-
lent-014879 Whole Rat Genome Microarray 4x44  K 
G4131F, whereas the GSE18803 contained microarray 
data acquired from ipsilateral dorsal horns at 7 days fol-
lowing sham operation or SNI surgery in both groups 
(12 from 10-day-old (neonate) group and 12 from 
8–12-week-old (adult) group) based on platform GPL341 
[RAE230A] Affymetrix Rat Expression 230A Array. In 
the present study, GSE18803 dataset was utilized to 
construct co-expression and PPI networks in every age 
group for identifying “real” hub genes and pathways. The 
GSE30165 microarray data was obtained from proxi-
mal sciatic nerve samples (0.5 cm) and L4–6 dorsal root 
ganglia samples at 0, 1, 4, 7 and 14 days following sciatic 
nerve removal. The GSE30165 dataset was used as the 
test set for result validation in the current study.

DEGs identification
We utilized R language “limma” package to identify DEGs 
within the GSE18803 microarrays. DEGs were identified 
with the two criterions: |log2fold change (FC)|  ≥ 1 and 
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the P value < 0.05. In adult group, we identified altogether 
97 DEGs within SNI samples relative to normal samples, 
among which, 96 showed up-regulation while 1 showed 
down-regulation. And in neonate group, 21 DEGs were 
discovered to be differentially expressed between SNI 
and NON-SNI samples, and all these DEGs were up-
regulated. Benjamini–Hochberg correction was utilized 
for adjusted P values. A volcano plot for DEGs from this 
microarray is shown in Fig. 2A, B.

Weighted co‑expression network construction and hub 
module analysis
The “WGCNA” package in R language was adopted for 
constructing the gene co-expression networks. Then, 
we obtained a total 9371 genes. The 5000 most signifi-
cant genes that showed the greatest standard deviations 
(SDs) were chosen to perform hierarchical cluster, group 
similar expression levels into modules, and select Power 
β = 16 to ensure a scale-free network. It was observed 
that 12 samples were basically classified as 2 clusters. In 
addition, the Pearson’s correlation was also carried out. 
In total, 14 modules were excavated, and the pink module 

was the most tightly related with SNI traits (Fig. 3A, B). 
Thereafter, the interactions among these 14 modules 
were also examined, followed by the plotting of a net-
work heatmap. According to these findings, every mod-
ule served as an independent validation for one another, 
demonstrating the high level of independence across var-
ious modules, as well as the relative gene expression inde-
pendence for every module. For purposes of exploring 
co-expression similarity among these 14 modules, eigen-
gene connectivity was assessed, and then consensus cor-
relation was subjected to clustering analysis (Fig. 3C). In 
addition, intramodular analysis including MM (module 
significance) and GS (gene significance) was performed 
in those 14 modules. The pink module was excavated 
to further explore the highly related genes. Figure  3D 
displays the scatter plots for GS regarding SNI traits, 
together with illness state compared with MM within 
the pink module. In the case of SNI, GS and MM were 
significantly positively correlated, which suggested that 
the pink module elements with the greatest importance 
(central) might show high correlation with such external 
traits. Furthermore, to evaluate the influence of different 

Fig. 2  Volcano plot of DEGs. A Adult group. B Neonate group. The red nodes represent upregulated genes selected upon the |log2FC| ≥ 1.0 and 
P < 0.05 thresholds, while the blue nodes stand for downregulated genes selected upon the |log2FC| ≥ 1.0 and P < 0.05 thresholds, and the gray 
nodes indicate the nonsignificant genes

Fig. 3  Establishment of weighted co‑expression network and analysis of hub modules in adult group. A Dendrogram displaying each DEG 
clustered in accordance with the dissimilarity measure (1-TOM). As a result, 14 co-expression modules were constructed and were shown in 
distinctive color. B Heatmap of the relationships of module with the disease traits. In the module, the greater mean gene relevance stands for the 
greater relationship of this module with the traits of interest. The horizontal and vertical axes stand for clinical factors and modules, respectively. The 
color gradient from red to green represents the shift from positive to negative correlation. The numbers in grids represent correlation coefficients. 
Values in parenthesis are the P values for the association test. C System clustering tree for the modules. Dendrogram showing the eigengenes in the 
consensus module acquired based on WGCNA regarding consensus correlations. D Scatter plot presenting module eigengenes within pink module

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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ages in SNI status, the co-expression networks were simi-
lar measured using WGCNA software package in neo-
nate group, separately. Finally, 15 modules were mined, 
and the lightcyan module was found to be most tightly 
associated with SNI traits in neonate group (Fig. 4A–D).

Identification of SNI core genes between hub modules 
and PPI networks in different ages groups
Subsequently, the DEGs-associated PPI network was 
used to identify 63 hub genes at the thresholds of con-
nectivity ≥ 6 and confidence > 0.4 in adult group. In addi-
tion, 13 PPI networks related hub genes were screened 
out using  similar thresholds in neonate group. The more 
strict factors were used in additional analyses, includ-
ing module connectivity determined through absolute 
Pearson’s correlation coefficient (cor.geneModuleMem-
bership > 0.8), together with relationships of clinical 
characteristics determined based on absolute Pearson’s 
correlation coefficient (cor.geneTraitSignifcance > 0.2). 
In adult group, there were 481 highly connected genes 
identified in the pink module. In contrast, 88 co-expres-
sion-related hub genes were discovered to be highly 
connected in lightcyan module in neonate group. Based 
on these analyses, 12 hub genes (C1qb, C1qa, C1qc, 
Tyrobp, Fcer1g, Cd74, Fcgr2a, Mpeg1, C4a, Aif1, RT1-
A2, and C3) related with SNI were detected in both the 
co-expression and PPI networks (Fig. 5A). According to 
our results, each hub gene was upregulated. Therefore, 
the above 12 genes were identified to be real hub genes to 
indicate SNI status, which were screened in later analyses 
(Fig. 5B).

Validation of hub genes
To investigate hub genes related with SNI, the expres-
sion levels of C1qb, C1qa, C1qc, Tyrobp, Fcer1g, Cd74, 
Fcgr2a, Mpeg1, C4a, Aif1, RT1-A2, and C3 were detected 
using the training set GSE18803 dataset and the test 
set GSE30165 dataset, respectively. In the training set, 
we found all hub genes had statistically significant dif-
ferences in SNI samples (Figs.  6A–I and 7A–I). In the 
test set, all hub genes except C1qb and RT1-A2 were 
significantly upregulated in the SNI samples in com-
parison with the NON-SNI samples (Fig.  8A–I). After 
overlapping the results from the training set and test set, 

we found ten hub genes (C1qa, C1qc, Tyrobp, Fcer1g, 
Cd74, Fcgr2a, Mpeg1, C4a, Aif1, and C3) were altered 
in the comparison between the SNI and normal control 
samples.

Functional enrichment analyses of hub genes
For better understanding gene functions in hub genes, 
we adopted the Metascape software for GO functional 
annotation and KEGG enrichment. Based on our results, 
“inflammatory response” was the gene set with the high-
est significance (Fig.  9A). The analysis also showed that 
SNI was associated with immune effector process, anti-
gen processing and presentation, and phagocytosis. 
Meanwhile, as revealed by KEGG results, DEGs were 
mainly associated with antigen processing and presen-
tation, osteoclast differentiation, and staphylococcus 
aureus infection pathways (Fig.  9B). For validating the 
biofunctions related to such hub genes, the other method 
was adopted. Later, Reactome, the approach for func-
tional enrichment analysis, was applied in aligning targets 
with the corresponding biological functions. Thereaf-
ter, pathways were presented in the bubble chart based 
on the Entities found, Entities ratio, together with Enti-
ties FDR functions. As a result, the SNI samples showed 
remarkable relationships with immune system, innate 
immune system, neutrophil degranulation, and cytokine 
signaling in immune system (Fig. 9C). Besides, those 10 
most significant functional pathways were sorted accord-
ing to the entities. As observed from the bar chart, those 
resultant pathways exerted vital parts in immune system 
(Fig. 9D).

GSEA
This study conducted GSEA for identifying the potential 
mechanism underlying SNI. Samples were divided into 
SNI versus NON-SNI in both adult group and neonate 
group, respectively. The analysis indicated that the most 
significantly enriched gene sets positively correlated 
with SNI in adult group, which included the cytokine–
cytokine receptor interaction, the chemokine signaling 
pathway, and the T cell receptor signal transduction path-
way (Fig. 10A). In addition, significant gene sets with the 
highest enrichment level that showed positive correlation 
with SNI in neonate group were the cytokine–cytokine 

(See figure on next page.)
Fig. 4  Establishment of weighted co‑expression network and analysis of hub modules in neonate group. A Dendrogram displaying each DEG 
clustered in accordance with the dissimilarity measure (1-TOM). As a result, 15 co-expression modules were constructed and were shown in 
distinctive color. B Heatmap of the relationships of module with the disease traits. In the module, the greater mean gene relevance stands for the 
greater relationship of this module with the traits of interest. The horizontal and vertical axes stand for clinical factors and modules, respectively. The 
color gradient from red to green represents the shift from positive to negative correlation. The numbers in grids represent correlation coefficients. 
Values in parenthesis are the P values for the association test. C System clustering tree for the modules. Dendrogram showing the eigengenes in the 
consensus module acquired based on WGCNA regarding consensus correlations. D Scatter plot presenting module eigengenes within lightcyan 
module
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Fig. 4  (See legend on previous page.)
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receptor interaction, the chemokine signaling pathway, 
and the Fc gamma R-mediated phagocytosis (Fig.  10B). 
The common pathways in both adult group and neonate 
group are the cytokine–cytokine receptor interaction, 
and the chemokine signaling pathway. To further prove 
the 10 hub genes-associated pathways in the develop-
ment of SNI, we aligned the GEO microarray GSE18803 
and focused on a single gene for the phenotype. We 
found that the up-regulation of 10 hub genes (C1qa, 
C1qc, Tyrobp, Fcer1g, Cd74, Fcgr2a, Mpeg1, C4a, Aif1, 
and C3) was significantly enriched in the Lysosome path-
way, the Chemokine signaling pathway, and the neurotro-
phin signaling pathway (Fig. 10C).

Immune infiltration analysis
In order to further explore the effect of immune infiltra-
tion in SNI, the CIBERSORT deconvolution algorithm 
was used to analyze the difference in immune infiltra-
tion between SNI and NON-SNI samples in 22 types 
of immune cells. The proportion of infiltrating immune 
cells in each of samples was shown in Fig. 11A. In addi-
tion, a strong positive correlative links between Mac-
rophages M0 and Mast cells activated (R2 = 0.93) and a 
clear negative correlative links between Plasma cells and 
Macrophages M2 (R2 =  − 0.80) were observed (Fig. 11B). 
Two immune cells (Macrophages M2 and Regulatory T 
cells) were found to have a statistically significant correla-
tion with the SNI-associated risk score in the GSE18803 
dataset (Fig. 11C). Therefore, these results suggested that 
abnormal immune infiltration may play an important role 
as a complex regulatory process in the progression of sci-
atic nerve injury and nerve regeneration. These findings 
may have important clinical implications of SNI.

Identification of the potential drugs
This study used DGIdb for determining the possi-
ble molecular compounds or drugs with the effects on 
reversing the increased expression of hub genes within 
SNI. According to the drug–gene interaction network 
(Fig.  12A–F), we identified 7 molecular compounds 
or drugs, including metyldopa, copper and zinc chlo-
ride, and they showed differential regulation of C3 and 
C1QC expression. Moreover, milatuzumab was detected 
to interact with CD74. In addition, 10 molecular com-
pounds or drugs, like adalimumab, adalimumab or 
etanercept, were identified to show interaction with 
FCGR2A. Furthermore, 5 molecular compounds or drugs 
(including etanercept) modulated C1QA, whereas 2 
including aspirin and benzylpenicilloyl polylysine modu-
lated FCER1G.

Discussion
In the present study in which an integrated bioinformati-
cal study on SNI was performed, an overlap method was 
employed to combine WGCNA, PPI network, and GSEA 
for identifying the hub genes as well as associated path-
ways. As suggested by our results, the pink module in 
adult group and lightcyan module in neonate group were 
recognized to be of clinical significance by WGCNA. In 
later analyses, 12 genes between co-expression and PPI 
networks in both adult group and neonate group were 
identified to be the real hub genes, which indicated the 
potentially vital roles of such genes during SNI occur-
rence and development. Subsequently, to investigate hub 
genes in SNI of different ages, the expression levels of the 
12 genes were detected using a training set and a test set, 

Fig. 5  Detection of hub genes. A A Venn diagram presenting hub genes under co-expression and those involved in the PPI network. B Twelve 
hub genes (Cd74, C1qb, Tyrobp, C1qa, C4a, RT1-A2, C3, Fcgr2a, Aif1, Fcer1g, Mpeg1, and C1qc) overlapped between the PPI and the co-expression 
networks. In the heat map, intensity and color of hub genes are shown at right, which represent the gene rank 1 to 12
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respectively. Collectively, 10 real hub genes (C1qa, C1qc, 
Tyrobp, Fcer1g, Cd74, Fcgr2a, Mpeg1, C4a, Aif1, and C3) 
in both adult group and neonate group revealed signifi-
cant differences between training set and test set.

We also conducted further potential function and 
pathway enrichment for clarifying the DEGs functions. 
According to GO analysis, DEGs related to SNI were 

mainly associated with inflammatory response, immune 
effector process, antigen processing and presentation, 
and phagocytosis. Consistent with KEGG enrichment 
analyses, the antigen processing and presentation was a 
significant pathway. In addition, supported in Reactome 
analyses, the SNI samples showed dramatically rela-
tionships with immune system, innate immune system, 

Fig. 6  Hub gene validation based on training set (GSE18803) in adult group. The mRNA level of 12 hub genes was validated in SNI samples 
compared with normal samples in adult group. All hub genes revealed statistically significant differences in SNI. A C1qb. B C1qa. C C1qc. D Tyrobp. 
E Fcer1g. F Cd74. G Fcgr2a. H Mpeg1. I C4a. J Aif1. K RT1-A2. L C3. *P < 0.05, **P < 0.01, ***P < 0.001, NS not significant
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neutrophil degranulation, and cytokine signaling in 
immune system. In addition, GSEA supported that gene 
sets with statistical significance were mostly related to 
immune responses. Conforming to this work, previous 
studies confirmed that SNI was highly associated with 
inflammation [34, 35]. Immunocytes, including lym-
phocytes, resident cells, neutrophils, and macrophages, 

can produce various chemical molecules, including 
purines, lipids, histamine, protons, bradykinin, seroto-
nin, chemokines, cytokines, nerve growth factors in the 
process of inflammation [36]. It is interesting to note 
that certain mediating factors show direct sensitization 
on nociceptors, which results in neuropathic pain [37]. 
These results are in line with previous studies. In the case 

Fig. 7  Hub gene validation based on training set (GSE18803) in neonate group. The mRNA level of 12 hub genes was validated in SNI samples 
compared with normal samples in neonate group. All hub genes revealed statistically significant differences in SNI. A C1qb. B C1qa. C C1qc. D 
Tyrobp. E Fcer1g. F Cd74. G Fcgr2a. H Mpeg1. I C4a. J Aif1. K RT1-A2. L C3. *P < 0.05, **P < 0.01, ***P < 0.001, NS not significant
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of SNI, immune response is postponed at first, then the 
continuous hyperinflammatory state is detected, accom-
panying with the reduced repair process [38]. The inflam-
matory response was mostly associated with immune 
response usually related to lymphocytes, neutrophils and 
macrophages. Leukocytic infiltration may exert a certain 
part in catabolic enzyme generation and inflammatory 

response, causing the disrupted structure and function of 
nerve tissues. The peripheral nervous system may regrow 
their axons after an injury, but such capability is affected 
by the extracellular environment and inherent regrowing 
ability for supporting regrowth. Chemokines can influ-
ence neuronal differentiation, proliferation and nerve 
regeneration, and their expression increased in the case 

Fig. 8  Hub gene validation based on test set (GSE30165). The mRNA level of 12 hub genes was validated in SNI samples compared with normal 
samples. Ten hub genes were significantly upregulated in SNI samples in comparison to NON-SNI samples. A C1qb. B C1qa. C C1qc. D Tyrobp. E 
Fcer1g. F Cd74. G Fcgr2a. H Mpeg1. I C4a. J Aif1. K RT1-A2. L C3. *P < 0.05, **P < 0.01, ***P < 0.001, NS not significant
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Fig. 9  Functional enrichment analyses of hub genes. A Top 20 GO functional enrichment of hub genes. B KEGG pathways of hub genes. C Top 
10 Reactome pathway of hub genes. The bubble pattern shows the top 10 enrichment pathways with Entities ratio, Entities found (count) and 
Entities FDR. Y-axis represents pathway name and X-axis represents rich factor. Size and color of each bubble represent the number of differentially 
expressed genes enriched in the pathway and − log10 (q-value), respectively. D Top 10 Reactome events hierarchy. The bar chart demonstrates that 
the gene sets involved in metabolism of proteins and signal transduction were significantly enriched in pathways related to SNI status
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Fig. 10  GSEA. A Gene set related to SNI in adult group. B Gene set related to SNI in neonate group. Top 10 functional gene sets enriched in SNI 
status between SNI samples and NON-SNI samples are shown. C Gene set related to each high expression in each hub genes. Sankey plot showed 
that high expression in each hub genes were mainly enriched in pathways associated with the Lysosome pathway, the Chemokine signaling 
pathway, and the Neurotrophin signaling pathway
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of inflammation and injury [39]. Nonetheless, numerous 
immunocytes and inflammatory factors are related to the 
regulation of continuous tissue damage responses, which 
enhances tissue repair [40]. Collectively, sciatic nerve 
injury and nerve regeneration display intricate biological 
processes, involving in the coordination of inflammatory 

response and immunoregulatory signals after peripheral 
nerve injury.

For better verifying the associations between hub 
genes and SNI, we obtained hub gene expression profiles 
based on the GEO database. The 10 genes enrolled from 
the above-mentioned database, including C1qa, C1qc, 

Fig. 11  Immune infiltration analysis. A Heat map of the 22 immune cell proportions. B Correlation matrix among each type of immune cells. Red 
represents a positive correlation, and blue represents a negative correlation. C Box plots shows the differences in the proportions of the 22 immune 
cells between SNI samples and NON-SNI samples. Red represents SNI samples, and green represents NON-SNI samples, *P < 0.05, NS not significant
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Tyrobp, Fcer1g, Cd74, Fcgr2a, Mpeg1, C4a, Aif1, and C3 
were found to be higher in SNI as compared to the NON-
SNI between adult group and neonate group. These 
indicated that these 10 core genes were significantly asso-
ciated with SNI at both adult and neonate ages. More 
and more studies on transcriptomic analysis in vitro and 
in vivo verify that Cd74 played a vital part in the progres-
sion of sciatic nerve injury [41–44]. Linnartz-Gerlach 
et al. [45] reported that Tyrobp mutations or genetic vari-
ants were associated with the aging-related inflammatory 
neurodegenerative disorders. Another research con-
ducted WGCNA on the expression profiles of genes spe-
cific to aging and cell-type in mice, which identified hub 
genes including C1qa, Tyrobp, and Fcer1g as the critical 
players related to neurodegenerative disorders and aging 
in humans [46]. According to Wang et al. [10], C1qc and 
Fcer1g facilitated neuropathic pain occurrence following 
SNI through the defense and immune pathways. C4a is 
related to immune responses at each level and additional 
events like organ regeneration and neural development 
[47]. Huelsenbeck et  al. [48] reported that C3 peptide 
enhanced the functional motor recovery and axonal 
regeneration following PNI. As for, C1qa, C1qc, Tyrobp, 
Fcer1g, Fcgr2a, Mpeg1, C4a, and Aif1, they are relatively 
new molecules with only few reports regarding their role 

in SNI at present. Nevertheless, they played an important 
role in SNI and were significantly different between nor-
mal samples and SNI. The above genes shed more lights 
on clinical and experimental studies. Nonetheless, more 
investigation is needed to completely understand their 
functions in SNI. To further prove the role of hub genes 
in the development of SNI, differential expression enrich-
ment analyses of the 10 hub genes were also performed. 
In our study, the differentially expressed genes were vast 
majority enriched in pathways associated with the Lyso-
some pathway, the Chemokine signaling pathway, and 
the Neurotrophin signaling pathway, which were also 
consistent with the results of GO and KEGG pathway 
enrichment analyses above.

To further explore the role of immune cell infiltration in 
SNI, the CIBERSORT deconvolution algorithm was used 
to comprehensively evaluate SNI immune infiltration. 
Compared with the NON-SNI samples, macrophages M2 
and regulatory T cells were increased in the SNI samples, 
while plasma cells were decreased. Previous studies have 
found that M2 macrophages and regulatory T cells can 
promote the progression of SNI and activate the immune 
responses in the injured tissue [49–51] in a rodent model 
of sciatic nerve injury, which is consistent with our find-
ings. To the best of our knowledge, there is no previous 

Fig. 12  Drug–gene interaction network. The red ellipse and light-blue V nodes indicate genes and drugs, respectively. A C1qa. B Fcgr2a. C C1qc. D 
Cd74. E Fcer1g. F C3
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study about the association between plasma cells and 
SNI. Therefore, the relationship among M2 macrophages, 
regulatory T cells, and plasma cells remains to be further 
studied.

For predicting the candidate efficient treatment against 
SNI and the associated concurrent diseases, this study 
used DGIdb database for determining the therapeutic 
agents showing effects on reversing the abnormal up-reg-
ulation of SNI-associated hub genes. Tumor necrosis fac-
tor-alpha (TNF-α) is suggested to exert a vital part during 
demyelination and apoptosis, while blocking its expres-
sion enhances neural healing [52]. According to previ-
ous reports, TNF-α antagonists are effective on Schwann 
cells and axons within SNI, and TNF-α is related to the 
modulation of axonal regeneration [53]. An increas-
ing number of epidemiological studies have suggested 
that, the anti-TNF-α therapies, including adalimumab, 
etanercept and adalimumab, are utilized to treat differ-
ent peripheral nerve diseases, including chronic inflam-
matory demyelinating polyneuropathy, Miller Fisher 
syndrome, Guillain–Barré syndrome, mononeuropathy 
multiplex, multifocal motor neuropathy accompanied by 
conduction block, and axonal sensorimotor polyneurop-
athy [54]. Adalimumab was detected as the efficient neu-
roprotective drug to heal the nerves in PNI model of rats, 
particularly in the early phase [52]. Trastuzumab have 
also been reported to enhance peripheral nerve regen-
eration following repair from acute and chronic PNI [55, 
56]. More studies are needed to explore the functions of 
the above-mentioned molecular compounds and drugs 
within SNI, together with the corresponding concurrent 
diseases as the candidate therapeutic targets.

Nonetheless, certain limitations should still be noted. 
First, this work identified numerous new pathways related 
to SNI, but it was still restricted due to the intrinsic biases 
of enrichment analysis and the microarray data available. 
Second, this study obtained the open-sourced data, but 
data quality was not assessed; besides, it adopted the 
uncommonly utilized Affymetrix gene expression arrays. 
Third, Mus musculus-derived tissue samples of training 
set were different from the Rattus norvegicus-derived 
samples of test set, and this might lead to diverse target 
genes in the 2 organisms following nerve injury. There-
fore, if the database has samples updates, more studies 
are warranted in the future. Fourth, laboratory experi-
ments should be carried out to verify our results. Cells 
isolated from SNI samples needed to be cultured in vitro 
for determining the related molecular mechanisms of 
hub gene expression. Thus, the gene knockdown pre-
clinical animal models can help to examine the identified 
gene functions and evaluate their functions in SNI. Fifth, 
to increase the result reliability, we need more samples 
for repeated measurements. Last, enrichment analysis 

was also limited in identifying pathways because the 
gene lists verified might lead to over-representation of 
the well-identified pathways. As a result, the functions of 
such hub genes as well as pathways within SNI, and the 
functional meaning in SNI development should be vali-
dated in more research.

Conclusion
To sum up, through a series of integrated bioinformatics 
analyses, we screened a total of 10 hub genes with veri-
fied high expression within SNI, and predicted potential 
therapeutic agents associated with the progression of 
SNI. According to our findings, some pathways related to 
SNI conformed to the known knowledge regarding dis-
ease pathology. Results in this study can shed more lights 
on biological pathways related to SNI and identify some 
possible regulating factors as the interventional targets. 
Nonetheless, more research is required to verify the asso-
ciation of hub gene functions with the immune responses 
during SNI development.

Abbreviations
SNI: Sciatic nerve injury; WGCNA: Weighted gene co-expression network 
analysis; DEG: Differentially expressed gene; PPI: Protein–protein interaction; 
GESA: Gene set enrichment analysis; DGIdb: Drug Gene Interaction Database; 
PNI: Peripheral nerve injury; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of 
Genes and Genomes; GEO: Gene Expression Omnibus; TOM: Topological over-
lap matrix; GS: Gene significance; MM: Module membership; STRING: Search 
Tool for the Retrieval of Interacting Genes; FDR: False discovery rate; C1qb: 
Complement C1q B chain; C1qa: Complement C1q A chain; C1qc: Comple-
ment C1q subcomponent subunit C; Tyrobp: Transmembrane immune signal-
ing adaptor TYROBP; Fcer1g: Fc fragment Of IgE receptor Ig; Cd74: CD74 mol-
ecule; Fcgr2a: Fc fragment of IgG receptor IIa; Mpeg1: Macrophage expressed 
gene 1; C4a: Complement C4A; Aif1: Allograft inflammatory factor 1; RT1-A2: 
RT1 class I, A2; C3: Complement C3; TNF-α: Tumor necrosis factor-alpha.

Acknowledgements
We acknowledge GEO database for providing their platforms and contributors 
for uploading their meaningful datasets.

Authors’ contributions
LXL designed data analysis and wrote the manuscript. MLY, XKD, HQL acquired 
and analyzed the data. YHL edited the manuscript. XMW, AMJ contributed to 
critical revision. All authors read and approved the final manuscript.

Funding
No funding was received.

Availability of data and materials
All supporting data can be provided upon request to the authors.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals 
performed by any of the authors.

Consent for publication
All the authors approved the manuscript.

Competing interests
The authors declare that they have no competing interests.



Page 18 of 19Li et al. J Orthop Surg Res          (2021) 16:622 

Author details
1 Department of Spine Surgery, the First Affiliated Hospital, Shenzhen Uni-
versity, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China. 
2 Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun 
Yat-sen University, Guangzhou, Guangdong, China. 3 Department of Endo-
crinology, Shenzhen Hospital of Guangzhou University of Chinese Medicine 
(Futian), Shenzhen, Guangdong, China. 4 Department of Spine Surgery, Zhu-
Jiang Hospital of Southern Medical University, Southern Medical University, 
Guangzhou, Guangdong, China. 5 Department of Oncology, Shenzhen Hospi-
tal of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518034, 
Guangdong, China. 

Received: 16 June 2021   Accepted: 28 September 2021

References
	1.	 De la Rosa MB, Kozik EM, Sakaguchi DS. Adult stem cell-based strategies 

for peripheral nerve regeneration. Adv Exp Med Biol. 2018;1119:41–71. 
https://​doi.​org/​10.​1007/​5584_​2018_​254.

	2.	 Neer CS, Grantham SA, Foster RR. Femoral shaft fracture with sciatic nerve 
palsy. JAMA. 1970;214(13):2307–11.

	3.	 Aufranc OE, Jones WN, Turner RH, Thomas WH. Fracture of acetabulum 
with dislocation of hip and sciatic palsy. JAMA. 1967;201(9):690–1.

	4.	 Jolles BM, Bogoch ER. Posterior versus lateral surgical approach for total 
hip arthroplasty in adults with osteoarthritis. Cochrane Database Syst Rev. 
2006;3:CD003828. https://​doi.​org/​10.​1002/​14651​858.​CD003​828.​pub3.

	5.	 Tallon C, Rockenstein E, Masliah E, Farah MH. Increased BACE1 activity 
inhibits peripheral nerve regeneration after injury. Neurobiol Disease. 
2017;106:147–57. https://​doi.​org/​10.​1016/j.​nbd.​2017.​07.​003.

	6.	 Ertürk A, Hellal F, Enes J, Bradke F. Disorganized microtubules underlie 
the formation of retraction bulbs and the failure of axonal regeneration. 
J Neurosci. 2007;27(34):9169–80. https://​doi.​org/​10.​1523/​jneur​osci.​0612-​
07.​2007.

	7.	 Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, et al. Interaction between 
Schwann cells and other cells during repair of peripheral nerve injury. 
Neural Regen Res. 2021;16(1):93–8. https://​doi.​org/​10.​4103/​1673-​5374.​
286956.

	8.	 Zhao H, Duan LJ, Sun QL, Gao YS, Yang YD, Tang XS, et al. Identification 
of key pathways and genes in L4 dorsal root ganglion (DRG) after sciatic 
nerve injury via microarray analysis. J Investig Surg Off J Acad Surg Res. 
2020;33(2):172–80. https://​doi.​org/​10.​1080/​08941​939.​2018.​14529​96.

	9.	 Li S, Liu Q, Wang Y, Gu Y, Liu D, Wang C, et al. Differential gene expression 
profiling and biological process analysis in proximal nerve segments after 
sciatic nerve transection. PLoS ONE. 2013;8(2):e57000. https://​doi.​org/​10.​
1371/​journ​al.​pone.​00570​00.

	10.	 Wang J, Ma SH, Tao R, Xia LJ, Liu L, Jiang YH. Gene expression pro-
file changes in rat dorsal horn after sciatic nerve injury. Neurol Res. 
2017;39(2):176–82. https://​doi.​org/​10.​1080/​01616​412.​2016.​12735​90.

	11.	 Bosse F, Hasenpusch-Theil K, Küry P, Müller HW. Gene expression profiling 
reveals that peripheral nerve regeneration is a consequence of both 
novel injury-dependent and reactivated developmental processes. J Neu-
rochem. 2006;96(5):1441–57. https://​doi.​org/​10.​1111/j.​1471-​4159.​2005.​
03635.x.

	12.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinform. 2008;9:559. https://​doi.​org/​10.​1186/​
1471-​2105-9-​559.

	13.	 Zhang H, Guo L, Zhang Z, Sun Y, Kang H, Song C, et al. Co-expression 
network analysis identified gene signatures in osteosarcoma as a predic-
tive tool for lung metastasis and survival. J Cancer. 2019;10(16):3706–16. 
https://​doi.​org/​10.​7150/​jca.​32092.

	14.	 Zhou J, Guo H, Liu L, Hao S, Guo Z, Zhang F, et al. Construction of co-
expression modules related to survival by WGCNA and identification 
of potential prognostic biomarkers in glioblastoma. J Cell Mol Med. 
2021;25(3):1633–44. https://​doi.​org/​10.​1111/​jcmm.​16264.

	15.	 Esmaeili S, Mehrgou A, Kakavandi N, Rahmati Y. Exploring Kawasaki 
disease-specific hub genes revealing a striking similarity of expres-
sion profile to bacterial infections using weighted gene co-expression 
network analysis (WGCNA) and co-expression modules identification 
tool (CEMiTool): an integrated bioinformatics and experimental study. 

Immunobiology. 2020;225(4):151980. https://​doi.​org/​10.​1016/j.​imbio.​
2020.​151980.

	16.	 Feltrin AS, Tahira AC, Simões SN, Brentani H, Martins DC. Assessment 
of complementarity of WGCNA and NERI results for identification of 
modules associated to schizophrenia spectrum disorders. PLoS ONE. 
2019;14(1):e0210431. https://​doi.​org/​10.​1371/​journ​al.​pone.​02104​31.

	17.	 Mason MJ, Fan G, Plath K, Zhou Q, Horvath S. Signed weighted gene 
co-expression network analysis of transcriptional regulation in murine 
embryonic stem cells. BMC Genomics. 2009;10:327. https://​doi.​org/​10.​
1186/​1471-​2164-​10-​327.

	18.	 Horvath S, Dong J. Geometric interpretation of gene coexpression net-
work analysis. PLoS Comput Biol. 2008;4(8):e1000117. https://​doi.​org/​10.​
1371/​journ​al.​pcbi.​10001​17.

	19.	 Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, et al. Analysis 
of oncogenic signaling networks in glioblastoma identifies ASPM as a 
molecular target. Proc Natl Acad Sci U S A. 2006;103(46):17402–7. https://​
doi.​org/​10.​1073/​pnas.​06083​96103.

	20.	 Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, et al. 
Integrating genetic and network analysis to characterize genes related to 
mouse weight. PLoS Genet. 2006;2(8):e130. https://​doi.​org/​10.​1371/​journ​
al.​pgen.​00201​30.

	21.	 Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S. Weighted 
gene coexpression network analysis strategies applied to mouse weight. 
Mamm Genome Off J Int Mamm Genome Soc. 2007;18(6–7):463–72. 
https://​doi.​org/​10.​1007/​s00335-​007-​9043-3.

	22.	 Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of 
gene coexpression networks in human and chimpanzee brains. Proc 
Natl Acad Sci U S A. 2006;103(47):17973–8. https://​doi.​org/​10.​1073/​pnas.​
06059​38103.

	23.	 Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas 
J, et al. STRING v10: protein–protein interaction networks, integrated 
over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-452. 
https://​doi.​org/​10.​1093/​nar/​gku10​03.

	24.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomolecu-
lar interaction networks. Genome Res. 2003;13(11):2498–504. https://​doi.​
org/​10.​1101/​gr.​12393​03.

	25.	 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, 
et al. Metascape provides a biologist-oriented resource for the analysis of 
systems-level datasets. Nat Commun. 2019;10(1):1523. https://​doi.​org/​10.​
1038/​s41467-​019-​09234-6.

	26.	 Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, 
et al. The reactome pathway knowledgebase. Nucleic Acids Res. 
2020;48(D1):D498–503. https://​doi.​org/​10.​1093/​nar/​gkz10​31.

	27.	 Fabregat A, Sidiropoulos K, Viteri G, Marin-Garcia P, Ping P, Stein L, et al. 
Reactome diagram viewer: data structures and strategies to boost perfor-
mance. Bioinformatics (Oxford, England). 2018;34(7):1208–14. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btx752.

	28.	 Sidiropoulos K, Viteri G, Sevilla C, Jupe S, Webber M, Orlic-Milacic M, et al. 
Reactome enhanced pathway visualization. Bioinformatics (Oxford, Eng-
land). 2017;33(21):3461–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx441.

	29.	 Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desk-
top application for gene set enrichment analysis. Bioinformatics (Oxford, 
England). 2007;23(23):3251–3. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btm369.

	30.	 Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust 
enumeration of cell subsets from tissue expression profiles. Nat Methods. 
2015;12(5):453–7. https://​doi.​org/​10.​1038/​nmeth.​3337.

	31.	 Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. System-
atic RNA interference reveals that oncogenic KRAS-driven cancers require 
TBK1. Nature. 2009;462(7269):108–12. https://​doi.​org/​10.​1038/​natur​
e08460.

	32.	 Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, et al. DGIdb 
3.0: a redesign and expansion of the drug–gene interaction database. 
Nucleic Acids Res. 2018;46(D1):D1068–73. https://​doi.​org/​10.​1093/​nar/​
gkx11​43.

	33.	 Costigan M, Moss A, Latremoliere A, Johnston C, Verma-Gandhu M, Her-
bert TA, et al. T-cell infiltration and signaling in the adult dorsal spinal cord 
is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 
Off J Soc Neurosci. 2009;29(46):14415–22. https://​doi.​org/​10.​1523/​jneur​
osci.​4569-​09.​2009.

https://doi.org/10.1007/5584_2018_254
https://doi.org/10.1002/14651858.CD003828.pub3
https://doi.org/10.1016/j.nbd.2017.07.003
https://doi.org/10.1523/jneurosci.0612-07.2007
https://doi.org/10.1523/jneurosci.0612-07.2007
https://doi.org/10.4103/1673-5374.286956
https://doi.org/10.4103/1673-5374.286956
https://doi.org/10.1080/08941939.2018.1452996
https://doi.org/10.1371/journal.pone.0057000
https://doi.org/10.1371/journal.pone.0057000
https://doi.org/10.1080/01616412.2016.1273590
https://doi.org/10.1111/j.1471-4159.2005.03635.x
https://doi.org/10.1111/j.1471-4159.2005.03635.x
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.7150/jca.32092
https://doi.org/10.1111/jcmm.16264
https://doi.org/10.1016/j.imbio.2020.151980
https://doi.org/10.1016/j.imbio.2020.151980
https://doi.org/10.1371/journal.pone.0210431
https://doi.org/10.1186/1471-2164-10-327
https://doi.org/10.1186/1471-2164-10-327
https://doi.org/10.1371/journal.pcbi.1000117
https://doi.org/10.1371/journal.pcbi.1000117
https://doi.org/10.1073/pnas.0608396103
https://doi.org/10.1073/pnas.0608396103
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1007/s00335-007-9043-3
https://doi.org/10.1073/pnas.0605938103
https://doi.org/10.1073/pnas.0605938103
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1093/bioinformatics/btx752
https://doi.org/10.1093/bioinformatics/btx752
https://doi.org/10.1093/bioinformatics/btx441
https://doi.org/10.1093/bioinformatics/btm369
https://doi.org/10.1093/bioinformatics/btm369
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nature08460
https://doi.org/10.1038/nature08460
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.1523/jneurosci.4569-09.2009
https://doi.org/10.1523/jneurosci.4569-09.2009


Page 19 of 19Li et al. J Orthop Surg Res          (2021) 16:622 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	34.	 Huang TC, Wu HL, Chen SH, Wang YT, Wu CC. Thrombomodulin 
facilitates peripheral nerve regeneration through regulating M1/M2 
switching. J Neuroinflamm. 2020;17(1):240. https://​doi.​org/​10.​1186/​
s12974-​020-​01897-z.

	35.	 Neumann E, Küpfer L, Zeilhofer HU. The α2/α3GABAA receptor modula-
tor TPA023B alleviates not only the sensory but also the tonic affective 
component of chronic pain in mice. Pain. 2020. https://​doi.​org/​10.​1097/j.​
pain.​00000​00000​002030.

	36.	 Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to 
treatment. Physiol Rev. 2020. https://​doi.​org/​10.​1152/​physr​ev.​00045.​2019.

	37.	 Shutov LP, Warwick CA, Shi X, Gnanasekaran A, Shepherd AJ, Mohapatra 
DP, et al. The complement system component C5a produces thermal 
hyperalgesia via macrophage-to-nociceptor signaling that requires NGF 
and TRPV1. J Neurosci Off J Soc Neurosci. 2016;36(18):5055–70. https://​
doi.​org/​10.​1523/​jneur​osci.​3249-​15.​2016.

	38.	 Büttner R, Schulz A, Reuter M, Akula AK, Mindos T, Carlstedt A, et al. 
Inflammaging impairs peripheral nerve maintenance and regeneration. 
Aging Cell. 2018;17(6):e12833. https://​doi.​org/​10.​1111/​acel.​12833.

	39.	 Deftu AT, Ciorescu R, Gheorghe RO, Mihăilescu D, Ristoiu V. CXCL1 and 
CXCL2 inhibit the axon outgrowth in a time- and cell-type-dependent 
manner in adult rat dorsal root ganglia neurons. Neurochem Res. 
2019;44(9):2215–29. https://​doi.​org/​10.​1007/​s11064-​019-​02861-x.

	40.	 Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and 
molecular mechanisms and therapeutic potential. Pharmacol Ther. 
2020;212:107581. https://​doi.​org/​10.​1016/j.​pharm​thera.​2020.​107581.

	41.	 Song H, Zhu Z, Zhou Y, Du N, Song T, Liang H, et al. MIF/CD74 axis 
participates in inflammatory activation of Schwann cells following sciatic 
nerve injury. J Mol Histol. 2019;50(4):355–67. https://​doi.​org/​10.​1007/​
s10735-​019-​09832-0.

	42.	 Sun W, Kou D, Yu Z, Yang S, Jiang C, Xiong D, et al. A transcriptomic analy-
sis of neuropathic pain in rat dorsal root ganglia following peripheral 
nerve injury. Neuromol Med. 2020;22(2):250–63. https://​doi.​org/​10.​1007/​
s12017-​019-​08581-3.

	43.	 Yang JA, He JM, Lu JM, Jie LJ. Jun, Gal, Cd74, and C1qb as potential indica-
tor for neuropathic pain. J Cell Biochem. 2018;119(6):4792–8. https://​doi.​
org/​10.​1002/​jcb.​26673.

	44.	 Wang F, Xu S, Shen X, Guo X, Peng Y, Yang J. Spinal macrophage migra-
tion inhibitory factor is a major contributor to rodent neuropathic pain-
like hypersensitivity. Anesthesiology. 2011;114(3):643–59. https://​doi.​org/​
10.​1097/​ALN.​0b013​e3182​0a4bf3.

	45.	 Linnartz-Gerlach B, Bodea LG, Klaus C, Ginolhac A, Halder R, Sinkkonen 
L, et al. TREM2 triggers microglial density and age-related neuronal loss. 
Glia. 2019;67(3):539–50. https://​doi.​org/​10.​1002/​glia.​23563.

	46.	 Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A micro-
glial signature directing human aging and neurodegeneration-related 
gene networks. Front Neurosci. 2019;13:2. https://​doi.​org/​10.​3389/​fnins.​
2019.​00002.

	47.	 Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and 
Clinical Pharmacology. [Corrected]. LXXXVII. Complement peptide C5a, 
C4a, and C3a receptors. Pharmacol Rev. 2013;65(1):500–43. https://​doi.​
org/​10.​1124/​pr.​111.​005223.

	48.	 Huelsenbeck SC, Rohrbeck A, Handreck A, Hellmich G, Kiaei E, Roet-
tinger I, et al. C3 peptide promotes axonal regeneration and functional 
motor recovery after peripheral nerve injury. Neurother J Am Soc Exp 
NeuroTher. 2012;9(1):185–98. https://​doi.​org/​10.​1007/​s13311-​011-​0072-y.

	49.	 Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, et al. Hydrogel derived from por-
cine decellularized nerve tissue as a promising biomaterial for repairing 
peripheral nerve defects. Acta Biomater. 2018;73:326–38. https://​doi.​org/​
10.​1016/j.​actbio.​2018.​04.​001.

	50.	 Li Y, Yao D, Zhang J, Liu B, Zhang L, Feng H, et al. The effects of epidermal 
neural crest stem cells on local inflammation microenvironment in the 
defected sciatic nerve of rats. Front Mol Neurosci. 2017;10:133. https://​
doi.​org/​10.​3389/​fnmol.​2017.​00133.

	51.	 Lees JG, Duffy SS, Perera CJ, Moalem-Taylor G. Depletion of Foxp3+ regu-
latory T cells increases severity of mechanical allodynia and significantly 
alters systemic cytokine levels following peripheral nerve injury. Cytokine. 
2015;71(2):207–14. https://​doi.​org/​10.​1016/j.​cyto.​2014.​10.​028.

	52.	 Polat E, Dağlıoğlu E, Menekşe G, Dike MS, Özdöl Ç, Türk C, et al. Neuropro-
tective effects of adalimumab on rats with experimental peripheral nerve 
injury: an electron microscopic and biochemical study. Ulusal travma ve 
acil cerrahi dergisi = Turk J Trauma Emerg Surg TJTES. 2016;22(2):134–8. 
https://​doi.​org/​10.​5505/​tjtes.​2015.​54358.

	53.	 Smith D, Tweed C, Fernyhough P, Glazner GW. Nuclear factor-kappaB 
activation in axons and Schwann cells in experimental sciatic nerve injury 
and its role in modulating axon regeneration: studies with etanercept. 
J Neuropathol Exp Neurol. 2009;68(6):691–700. https://​doi.​org/​10.​1097/​
NEN.​0b013​e3181​a7c14e.

	54.	 Stübgen JP. Tumor necrosis factor-alpha antagonists and neuropathy. 
Muscle Nerve. 2008;37(3):281–92. https://​doi.​org/​10.​1002/​mus.​20924.

	55.	 Hendry JM, Alvarez-Veronesi MC, Placheta E, Zhang JJ, Gordon T, Borschel 
GH. ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral 
nerve regeneration after repair of acute or chronic peripheral nerve 
injury. Ann Neurol. 2016;80(1):112–26. https://​doi.​org/​10.​1002/​ana.​24688.

	56.	 Placheta E, Hendry JM, Wood MD, Lafontaine CW, Liu EH, Cecilia Alvarez 
Veronesi M, et al. The ErbB2 inhibitor Herceptin (Trastuzumab) promotes 
axonal outgrowth 4 weeks after acute nerve transection and repair. Neu-
rosci Lett. 2014;582:81–6. https://​doi.​org/​10.​1016/j.​neulet.​2014.​09.​006.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s12974-020-01897-z
https://doi.org/10.1186/s12974-020-01897-z
https://doi.org/10.1097/j.pain.0000000000002030
https://doi.org/10.1097/j.pain.0000000000002030
https://doi.org/10.1152/physrev.00045.2019
https://doi.org/10.1523/jneurosci.3249-15.2016
https://doi.org/10.1523/jneurosci.3249-15.2016
https://doi.org/10.1111/acel.12833
https://doi.org/10.1007/s11064-019-02861-x
https://doi.org/10.1016/j.pharmthera.2020.107581
https://doi.org/10.1007/s10735-019-09832-0
https://doi.org/10.1007/s10735-019-09832-0
https://doi.org/10.1007/s12017-019-08581-3
https://doi.org/10.1007/s12017-019-08581-3
https://doi.org/10.1002/jcb.26673
https://doi.org/10.1002/jcb.26673
https://doi.org/10.1097/ALN.0b013e31820a4bf3
https://doi.org/10.1097/ALN.0b013e31820a4bf3
https://doi.org/10.1002/glia.23563
https://doi.org/10.3389/fnins.2019.00002
https://doi.org/10.3389/fnins.2019.00002
https://doi.org/10.1124/pr.111.005223
https://doi.org/10.1124/pr.111.005223
https://doi.org/10.1007/s13311-011-0072-y
https://doi.org/10.1016/j.actbio.2018.04.001
https://doi.org/10.1016/j.actbio.2018.04.001
https://doi.org/10.3389/fnmol.2017.00133
https://doi.org/10.3389/fnmol.2017.00133
https://doi.org/10.1016/j.cyto.2014.10.028
https://doi.org/10.5505/tjtes.2015.54358
https://doi.org/10.1097/NEN.0b013e3181a7c14e
https://doi.org/10.1097/NEN.0b013e3181a7c14e
https://doi.org/10.1002/mus.20924
https://doi.org/10.1002/ana.24688
https://doi.org/10.1016/j.neulet.2014.09.006

	Gene correlation network analysis to identify regulatory factors in sciatic nerve injury
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Search strategy and eligibility criteria
	Establishment of co-expression network and analysis of module functions
	Identification of SNI status hub module
	Hub genes validation
	Functional enrichment analyses of hub genes
	Gene set enrichment analysis
	Immune infiltration analysis
	Identification of the potential drugs

	Results
	Included study characteristics
	DEGs identification
	Weighted co-expression network construction and hub module analysis
	Identification of SNI core genes between hub modules and PPI networks in different ages groups
	Validation of hub genes
	Functional enrichment analyses of hub genes
	GSEA
	Immune infiltration analysis
	Identification of the potential drugs

	Discussion
	Conclusion
	Acknowledgements
	References


