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Abstract: Today, solar energy is taking an increasing share of the total energy mix. Unfortunately,
many operational photovoltaic plants suffer from a plenitude of defects resulting in non-negligible
power loss. The latter highly impacts the overall performance of the PV site; therefore, operators need
to regularly inspect their solar parks for anomalies in order to prevent severe performance drops.
As this operation is naturally labor-intensive and costly, we present in this paper a novel system for
improved PV diagnostics using drone-based imagery. Our solution consists of three main steps. The
first step locates the solar panels within the image. The second step detects the anomalies within
the solar panels. The final step identifies the root cause of the anomaly. In this paper, we mainly
focus on the second step comprising the detection of anomalies within solar panels, which is done
using a region-based convolutional neural network (CNN). Experiments on six different PV sites
with different specifications and a variety of defects demonstrate that our anomaly detector achieves
a true positive rate or recall of more than 90% for a false positive rate of around 2% to 3% tested on
a dataset containing nearly 9000 solar panels. Compared to the best state-of-the-art methods, the
experiments revealed that we achieve a slightly higher true positive rate for a substantially lower
false positive rate, while tested on a more realistic dataset.

Keywords: anomaly detection; UAV; inspection; PV power plants; deep learning; thermal imaging

1. Introduction

Photovoltaic (PV) power plants are playing a fundamental role in supporting the
transition to a green economy and achieving energy and climate objectives. However,
degradation of solar panels over time can have a high impact on the performance of PV
sites. Therefore, PV plants need to be regularly inspected for defects. Unfortunately, the
latter is a very time-consuming and sometimes dangerous task and often goes hand in hand
with a cessation of the energy production. All this means that frequent inspections are not
very cost effective and site operators need more advanced tools for fault localization, power
loss quantification and improved diagnostics of PV plants. A more efficient detection,
diagnosis and localization of the fault will not only lead to a more cost-effective inspection
but will also reduce the time during which the fault can impact production.

The work presented in this paper aims at developing image processing techniques that
exactly serve this purpose. More specifically, we developed algorithms to automatically
identify anomalies and determine their root causes using drone-based imagery. To achieve
this goal, we combined data from two different modalities, namely an RGB camera and a
thermal camera. The combination of both sensors is crucial. On the one hand, many defects
are visible in thermal images as they provoke an increase in temperature in the respective
solar panel, such as hotspots. On the other hand, the thermal image itself does not provide
information on the root cause of the anomaly. This is where the RGB image comes into play
as it can help us determine the root cause. For example, some hotspots are provoked by
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external factors such as overgrown vegetation, droppings from birds or the accumulation
of dirt and dust better known as soiling. In some cases, no peculiarity can be observed
in the RGB image, which probably means that the root cause is not external. This may
indicate a more severe underlying defect such as an issue with the junction box or diode.
This information is critical for the operator as it allows him to make the right decision on
whether to send a mechanic in the field to fix the defect or to initiate a cleaning procedure.

Today, no suitable PV diagnostics tool is available for the PV industry that provides
accurate and reliable information on defects in an automated manner. On the one hand,
some tools exist to detect and quantify under-performance issues based on the observation
of current, voltage or power [1,2]. However, while they are well-suited for detecting
degradation within a PV module or array, they are less suited for detecting faults or defects
on the solar panel level. As a result, it remains time consuming to locate the anomalies and
identify their root causes. The popular technique of aerial electroluminescence (EL) [3,4]
has the same drawback.

For that reason, it is beneficial to use infrared thermography to accurately identify and
locate faults and defects in PV plants. Unfortunately, many techniques for PV inspection
that use thermographic images acquired by drones are based on the analysis of the temper-
ature distribution [5–7]. The main problem with these is that they suffer from thermal drift
or varying ambient temperatures making them less reliable. Finally, with the increasing
interest of artificial intelligence in all kinds of domains, some AI-based solutions for PV site
monitoring were recently presented. They generally use deep convolutional neural net-
works and show promising results. However, the main drawback of the solutions presented
so far in literature is that they lack ‘generalizability’ and as a result they perform poorly
on ‘previously unseen’ PV plants, making it necessary to retune the (hyper)-parameters
for each newly scanned PV site. The latter makes the entire process again time consuming.
In this work, we aim at automating PV inspection by increasing accuracy and reliability,
hence reducing the total manual inspection time.

The contributions of this work are two-fold. First, we developed a novel anomaly
detector for thermal images achieving unprecedented accuracy. The main novelty and
success factor lies in our three-stage approach: (1) generating an orthophoto, (2) pre-locating
the solar panels and, finally, (3) detecting the actual anomalies. The first step allows us
to apply appropriate scaling of the thermal data (dealing with thermal drift), whereas
the second step reduces the region of interest for potential anomalies and, thus, mitigates
the risk for false positives appearing in regions of non-interest. Note that the solar panel
detection or localization is not strictly necessary but contributes to a more accurate detection
of anomalies. Second, we propose an appropriate normalization of the thermal images
in order to make the appearance of solar panels and anomalies more uniform across the
orthophoto from a single PV site as well as across orthophotos from multiple PV sites.

2. Related Work

Several existing systems for PV inspection are monitoring current, voltage or power to
detect anomalies [1]. Akiyama et al. [2]) developed a power line communication method
that utilizes direct current (DC) lines, which has made it possible to monitor every solar
panel in a PV plant. Another popular technique is aerial electroluminescence (EL) imaging,
which is currently the most cost-efficient method on the market for the early detection
of solar systems affected by potential-induced degradation (PID). One company that is
providing EL imaging as a service is Quantified Energy Labs (https://qe-labs.com/, accessed
on 12 September 2021). However, EL imaging, compared to infrared (IR) imaging, has
its limitations. Infrared imaging can provide the exact physical location of the defect not
only on the level of a solar module or panel but also within a solar cell. It is, thus, more
suitable to perform a quantitative and qualitative diagnosis of the PV plant. For that reason,
the company ‘Aerial PV Inspection’, in short AEPVI (http://www.aepvi.com, accessed on
12 September 2021 ), developed a system that uses a combination of infrared (IR) and EL
imaging and machine learning to identify faults. The AEPVI company was not the first to
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explore the use of thermal imaging for photovoltaic inspection. More research on this topic
was published lately, which can roughly be divided in two separate categories: (1) methods
based on classical image analysis techniques and (2) methods based on deep learning.

In the first category, Tsanakas et al. [8] proposed to apply classical image segmentation
techniques on thermal images, such as the Canny Edge detector, and image histogram
analysis to identify faults and quantify them in terms of relative area size and number
of impacted cells. However, their solution was only tested on two PV sites for which
they claim to diagnose 13 out of 14 and 27 out of 29 defective cells, which is statistically
insignificant. Kim et al. [9] designed a similar system for detecting malfunctioning PV
cells using drone-based thermal imaging. They use statistical analysis on the thermal
intensity characteristics (e.g., surface temperature) of each PV module. More specifically,
they determined the mean intensity and standard deviation of each panel as parameters
for fault diagnosis. The authors claim a detection accuracy for defective panels of 97%, but
their algorithm was only tested on three sample images.

Rogotis et al. [5] developed yet another PV defect detection algorithm based on classi-
cal techniques. They adopt a two-step approach in which they first localize the PV modules
using image segmentation based on Otsu thresholding. Subsequently, they utilize a global
threshold computed by a combination of two thresholding techniques ‘Mean Relative Thresh-
olding (MRT)’ and ‘Mean Frequency Thresholding (MFT)’. Finally, they apply morphological
dilation and test the candidate defected areas using three criteria based on size, shape and
intensity distribution. Gao et al. [6] also presented an algorithm that segments the solar
panels from the background prior to the detection of anomalies. They claim that the segmen-
tation runs in real-time and that only the height of the array is required as prior information
to aid in the segmentation process. Hot panels are subsequently detected using DBSCAN
clustering. Finally, Buerhop et al. [7] present their aIR-PV-check solution, a system using
unmanned aerial vehicles (UAV) equiped with an infrared (IR)-camera for the quality
inspection of PV-plants under real operating conditions. Similarly to many of previously
described solutions, defective modules are detected by their temperature distribution.

Even though some of the aforementioned methods based on the histogram or distri-
bution of temperature achieve a good detection performance on the evaluated sites, these
solutions lack generalizability. For example, they are largely affected by different ambient
temperatures and they struggle when other areas within the PV module are significantly
overheated. Moreover, sometimes multiple hotspots can be present within one solar panel,
or different hotspots can have different delta temperatures. As such, the histograms might
have more than one peak, making it more difficult to define an adequate threshold. Due to
these reasons, most recent research studies focus on the application of deep neural networks
to detect and locate anomalies and defects within photovoltaic power plants.

In the second category of deep learning based methods, Pierdicca et al. [10] trained
a VGG-16 network for the automatic detection of damaged photovoltaic cells in thermal
images. They apply the network on images that are resized to 224 × 224 pixels without
pre-determining a region of interest. The network, thus, acts as a classification network that
assigns a binary label depending on whether or not a defect is present in the image. The
presented approach is, therefore, very limited. First, it does not locate the precise defect
within the image; thus, the operator does not know where the defect occurs. Second, the
model is highly influenced by varying ambient temperatures and various backgrounds in
the images.

Pierdicca et al. [11] improved their PV fault detection algorithm. This time, they
perform object detection (and thus localization) on top of classification. To that end, they
have trained a mask region-based convolutional neural network (CNN) to detect anomalous
solar panels. In this work, we will use a similar approach based on a region-based CNN,
but in contrast to [11] where one CNN was trained to detect anomalous solar panels, we
adopt a two-stage approach in which we first train a CNN to detect all solar panels in the
orthophoto of the PV site and another CNN to subsequently detect the anomalies. In other
words, we detect anomalies within solar panels rather than we detect anomalous solar
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panels. We believe that our approach is more effective in preventing the neural network to
detect solar panels without a defect and, hence, in reducing the amount of false positives.
Note that our approach still allows the detection of anomalies without priorly detecting
solar panels, albeit with reduced accuracy.

Oliveira et al. [12] combined a traditional image segmentation technique with deep
learning based classification. First, they segment the defected solar panels by using
Laplacian-based edge detection. Subsequently, they train a VGG-16 network to classify the
defect into three categories: disconnected substrings, hot spots and disconnected strings.
The same authors later on extended their fault detection system by incorporating an RGB
camera to further differentiate between physical defects and hot spots caused by soiling
and vegetation. In our system we also integrated an RGB camera next to a thermal camera
to allow for more precise root cause analysis. We will briefly describe the workflow of
this analysis later on in this paper, but we plan to elaborate on this in a future publication.
Finally, Alves et al. [13] developed a system that classifies the anomalies between up to
eleven different classes solely based on thermographic images.

One of the drawbacks of existing solutions is that they remain vulnerable when
thermal drift is occurring or when the ambient temperature is varied. This means that the
proposed solutions from the literature lack generalizability. Our solution can deal with
the aforementioned challenges thanks to several improvements that we propose. First,
we apply appropriate scaling of the thermal image. Second, we train our AI model using
several data augmentations including random brightness, lighting and saturation. Third,
we adopt a three-step approach by first detecting solar panels in a thermal-normalized
orthophoto—which is an easier task—and subsequently identifying anomalies within the
solar panels. As a result, our combined AI model generalizes very well and can operate on
different PV sites in a trustworthy manner.

3. UAV-Based PV Anomaly Recognition System

The entire work-flow consists of several algorithms and can be summarized into five
main steps:

1. Structure from motion and registration of RGB and thermal imagery;
2. Detection of solar panels;
3. Detection of anomalies in thermal images;
4. Determination of the root cause of the anomaly using RGB and thermal images;
5. Estimation of the shading profile based on the 3D model.

The algorithms related to steps 1 and 2 were previously described in [14,15]. In this
paper, we will focus on the detection of anomalies using thermal imagery (step 3). The
algorithms related to the root cause analysis (step 4 and 5) will only be briefly explained.
The techniques and experiments will be discussed in detail in Sections 5 and 6. For the sake
of completeness, we will summarize all steps in this section.

3.1. Structure from Motion and Registration of RGB and Thermal Imagery

The first step of the workflow deals with the generation of an accurate georeferenced
orthophoto and 3D model of the PV site by means of structure from motion or photogram-
metry. This step is necessary to be able to relate each damaged solar panel from the image
to the corresponding solar panel in the physical world and in the digital twin of the solar
plant. As the environment consists of highly repetitive patterns, due to the abundance of
solar panels, matching key points between RGB images is far from trivial as one has to
deal with ‘multi-correspondences’ or in some cases even shifted sets of correspondences.
To cope with these challenges, we have developed an improved matching algorithm [14].
The matching is based on pixel-distance and pixel-rotation histograms derived from GPS
data to estimate an initial guess on the translation and orientation (only two orientations
are considered, 0◦ and 180◦ with respect to the initial orientation) made by the drone. All
keypoint matches that agree with the initial translation and orientation are selected and
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used to estimate the camera pose. The other matches are discarded, resulting in more
accurate pose estimates. We refer the reader to [14] for more details.

The orthophotos are generated for both the thermal and RGB images and are subse-
quently aligned. In performing this, we obtain every solar cell and panel visual as well as
thermal information, which will be used in the subsequent steps of anomaly detection and
root cause analysis. In addition, the 3D model obtained by structure from motion will be
used to derive the shading profile of the PV site. The shading information will on its turn
allow the prediction of the expected power output at the solar panel level and to compare
it with the true power output derived from monitoring data.

3.2. Detection of Solar Panels in Thermal Images

One of the prerequisites for an accurate and efficient detection of anomalies is the
precise localization of the solar panels. Once we know their precise location, the anomalies
can be more accurately detected as its search is restricted to the specific region of the solar
panel in the thermal image. This two-step approach is not only faster, but it also mitigates
the risk of detecting false positive anomalies. For the detection of the solar panels, we rely
on RGB imaging because of the much higher spatial resolution and color information, but
also on the thermal data. The borders of the solar panels are generally colder than the
panels themselves and appear darker in thermal images, which make them well suited for
the task.

The procedure for the detection of solar panels is extensively described in [15]. In
summary, two different methods were developed. One method is based on classical image
processing techniques (including edge detection) and is used to generate training data
in an efficient manner. The second method is based on the training of a region-based
convolutional neural network (Mask-RCNN). An example of the solar panel detection on a
Belgian rooftop-based PV site is depicted in Figure 1.

Figure 1. Example of solar panel detection on a Belgian, rooftop-based PV site (left) and a zoomed
in version (right). The solar panel detection is used to reduce the search window for the anomaly
detection algorithm.

3.3. Detection of Anomalies in Thermal Images

In thermal images, two different anomalies can be distinguished: (1) hotspots and (2)
bypass substrings, both provoking temperature increase. Hotspots appear as high-intensity
blobs in a thermal image, whereas bypass substrings appear as elongated blobs that cover
one-third of the solar panel or two-thirds in case of a double bypass substring. In Figure 2,
a few examples of a hotspot and an example of a bypass substring in a thermal image are
depicted. In this work, we mainly focus on the detection of hotspots as they represent the
vast majority of the anomalies present in operational PV plants. To achieve our objective, we
use an adapted version of the Faster R-CNN model [16]. The latter is an object detector and
hence fulfills the combined task of both image classification and object localization. As such,
it takes an image as input and produces one or more bounding boxes with the class label (in
our case we use a binary label) attached to each bounding box. Strictly speaking, the prior
detection or segmentation of solar panels is not necessary, but nonetheless it will reduce
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the region of interest and as such mitigate the risk of false positives. On the other hand, the
object detector will still properly work when the solar panels are inaccurately segmented.

(a) (b) (c) (d)

Figure 2. Three hotspots (a–c) and a bypass substring (d) in a 16-bit thermal image, here depicted
using a two-channel image (using the ‘blue’ and ‘green’ channel).

3.4. Determination of the Root Cause of the Anomaly Using RGB and Thermal Images

Once a hotspot is detected in the thermal image, we inspect the region in the RGB
image that corresponds to the affected solar panel. In case the hotspot is induced by an
external factor, the RGB image will most likely show a peculiarity, as seen in Figure 3. To
that end, we have developed a novel method based on an autoencoder to detect anomalies
in RGB images. The autoencoder is learning to replicate the most salient features of a
healthy solar panel in the training data. In other words, it learns to precisely reproduce the
most frequently observed characteristics of a solar panel. At inference time, the autoencoder
will be able to accurately reconstruct “normal” data, while failing to do so with unfamiliar
anomalous data. The reconstruction error can then be used as a score to detect anomalies.

Figure 3. Hotspot in a thermal image (left) caused by overgrown vegetation visible in the RGB image
(right). While thermal images can be used to easily detect hotspots, they do not provide information
on the root cause of the anomaly. The RGB image can help to determine the latter anomaly: in case a
peculiarity is visible, the hotspot may be caused by an external factor, whereas in the other case the
cause is probably physical, indicating a more severe underlying defect.

Once an anomaly is detected in the RGB image, we further differentiate between
vegetation-induced hotspots, hotspots resulting from (bird) droppings and hotspots result-
ing from shading. For the latter, we will rely on the 3D model generated by the structure
from motion system, as explained in Section 3.5. We are aware that there are other causes
of hotspots, such as soiling, corrosion or backsheet cracking. If they result in a peculiarity
in the RGB images, they will be detected by the autoencoder but we will consider them as
a residual class.

In case the RGB image does not show any peculiarity, while a hotspot is still detected
in the thermal image, this may indicate that the cause is a physical failure, for example an
issue with a junction box or diode. The further classification into a junction box or diode
issue or anything else falls beyond the scope of this work. In that case, the precise root
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cause should be determined by inspecting monitoring data, e.g., DC or inverter data, or by
sending an expert in the field.

3.5. Determination of the Shading Profile

The final step in the pipeline is to determine the shading profile of the PV plant. By
modelling which parts of the solar plant are shaded or lit during the entire year, we can
compare the expected power output with the true output of the respective solar array or
string. In case both values do not match, this may indicate that a defect is occurring or that
the string or panel array is suffering from degradation. The shadow maps will also be used
to determine whether the appearance of hotspots in the thermal image could be induced by
shading. Figure 4 depicts four shadow maps generated for a small Belgian PV plant during
7 August (the day of the flight) at times 7:00 AM, 10:00 AM, 1:00 PM and 4:00 PM.

Figure 4. Shadow maps generated for a Belgian PV site for 7 August at times 7:00 AM, 10:00 AM,
1:00 PM and 4:00 PM. By modelling the shading profile during the entire year, we can compare the
expected power output with the true output of the respective solar array or string. A discrepancy
between both values may indicate that a defect is occurring or that the string or panel array is
suffering from degradation.

4. PV Dataset Generation

In order to train our CNN model to detect hotspots in thermal images, we use data
from six different PV power plants located in Italy, Spain and Japan. The datasets are
highly diverse in many respects. First, they cover both rooftop-based PV sites and ground-
based PV sites. Second, they contain several types of solar panels with various appearance
and placed under different tilt angles. Third, the datasets were captured under various
flight conditions. Some flights were carried out using flight lines that were perpendicular
or parallel to the solar bank orientation, to which we will refer as a vertical or horizontal
orientation respectively. Other flights were carried out using flight lines that had another
orientation than the orientation of the solar banks, referred to as oblique orientation. Fourth,
flights were also captured under varying weather conditions. In that respect, sun reflections
are present on some parts of the PV site, whereas other areas are covered by shadows from
clouds or nearby buildings.

The aggregated dataset is, thus, very complex and it is not trivial to train a CNN that
generalizes well, achieves high accuracy and at the same time does not over-fit the dataset.
Moreover, many sites also suffer from multiple hotspots appearing on the same solar panel.
This motivates the choice to train a neural network instead of relying on histogram or
thresholding based methods. In Table 1, an overview of the specifications and number of
hotspots for the different PV sites is listed. In Figure 5, a few images of the same PV sites
are depicted.
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Table 1. The specifications of the different datasets used for training and validation.

Dataset Type Orientation Hotspot Multi-Hotspots

Omuta (Japan) ground horizontal 801 124
Kumagaya (Japan) ground vertical 56 71
Madrid (Spain) rooftop oblique 211 377
Serramanna (Italy) rooftop horizontal 5 4140
Hokota (Japan) ground horizontal 4793 2136
Montalto di Castro (Italy) ground vertical 197 304

(a) Omuta, Japan (b) Kumagaya, Japan

(c) Madrid, Spain (d) Serramana, Italy

(e) Hokota, Japan (f) Montalto di Castro, Italy

Figure 5. Images from the different datasets, captured at various PV plants in Italy, Spain and
Japan. The aggregated dataset is highly diverse, containing ground-based and rooftop-based PV sites.
Flights were conducted using flight lines that are parallel, perpendicular or oblique to the orientation
of the photovoltaic arrays.

4.1. Positive Samples

The ground truth was manually annotated by the operator on the solar panel level.
As the goal is to detect anomalies within solar panels, we additionally perform a precise
segmentation of the hotspot within the solar panel. In order to achieve this, we use the
SLIC (Simple Linear Iterative Clustering) algorithm to generate a segmentation mask for
the hotspots. The SLIC algorithm clusters pixels based on both their intensity similarity
and their proximity in the image plane. The clusters with the highest average intensity
values that are also above a certain threshold are considered as hotspots. The segmentation
obtained by SLIC clustering was still assessed by a person and only clear examples are
accepted in the dataset. In addition, we only keep the hotspots that are sufficiently salient
be selecting only those with a delta temperature of at least 5◦.
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4.2. Negative Samples

In order to avoid class imbalance and over-fitting of the CNN model, we guaranteed
that a similar amount of negative samples was incorporated into the training dataset. To
generate those negative samples, we use our solar panel detection algorithm, which was
described in [15].

The final images used for training—both positive and negative—were additionally
padded with a few pixels from the surroundings of the solar panel. In Figure 6, a few
examples of both positive and negative samples from the training dataset are depicted.

Figure 6. Positive samples of hotspots (left) and negative samples (right) from our aggregated PV
dataset, here depicted as grayscale images.

5. Proposed CNN-Based Solution for Anomaly Detection in Thermal Images

In this work, we aim at precisely identifying the anomaly within a solar panel and
within the entire PV site. The output of our algorithm is a bounding box comprising the
anomaly located in a georeferenced orthophoto. The workflow of our solution is depicted
in Figure 7.

TrainingDataset generationPre-processing

Thermal 
normalization

Solar panel 
detection

1. SLIC segmentation

Data
base

3. Data augmentation
Testing

Post-processing

1. Non-maximum 
suppression

2. Manual verification

ResNet-50 Backbone

FPN

Proposals

ROI pooling

Classifier

Feature maps
Model

1. Inference

Figure 7. The workflow of our anomaly detection algorithm based on thermal images. In the pre-
processing phase, the thermal images are normalized and the solar panels are detected. The latter are
fed to SLIC segmentation to generate positive samples of hotspots. These are manually checked and
the dataset is augmented using several operations (rotations, crops, contrast, etc.). Training is based
on a region-based CNN, using a Feature Pyramid Network (FPN) as region proposal network and a
ResNet-50 as backbone. Finally, post-processing comprises non-maximum suppression to filter out
‘duplicate’ (i.e., overlapping) detections.

5.1. Pre-Processing

As an orthophoto typically contains a large number of pixels, depending on the
actual size of the site, we tile it in smaller images of 500 by 500 pixels. Then, we segment
the different panels using a trained Mask R-CNN network [17], cfr. our work presented
in [15]. The panel segmentations are eventually used as a prior for the location of potential
anomalies. In other words, we use segmentation masks to reduce the search window for
the anomaly detection algorithm. The latter not only limits computation time, but it also
guarantees a more robust detection of defective solar panels as similar ‘thermal blobs’ in
other regions will not result in false positives. As a result, the threshold on the confidence
score can be more finely adjusted, resulting in both higher recall and precision values.
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As the panel segmentations are not perfect, we use a padding of eight pixels to
guarantee that the entire solar panel, including the borders, is visible. This is particularly
desired when the hotspot is appearing at the edge of the solar panel. In addition, we made
sure that a part of the ‘background’ is visible in order to provide the neural network with
sufficient context information.

The thermal data from the FLIR camera outputs 16-bit grayscale images. We normalize
the data in such a manner that it fits in a single 8-bit channel. One method to perform this
is to use min-max normalization to squeeze the data into the range of 0 to 255. However, as
we tile the images in 500 by 500 pixels, it might happen that some images only contain solar
panels, whereas other images contain solar panels together with a part of the background,
e.g., grass or a concrete roof, both having different properties. As a result, min-max
normalization will be highly influenced by the minimum and maximum values, and it will
be biased based on where the image has been tiled.

For that reason, we scale the data from the entire orthophoto beforehand. However,
we also experienced thermal drift during acquisition and, hence, the ortophoto suffers
from uneven illumination. Moreover, the presence of clouds or sun reflections causes the
orthophoto to be unevenly illuminated. For those reasons, we apply robust scaling on the
thermal images by using statistics that are robust to outliers. This means that in order to
compute the mean and standard deviation, we first remove the ‘outliers’ from the dataset.
We then scale the data according to the quantile range. For example, the interquartile range
(IQR) denotes the range between the 1st quartile (25th quantile) and the 3rd quartile (75th
quantile). This scaling is, therefore, not influenced by a small number of very large marginal
outliers and consequently, the resulting range of the transformed thermal values is larger
than for min-max scaling. Therefore, we use the median value of the image I and the 1st
quartile Q1 and 3rd quartile Q3 to compute normalization for each pixel i according to the
following formula:

i′ =
i−Q1(I)

Q3(I)−Q1(I)
, (1)

where the final intensity is i∗ = max(0, min(255, i′)).

5.2. Region-Based CNN Model

Within one solar panel, there can be more than one hotspot present and we do not
know beforehand how many exactly. For that reason we cannot simply solve the problem
by building a standard convolutional neural network (CNN) followed by a fully connected
layer as the length of the output layer is variable and not constant. A naive approach
would be to take different regions of interest from the image and use a CNN to classify the
presence of an anomaly within each region. The problem with this approach is that the
anomaly can have different spatial locations and different aspect ratios. One would, thus,
have to select a large number of regions, resulting in a tremendous amount of computation
time. For that reason, we decided to use a region-proposal CNN (R-CNN) [18] network,
which was developed to find multiple occurrences in a faster manner.

The main drawback with the original R-CNN method of [18] is that it performs a
forward pass for each object proposal without sharing computation with the detection
network. In [19], the authors, therefore, propose Fast R-CNN in which the network first
processes the entire image with several convolutional and max pooling layers to produce a
convolutional feature map. Then, selective search is applied to determine object proposals,
and for every proposal, a fixed-length feature vector from the feature map is extracted
using a region of interest (RoI) pooling layer. This feature vector is subsequently fed into a
sequence of fully connected layers that finally result in two output layers: one that produces
probability estimates over the object classes and another layer that outputs four real-valued
numbers denoting the bounding-box positions for one of the classes.

The Fast R-CNN method still has the limitation that it uses selective search to deter-
mine the region proposals. In addition to the fact that selective search is slow, it also misses
the opportunity to allow the network learn region proposals. For that reason, the authors
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of [16] proposed their Faster R-CNN method, where region proposals are predicted by
using a deep neural network that shares convolutional layers with the object detection
network, called the region proposal network (RPN). The marginal cost for computing
them is, therefore, small. RPN is designed to efficiently predict region proposals with a
wide range of scales and aspect ratios. To that end, a sliding window is used, and at each
sliding-window location, multiple anchors are considered, an anchor being associated with
a scale and aspect ratio. The original Faster R-CNN used anchors of multiple pre-defined
scales and aspect ratios in order to cover objects of different shapes. In our solution, we
use the Feature Pyramid Network (FPN) as was presented in [20]. We use anchors of
three different aspect ratios 1:2, 1:1, 2:1 at each pyramid level. When Faster R-CNN was
first published, the authors presented their results using ZF and the VGG-16 as detection
networks. In our solution, however, we use the more powerful ResNet with 50 layers
(ResNet-50) as the base model. The architecture of this network is depicted in Figure 8.

3 4 6 3

Figure 8. The architecture of the ResNet-50 model [21], used as backbone for our Faster R-CNN based
anomaly detection method. Image adapted from [22].

5.3. Loss Function

Regarding the RPNs, we assign a binary class label (being an anomaly or not) to
each anchor. We assign a positive label to two kinds of anchors: the anchor with the
highest intersection-over-Union with a ground-truth box or an anchor that has an IoU
overlap higher than 0.5 with any ground-truth box. The loss function is given by the
following equation.

L(pi, ti) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nbox

∑
i

p∗i Lbox(ti, t∗i ). (2)

In this equation, i is the index of an anchor and pi is the predicted probability of anchor
i being an anomaly. The groud-truth label p∗i is 1 if the anchor is positive, and it is 0 if
the anchor is negative. ti is a vector representing the four parametrized coordinates of the
predicted bounding box (x, y, w, h), and t∗i is the one of the ground-truth box associated
with a positive anchor. The classification loss Lcls is the log loss over the two classes
(anomaly vs. not anomaly). For the bounding box regression loss, we use the following:

Lbox(ti, t∗i ) = ∑
j∈[0,4]

L1,smooth(ti(j)− t∗i (j)), (3)

where the robust loss function (smooth L1) is given by the following.

L1,smooth(x) =

{
0.5x2 if|x| < 1
|x| − 0.5 otherwise.

(4)

The term p∗i means that the box regression loss is only activated for positive anchors
(p∗i = 1). The two terms are normalized by Ncls and Nbox, which denote the number of
images per batch (we have set Ncls = 16) and the number of anchor locations. The hyper-
parameter λ controls the balance between the two task losses. In our experiments, we used
λ = 0.5 as the precise bounding box is of less interest in our case. Finally, we used a base
learning rate of 0.00025.
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5.4. Data Augmentation

In view of enlarging our training set, we incorporate several data augmentations,
which we divide in two categories: (1) geometrical and (2) appearance based. Regarding
the first group, we include random flips using the horizontal and vertical axis with a
probability of 0.5. Furthermore, we apply a random rotation ranging from −45◦ to 45◦

with a probability of 0.5. Finally, we create crops of 25 × 25 pixels. The hotspots in
our datasets are ranging from circular blobs with a bounding box of 50× 50 pixels to
elongated blobs with a bounding box of approximately 50× 100 pixels. Recall that the
annotations were generated using SLIC-based segmentation and that the precise bounding
boxes are therefore slightly ambiguous. To deal with this, we guaranteed that the crops
are either centred or include at least two sides of the bounding box. In other words, we
apply a ‘five-crop’: four crops from four different corners + a center crop. Regarding the
appearance-based augmentations, we have integrated random lighting, saturation, contrast
and brightness. We increased saturation and the contrast with a random factor between
1.0, i.e., a preservation of original value and 1.5. We, thus, only permitted saturation and
brightness increases and excluded decreases.

5.5. Post-Processing

As mentioned in the previous section, the bounding boxes for the hotspots are slightly
ambiguous as hotspots can be smeared out or appear in a set of multiple hotspots located
close to each other. For humans, it is challenging to define the precise bounding box;
thus, it is also hard to define thresholds for the SLIC-based segmentation. As a result,
the CNN model will also be unconfident about the precise location of the bounding box.
Normally, several potential bounding boxes will be indicated by the CNN. Therefore, we
apply a non-maximum suppression by only picking the bounding box with the highest
confidence score in the set of overlapping bounding boxes. This approach does not jeop-
ardize the effectiveness of hotspot detection as the precise bounding box is secondary to
detection itself.

6. Evaluation and Discussion

The evaluation of the hotspot detection in thermal images has been conducted using
the data discussed in Section 4. For each predicted bounding box, the overlap with the
ground truth bounding box is measured using the intersection over union (IoU), which
is computed as the area of overlap divided by the area of union. Then, we use an IoU
threshold of 0.5 to determine whether the detection is a true positive (IoU higher than 0.5)
or a false positive (IoU lower than 0.5). Given this IoU threshold, we subsequently calculate
the true positive rate (TPR) or recall, which is defined as the ratio between the correctly
classified hotspots (TP = true positives) and the total number of hotspots in the dataset
(sum of the TP and FN = false negatives).

TPR =
TP

TP + FN
. (5)

To evaluate whether our model results in a lot of false positives, we generated a dataset
containing 8924 healthy solar panels, which is a realistic amount for a large PV site. Subse-
quently, we compute the false positive rate (FPR), which is defined as the ratio between
the number of healthy solar panels wrongly categorized as anomalous (FP = false positives)
and the total number of solar panels that were tested (sum of FP and TN = true negatives).

FPR =
FP

FP + TN
=

FP
N

. (6)

In total we have set up three different experiments. In the first experiment, we trained
the network by using a subset of data from 1 PV site and evaluated it on a disjoint subset
from the same PV site. In the second experiment, we trained the network using data
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acquired from a few PV sites and evaluated it on data from unseen PV sites. Finally, in
the third experiment, we aggregated data from all PV sites and evaluated it on (a disjoint
subset of) one particular PV site.

6.1. Experiment 1

For the first experiment, we use one dataset to train the R-CNN model and evaluated
the performance of the model using the same dataset. We split the entire dataset in a
training set and a test set as follows: 3/4 of the dataset is used for training and 1/4 is used
for testing. We, thus, guarantee that no anomaly from the latter is present in the former.
The same amount of negative samples were added to the training set as well.

The three largest PV sites were used for this experiment, as the other PV sites had too
few positive samples to reliably train a neural network: Hokota, Serramanna and Montalto di
Castro, which have, respectively, 1144, 316 and 166 hotspots present. The PV sites contain
more potential hotspots, but we selected only those with a delta temperature of at least 5◦

to avoid using ambiguous anomalies in the evaluation. Note that we trained three different
models using three different datasets.

In Table 2, the results of this first experiment are listed. They show that we achieve
a TPR or recall of more than 90% for the three data sets. For the same threshold on the
confidence score of the AI model, we obtain very few positives, especially for the datasets
Hokota and Serramanna, which have a FPR of 3.4% and 0.4%, respectively. The higher FPR
on the Montalto di Castro site is probably due to fewer positive samples in the training set
compared to the other PV sites.

Table 2. Experiment 1: True positive rate (TPR) and false positive rate (FPR) for hotspot detection in
thermal images. The R-CNN model was trained using one dataset and evaluated on a disjoint subset
of the same dataset.

Dataset Model P (Train) P (Test) N (Test) TP TPR FP FPR

Hokota 1 857 287 8924 275 0.958 307 0.034
Serramanna 2 238 78 8924 72 0.923 33 0.004
Montalto di Castro 3 125 41 8924 37 0.902 1484 0.166

6.2. Experiment 2

To further verify the generalization of our CNN network, we have set up a second
experiment for which we make sure that no PV site from the training dataset is present in
the testing dataset. Thus, we use all anomalies from the PV sites Serramanna, Hokota and
Omuta to train the R-CNN model and we evaluated it on two unseen PV sites Montalto
di Castro and Kumagaya. An additional challenge was imposed by the fact that the solar
panels from the evaluation datasets have a ‘vertical’ orientation with respect to the flight
direction, as opposed to the ‘horizontal’ orientation from the training dataset.

In Table 3, the results of the second experiment are listed. For the site Montalto di
Castro, the TPR slightly decreased from 90.2% to 82.3%, which is not surprising given the
fact that no single anomaly from this PV site was present in the training set. The TPR
on the Kumagaya dataset exceeds once again 90%, indicating that the aggregated model
is generalizing pretty well for unseen data. The FPR is slightly higher than was the case
in the first experiment (for the datasets Hokota and Serramanna), but that is also a logical
consequence from the fact that the AI model was not trained specifically on these datasets.
Note that we can lower the confidence threshold for our AI model to obtain fewer false
positives, but that would also result in a lower TPR. Moreover, note that the same FPR is
listed twice here as we considered the same model 4.
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Table 3. Experiment 2: True positive rate (TPR) and false positive rate (FPR) for hotspot detection in
thermal images. The R-CNN model was trained using an aggregated dataset and evaluated on a test
dataset with ‘unseen’ PV sites.

Dataset Model P (Train) P (Test) N (Test) TP TPR FP FPR

Montalto di Castro 4 2100 124 8924 102 0.823 1183 0.133
Kumagaya 4 2100 53 8924 49 0.925 1183 0.133

6.3. Experiment 3

Finally, for the third experiment we aggregated the data from all PV sites and divided
it again in two disjoint sets: a training and a test set. The training set, therefore, contains
images from all of the available PV sites. We evaluated the CNN model on a test set
containing anomalies from the Serramanna dataset. Note that we still guarantee that no
anomaly from this Serramanna test set is present in the training set. The results are listed in
Table 4.

Table 4. Experiment 3: True positive rate (recall) for hotspot detection in thermal images. The R-CNN
model was trained using an aggregated dataset from different PV sites and evaluated on a dataset
from one particular PV site for which examples were also present in the training set.

Dataset Model P (Train) P (Test) N (Test) TP TPR FP FPR

Serramanna 5 2024 78 8924 75 0.962 213 0.024

As observed, TPR increased from 92.3% to 96.2%, corresponding to, respectively,
72 and 75 out of 78 anomalies from the test sets that are now detected, while the FPR of
2.4% on the negative set remains very low. This experiment demonstrates that we can
increase the TPR when the R-CNN is trained using more date from more PV sites, while
keeping the number of false positives very low, which is of course what was expected. The
result of this last experiment is definitely the one that is most representative as it used data
from all the different PV sites. One can expect the performance of this model to improve
more when the model is retrained using even more data. Some visual results of this trained
model on the different datasets are visualized in Figures 9–13.

6.4. Comparison with the State-of-the-Art

In this section, we compare our results with three different state-of-the-art methods.
The first method, proposed by Akiyama et al. [2], is based on direct current (DC) and is able
to monitor PV sites on the solar panel level, making it suitable as a reference to compare our
method with. The second method, presented by Pierdicca et al. [10], uses thermal imagery
and is based on the VGG-16 network architecture, consisting of five convolutional blocks
followed by a fully connected classifier. They apply the network on images of multiple solar
panels that are resized to 224 × 224 pixels. In other words, the method does not segment or
crop the solar panels prior to the detection of anomalies. Given this fundamental difference
with our own approach, it makes it interesting to compare both.

Finally, Alves et al. [13] proposed a technique based on CNNs and thermographic
images to detect and classify faults in solar panels. Their proposed network takes as input
images with dimensions 40× 24 and consists of four convolutional layers followed by
three fully connected layers. Thus, this method uses images from solar panels that are
pre-cropped from the background; therefore—to use it in an operational framework—the
solar panels should first be detected. In this paper, we assumed that the solar panels were
pre-detected using our method described in [15]. The approach closely resembles the one
of our own method. The main difference lies in the design of the network architecture, yet
making it another interesting comparison.
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As before, we use the same metrics, i.e., true positive rate and false positive rate, to
compare different methods. Some of the authors also use the accuracy (ACC) as additional
metric (some of them refer to it as the conformity ratio), which is defined as follows.

ACC =
TP + TN

TP + FP + FN + TN
. (7)

The accuracy is not the best metric for this use case as there will always be an uneven
class distribution: There are many more ‘healthy’ solar panels than there are ‘faulty’ solar
panels. Nonetheless, we computed the accuracy for our method as well. To compare
with the aforementioned methods, we take the evaluation of our fifth model (cfr. Table 4),
trained and tested using an aggregated dataset. The comparison with the three other
state-of-the-art methods is presented in Table 5.

Table 5. Qualitative comparison of our anomaly detection algorithm with state-of-the-art methods.

Method P N Total TP FN FP TN TPR FPR ACC

Akiyama [2] 52 830 882 52 0 45 785 1.0 0.054 0.949
Alves [13] 1275 1275 2550 1186 89 102 1173 0.93 0.08 0.925
Pierdicca [10] 652 662 1314 438 214 113 549 0.672 0.171 0.751
Ours 78 8924 9002 75 3 213 8711 0.962 0.024 0.968

Table 5 reveals that the accuracy for our method is the highest among all meth-
ods while the false positive rate is the lowest. In addition, the dataset on which we
tested our model is the most representative as we used a large PV site containing nearly
9000 solar panels.

The method of Akiyama et al. is also performing quite well as it does not miss
any anomalies. The false positive rate is twice as high as our method, but nevertheless
it remains rather low. We believe that the combination of the DC-based method and
our thermographic-based method would be complementary and would result in much
better results.

As expected, the method of Alves et al. produces similar results as our method. Still,
the true positive rate for our method is 0.032 higher, whereas the false positive rate is more
than three-times lower (0.024 versus 0.08). It must be mentioned that the method of Alves
et al. also classifies the anomalies based on their thermographic signature, which is a clear
advantage over our method.

The method of Pierdicca et al. is clearly the lowest performing one. The true positive
rate of 0.672 is rather low and the false positive rate of 0.171 is very high. These poor results
are not surprising as the algorithm does not determine a region of interest in advance but
takes as input an image of 224 × 224 pixels containing multiple solar panels, which is
clearly a more difficult problem. We must, therefore, be careful with the comparison as in
our case and in the case of Alves’ method, we did not integrate the localization of solar
panels in the evaluation while it should somehow be reflected in the there. However, in [15],
we concluded that our solar panel detection achieved a true positive rate of 0.97, so the two
methods combined are still performing much better than the method of Pierdicca et al.

(a) (b) (c) (d)

Figure 9. Four different hotspots (a–d) detected using our region-based CNN algorithm on the
dataset acquired at Omuta, Japan.
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(a) (b) (c) (d)

Figure 10. Four different hotspots (a–d) detected using our region-based CNN algorithm on the
dataset acquired at Serramanna, Italy.

(a) (b) (c) (d) (e)

Figure 11. Five different hotspots (a–e) detected using our region-based CNN algorithm on the
dataset acquired at Kumagaya, Japan.

(a) (b) (c) (d) (e)

Figure 12. Five different hotspots (a–e) detected using our region-based CNN algorithm on the
dataset acquired at Montalto Di Castro, Italy.

(a) (b) (c) (d) (e)

Figure 13. Five different hotspots (a–e) detected using our region-based CNN algorithm on the
dataset acquired at Madrid, Spain.

7. Conclusions

In this paper, a novel anomaly detection system for large PV sites using drone-based
imaging was presented. A clear overview was provided in the main steps including or-
thophoto generation, solar panel detection and anomaly detection. In addition, a thorough
description and evaluation was presented on the topic of PV anomaly detection in thermal
images. Experiments demonstrated that we were able to train high-performance models
achieving a true positive rate of more than 95%. For ‘unseen’ PV sites, the true positive
rate still exceeds 90% when the PV site is similar to one or more sites from the training set,
whereas for ‘unseen’ PV sites having a dissimilar appearance, the true positive rate is still
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higher than 80%. Finally, the corresponding false positive rate for a model trained using
all of the available PV sites and tested on almost 9000 solar panels was very low (between
2% and 3%). Compared to the best state-of-the-art methods, the experiments revealed that
we achieve a slightly higher true positive rate for a substantially lower false positive rate,
while it tested for a more realistic dataset containing almost 9000 solar panels.
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