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With the popularity of computer-based testing (CBT), it is easier to collect item response
times (RTs) in psychological and educational assessments. RTs can provide an important
source of information for respondents and tests. To make full use of RTs, the researchers
have invested substantial effort in developing statistical models of RTs. Most of the
proposed models posit a unidimensional latent speed to account for RTs in tests. In
psychological and educational tests, many tests are multidimensional, either deliberately
or inadvertently. There may be general effects in between-item multidimensional tests.
However, currently there exists no RT model that considers the general effects to
analyze between-item multidimensional test RT data. Also, there is no joint hierarchical
model that integrates RT and response accuracy (RA) for evaluating the general effects
of between-item multidimensional tests. Therefore, a bi-factor joint hierarchical model
using between-item multidimensional test is proposed in this study. The simulation
indicated that the Hamiltonian Monte Carlo (HMC) algorithm works well in parameter
recovery. Meanwhile, the information criteria showed that the bi-factor hierarchical
model (BFHM) is the best fit model. This means that it is necessary to take into
consideration the general effects (general latent trait) and the multidimensionality of the
RT in between-item multidimensional tests.

Keywords: response time, response accuracy, bi-factor model, hierarchical model, between-item
multidimensional

INTRODUCTION

With the development of modern science and technology, more and more tests are switching to
computerized adaptive tests (CATs) or computer-based testing (CBT). Consequently, computers
are widely used to conveniently collect item response times (RTs) in psychological and educational
assessments (Shao, 2016). RTs can be an important source of information to respondents and
testing. More specifically, RTs can help assess the speed of respondents, detect cheating behaviors,
design better tests, and improve the accuracy of parameters estimation (van der Linden and Xiong,
2013; Fox and Marianti, 2017; Bolsinova and Tijmstra, 2018).

To make full use of RTs, much of the literature has joined RT and item response accuracy (RA)
in a unidimensional item response theory (IRT) modeling framework (e.g., Meng et al., 2015;
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Bolsinova and Tijmstra, 2018; Guo et al., 2020). Among these,
the most popular is a two-level hierarchical framework for RA
and RT (van der Linden, 2007). In the two-level hierarchical
framework, the first level consists of an RT model (i.e., lognormal
RT model, van der Linden, 2006) and an IRT model (e.g.,
two-parameter logistic model). In addition, the relationships
between the RT model and IRT model parameters are the second
level. Compared with other popular modeling methods, Suh
(2010) demonstrated that the hierarchical framework model
can produce more reasonable results in terms of empirical and
simulated data. These models are based on this assumption,
which posits only a latent dimension to account for RT or RA
(van der Linden, 2006; Klein Entink et al., 2009; Ranger and
Ortner, 2011), respectively. Specifically, the dimension affecting
RT is latent speed and the dimension affecting RA is latent ability.
Therefore, these RT and RA models in the two-level hierarchical
framework are based on a unidimensional IRT model.

In psychological and educational tests, many tests are
multidimensional, either deliberately or inadvertently (Reise
et al., 2010). It is inappropriate to analyze these tests on the
basis of the unidimensional IRT model (Sahin et al., 2015).
Consequently, some extensions based on multidimensional
perspectives on the joint hierarchical modeling approach have
been put forth. Man et al. (2019) proposed a hierarchical model
that integrates a compensating multidimensional IRT model
and a lognormal RT model using RAs and RTs. In addition,
Wang et al. (2019) integrated a Multidimensional Graduated
Response (CMRM) model into the hierarchical framework model
to analyze multidimensional health measurement data. In these
multidimensional joint hierarchical models, these RT models
are all unidimensional. Nevertheless, Zhan et al. (2020) held
that each latent speed should be paired with a latent ability in
multidimensional tests, a multidimensional lognormal RT model
was proposed based on the unidimensional lognormal RT model
(van der Linden, 2006). In the multidimensional test, items are
divided into between-item and within-item multidimensionality.
In addition to the specific latent traits measured by the different
groups of items, there is also a general latent trait that may be
measured by all items in the between-item multidimensional test.
Unidimensional or multidimensional IRT or RT models cannot
describe this feature of between-item multidimensional tests.
A suitable model is a bi-factor model that contains both general
and specific latent traits. The bi-factor model hypothesizes a
general latent trait, onto which all items load, and a series of
orthogonal (uncorrelated) specific latent traits that load different
group items (Reise, 2012). Meanwhile, the bi-factor model is
valuable and widely used in RA data from psychological and
educational tests (Chen et al., 2006; Rodriguez et al., 2016; Dunn
and McCray, 2020). Theoretically, the latent speeds of between-
item multidimensional RT data should be paired with the latent
abilities of RA data (Zhan et al., 2020). Yet, currently there
exists no RT model that provides a general effects measure for
between-item multidimensionality in RT data. Simultaneously,
there is no hierarchical framework model that integrates RT
and RA for considering the general effects of between-item
multidimensional tests. This research study is aiming to fill this
gap in the literature.

Inspired by the work of van der Linden (2006, 2007) and Man
et al. (2019), a joint hierarchical bi-factor modeling approach for
between-item multidimensional RA and RT is proposed in this
study. The proposed joint hierarchical bi-factor model that joined
a bi-factor RT model and a bi-factor IRT model is an extension
of the hierarchical modeling framework. In the bi-factor joint
hierarchical modeling framework, a bi-factor RT model and a bi-
factor IRT model are the first level, and the relationships between
the bi-factor RT model and bi-factor IRT model parameters are
the second level.

The article is organized as follows: First, the bi-factor joint
hierarchical model is described. Second, a Bayesian estimation
procedure is proposed and some simulation studies are used
to evaluate the recovery of the parameters. Third, different
hierarchical models are compared using an empirical example
based on the information criteria. Finally, the article concludes
with a discussion.

BI-FACTOR HIERARCHICAL MODEL

In psychological and educational tests, between-item
multidimensionality is found when each item measures only
one latent trait. Moreover, different grouped items measured
different specific latent traits, and a general latent trait was
measured by all items. The nature of such tests is well described
in the bi-factor model. Therefore, this study will build a joint
hierarchical model of RT and RA based on the bi-factor model in
between-item multidimensional tests.

Level 1: Bi-Factor Item Response Theory
Model
At the first level of the bi-factor joint hierarchical modeling
framework for RA, a bi-factor IRT model (Cai et al., 2011) is
specified. In the bi-factor IRT model, the probability of correctly
answering an item is influenced by a weighted linear combination
of general ability and several specific abilities, which is formulated
as

P
(
uij = 1|θgi, θsi

)
=

1
1 + exp

(
−
(
dj + agjθgi + asjθsi

)) (1)

where P
(

uij = 1|gi,si
)

is the probability of a correct answer to
item j, j = 1,. . .,m, by person i, i = 1,. . .,N. agj is the discrimination
of general ability for item j, asj is the discrimination of the sth
specific ability for item j, dj is the location parameter for item j.
θgi and θsi are the general ability and specific group ability for
person i.

Level 1: Bi-Factor Response Time Model
The lognormal RT model (van der Linden, 2006) is the
most popular model for RTs. Additionally, the lognormal RT
model assumes that the log-transformed RTs follow a normal
distribution and are unidimensional. The latent trait speed of
between-item multidimensional RT data should be paired with
the latent trait ability of RA data. The multidimensional RT
model proposed by Zhang et al. (2020) does not measure the
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general effect of all items. Therefore, a bi-factor lognormal RT
model was proposed. The bi-factor lognormal RT model is

InTij = βj −
(
αgjτgi + αsjτsi

)
+ ξij, ξij ∼ N

(
0, σ2

j

)
(2)

where τgi and τsi are the general speed and specific group speed
for person i. The item parameter j denotes time-intensity for item
j. The item parameters αgj and αsj are the slope parameters of
the general speed τgi and specific speed τsi, respectively. Within
Equation (2), lnTij is the RT of person i on item j after a log
transformation. ξij is the time residual for person i on item j
and follow a normal distribution with variance σ2

j and mean
0. Moreover, the reciprocal of the variance 1/σ2

j can also be
interpreted as the time discrimination parameter for item j.

Level 2: Modeling Person and Item
Parameters
In the bi-factor model, there is a general assumption that the
general trait and several specific traits are not correlated with each
other (Cai et al., 2011; Reise, 2012). Based on the bi-factor model
of RA and RT, the second level consists of the general latent trait
distribution, the specific latent trait distribution, and the item
parameter distribution.

The general latent trait distribution is the relationship between
general ability θgi and speed τgi for the population of test-takers,
which is assumed to draw from a bivariate normal distribution
with mean vector µIg and covariance matrix6Pg , such that

µIg =
[
µθg µτg

]
and 6Pg =

[
σ2

θg
σθgτg

σθgτg σ2
τg

]
(3)

In addition, the group latent trait distribution is the
distribution of specific ability θsi and speed τsi that is also assumed
to follow a multinormal distribution. The mean vector µIs and
covariance matrix6Ps of the multivariate normal distribution are

µIs =
[
µθs µτs

]
and 6Ps =

[
σ2

θs
σθsτs

σθsτs σ2
τs

]
(4)

Finally, the dependence of item parameters is defined as a
bivariate normal distribution in the second-level model. The
mean vector µJ and covariance matrix 6J are, respectively,
defined as:

µJ =
[
µd µβ

]
and 6J =

[
σ2
d σdβ

σdβ σ2
β

]
(5)

Within Equations (3–5), the parameters σθgτg , σθsτs , and σdβ
represent the covariance between general ability and speeds,
different specific abilities and speeds, and time-intensity β and
location parameter d, respectively. In the person parameters, all
of them mean that a positive value indicates that participants who
respond to an item quicker also have a higher latent ability (van
der Linden, 2007; Bolsinova et al., 2017). For the item parameter
σdβ, a negative value generally reflects that the harder the item,
the more time it takes.

The bi-factor hierarchical model (BFHM) has been extended
based on the hierarchical model proposed by van der Linden
(2007) and Man et al. (2019). Figure 1 displays the graphical
representation of the BFHM.

The BFHM can be simplified to a series of other hierarchical
models. When the BFHM does not have general ability and
speed (agj = 0 and αgj = 0), the BFHM can be simplified
to a complete multidimensional hierarchical model (CMHM)
with a multidimensional RT model and a multidimensional
IRT model. In CMHM, the multidimensional RT model is
reduced to a unidimensional lognormal RT model (The number
of dimensions of speed is fixed at 1, s = 1) (van der
Linden, 2006) and the CMHM is transformed into a partial
multidimensional hierarchical model (PMHM, Man et al., 2019).
Finally, when both RT and IRT models are unidimensional
models, the BFHM becomes a unidimensional hierarchical model
(van der Linden, 2007).

ESTIMATION AND MODEL SELECTION

Bayesian Estimation Using Hamiltonian
Monte Carlo Sampling
A Hamiltonian Monte Carlo (HMC) algorithm was used for
model parameter estimation. The specific HMC algorithm used
by Stan software is the no-U-turn sampler (Hoffman and
Gelman, 2014). Compared with the Markov chain Monte Carlo
algorithm, the HMC algorithm can improve efficiency and
provide faster inference (Ames and Au, 2018). In addition,
the users can also interact with Stan with various computing
environments, including R, Python, Mathematica, and other
software. All simulation data of RA and RT were generated by
R version 4.1.0. Two chains with thinning of two were executed
using 40,000 total iterations. All parameter estimates and
standard deviations from the posterior densities were computed
using the final 20,000 iterations. Rstan package was utilized
to execute the HMC algorithm for parameter estimation. The
potential scale reduction factor (PSRF) was used for evaluating
convergence for all model parameters and required less than 1.1.
(Brooks and Gelman, 1998).

Identifying Restrictions
To accurately identify the BFHM, the parameters should
be fixed to µθg = µτg = µθs = µτs = 0, and σ2

θg

= σ2
τg
= σ2

θs
= σ2

τs
= 1 (van der Linden, 2007; Cai et al., 2011).

Prior Distributions
The prior distribution for the item parameters agj, asj, αgj,
αsj and 1/σj all follow the left truncated normal distribution
N (0, 1) that is conditioned or regulated to be in the interval
(0, +∞). Due to identifying restrictions, the correlation ρθτ is
equal to the covariance σθτ. The correlation matrices 6Pg and
6Ps have a Cholesky factorization 6Pg = 6Ps = � = LL′,
where L is a lower triangular matrix. The prior distribution
on L follows a Cholesky Lewandowski-Kurowicka-Joe (LKJ)
correlation distribution L ∼ lkj_corr_cholesky(η) in Stan
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FIGURE 1 | A bi-factor hierarchical model in between-item multidimensional test.

software. In Stan software, the Cholesky LKJ correlation
distribution is defined as LkjCholesky(L|η) ∝ dJe det

(
LLT

)η−1

and the parameter η is set 1. Moreover, the item parameters dj and
βj are assumed to follow a multivariate normal distribution. The
covariance matrix SigmaI of the multivariate normal distribution

can be broken down into SigmaI =

[
σd 0
0 σβ

]
∗�∗

[
σd 0
0 σβ

]
,

where � is a correlation distribution and the lower triangular
matrix L of � follows the distribution of the Cholesky LKJ
correlation distribution L ∼ lkj_corr_cholesky(1). The hyper-
priors of the mean vector distribution are µd ∼ N(0, 0.5),
µβ ∼ N(4, 0.5), while the standard deviation σβ and σd follow
left truncated normal distribution N(0,1) and truncate above 0.

Model Fit for the Hierarchical Models
The widely available information criterion (WAIC, Vehtari et al.,
2017) and leave-one-out cross-validation (LOO, Vehtari et al.,
2017) are considered for purposes of model checking and model
comparison in this study by Stan software. Luo and Al-Harbi
(2017) indicated that the information criterion WAIC and LOO
are better than the traditional model fitting index in the IRT
model, such as the deviance information criterion (DIC), Akaike’s
information criterion (AIC), and Bayesian information criterion
(BIC). Meanwhile, the information criterion WAIC and LOO can
be calculated by Rstan and LOO packages in R software.

SIMULATION STUDY

Design of the Simulation Study
To verify the parameter recovery with the proposed estimation
method, the most complex model of BFHM was selected as the
simulation model. In this study, the simulated data included
two conditions for evaluating the parameters recovery of items
and persons. In addition, the dimension of specific ability and
speed is fixed to 3. The group items of each specific ability

and speed are equal. In simulated conditions, two levels of
the number of examinees were considered (N = 500, 1,000)
and two-level test length was simulated (m = 30, 60). For
item parameters agj, asj, αgj, αsj and 1/σj, these parameters
were sampled from a left truncated normal distribution N(0,1)
and truncated above 0. Item parameters dj and βj were drawn
from a bivariate normal distribution. The mean vector of the
bivariate normal distribution was set as 0 and 4. Moreover,
the corresponding variances were, respectively, fixed to 1 and
0.25, and the covariance was set to –0.25. For the person
parameters, the general ability θgi and speed τgi, specific ability
θsi and speed τsi, all followed a bivariate normal distribution.
The corresponding correlation coefficients were sampled from
a uniform distribution U(−1, 1). Finally, in the bi-factor IRT
model (Equation 1), the relevant parameters were substituted into
the model and the probability was calculated and compared with
a random 0–1. If it was greater than or equal to the random
number, the answer was correct as 1, otherwise, the answer error
was 0. Moreover, the mean of the logarithmic RT was calculated
by substituting the relevant parameters into Equation (2) and
combined with the variance σ2

j , the logarithmic RT (InTij) was
generated according to the normal distribution.

In our simulation study, there are a total of 2 × 2 = 4 crossed
conditions. Each condition was replicated 30 times. The mean
squared error (MSE) and the average bias (Bias) were used to
evaluate the item and person parameters recovery.

MSE
(̂
ξ
)
=

∑R
r = 1

∑m
j = 1

(̂
ξ − ξ

)2

R∗m
(6)

Bias
(̂
ξ
)
=

∑R
r = 1

∑m
j = 1

(̂
ξ − ξ

)
R∗m

(7)

Where ξ̂ and ξ are the estimated and true values of model
parameters, respectively. R is the number of replications and m
is the test length or the number of examinees.
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Results of the Simulation Study
The estimated results of the item parameters are shown in
Table 1. In different item parameters, the MSE of item parameters
decreased as the number of examinees N increased. Meanwhile,
the results of the item parameters estimation of the bi-factor
RT model were better than those of the bi-factor IRT model.
Specifically, the MSE values of the two discrimination parameters
of the bi-factor IRT model were in the range of approximately
0.040 to close to 0.010 with the number of examinees from
500 to 1,000. Under the same conditions, the MSE of the
location parameter was decreased from 0.111 to 0.01. For the bi-
factor RT model, the MSE of all item parameters was less than
0.007 in all conditions. Moreover, the absolute Bias of all item
parameters was below 0.04.

Alternatively, Table 1 also shows the results of the person
parameters. The MSE of person parameters decreased as the test
length m increased and the person parameters of the bi-factor
RT model were better than that of the bi-factor IRT model. In
different ability parameters, the general ability decreased from
0.323 to 0.213, and the different specific abilities were reduced
from approximately 0.5 to near 0.3 with increasing test length.
The corresponding different speed parameters were reduced from
about 0.1 to about 0.06. Meanwhile, the absolute Bias of the
person parameters fluctuated around 0.01.

Overall, the obtained results indicate that the HMC algorithm
can effectively estimate all parameters.

EMPIRICAL EXAMPLE

Data Set Description
Data from the partial items of the Raven’s Standard Progressive
Matrices (SPM) were used to fit the BFHM, CMHM, and PMHM.
The SPM includes five subtests (A–E) and 12 items in each
subtest. This study collected 10 items in each of the subtests A,
C, and D through E-prime 2.0, and the time limit for answering
was 30 min. Items of the 3 subtests were presented in random

TABLE 2 | The information criteria under the different hierarchical models.

Information criteria Model RA RT Total

WAIC BFHM 5,037.8 12,560.2 17,598

CMHM 5,043.5 12,740.5 17,784

PMHM 5,078.2 13,167.8 18,246

LOO BFHM 5,052.6 12,598.4 17,651

CMHM 5,059.0 12,754.9 17,813.9

PMHM 5,061.7 13,171.6 18,233.3

BFHM, the bi-factor hierarchical models; CMHM, the complete multidimensional
hierarchical model; PMHM, the partial multidimensional hierarchical model. RA,
response accuracy; RT, response time.

order. Meanwhile, the participants cannot skip the item before
answering and cannot be allowed to be returned. The three-
dimensional slope parameter-loading pattern is displayed as

S =



1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1


(8)

RESULTS

The results of the information criteria under the different
hierarchical models are presented in Table 2. According to
the values of WAIC and LOO, results showed that the value
of the BFHM was the smallest, followed by the CMHM,
and finally the PMHM (Man et al., 2019). Therefore, the
BFHM is the best model to fit the empirical data. In
other words, general effects (general latent trait) and the
multidimensionality of RTs meet the need of the between-item
multidimensional test.

TABLE 1 | MSE and Bias for the item and person parameters.

Model parameters N = 500, m = 30 N = 1,000, m = 30 N = 500, m = 60 N = 1,000, m = 60

MSE Bias MSE Bias MSE Bias MSE Bias

Item parameters ag 0.040 0.013 0.017 0.017 0.033 0.033 0.017 0.017

as 0.052 0.040 0.026 0.020 0.030 0.016 0.011 0.008

d 0.111 0.021 0.010 0.033 0.019 –0.036 0.010 –0.021

αg 0.007 0.036 0.003 0.014 0.006 0.024 0.002 –0.002

αs 0.005 0.012 0.003 0.020 0.003 0.010 0.002 0.000

σ 0.002 0.002 0.001 0.002 0.002 –0.001 0.001 –0.002

β 0.008 0.018 0.003 –0.011 0.005 –0.009 0.002 –0.007

Person parameters θg 0.323 –0.006 0.268 –0.008 0.200 0.004 0.213 0.044

θs = 1 0.464 0.014 0.458 –0.001 0.312 0.039 0.323 –0.021

θs = 2 0.490 0.015 0.497 –0.005 0.343 0.059 0.309 –0.030

θs = 3 0.525 –0.008 0.530 –0.011 0.338 0.008 0.300 –0.018

τg 0.081 0.021 0.075 –0.002 0.046 –0.019 0.046 –0.008

τs = 1 0.105 –0.003 0.103 0.010 0.067 0.003 0.068 –0.012

τs = 2 0.119 –0.019 0.152 –0.003 0.071 0.016 0.063 0.024

τs = 3 0.152 0.017 0.120 –0.017 0.062 0.012 0.058 0.005
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Finally, the structural parameters of the item and person
parameters in the BFHM were as follows: The mean of item
parameters dj and βj were µd = 3.132 and µβ = 2.460.
The item covariance matrix parameters were σ2

d = 2.743,
σ2

β = 0.449, and σ2
dβ = − 0.922, 95%CI = [−1.620,−0.498].

The covariance conversion to correlation coefficient is
ρdβ = − 0.831. This means that the more difficult the item,
the more time it takes. In addition, the correlation coefficient of
each specific ability and speed was close to 0 and the confidence
interval included 0. That is, each specific ability and speed was
independent of the other. However, the correlation coefficient
was ρθgτg = −0.181 between general ability and speed, and
the confidence interval was 95%CI = [−0.370,−0.011]. The
negative correlation between ability and speed has also been
reported in other studies (e.g., van der Linden and Fox, 2015;
Fox and Marianti, 2016). This result may be related to the test
being non-high-stakes and lacking motivation.

DISCUSSION

With the popularity of CBT, it is easier to collect item RTs
in psychological and educational assessments. RTs can provide
an important source of information to respondents and tests.
To make full use of RTs, researchers have devoted a lot of
effort to developing an appropriate RT statistical model. Most
of the proposed models posit a unidimensional latent speed
to account for RTs in tests. In psychological and educational
tests, many tests are multidimensional, either deliberately or
inadvertently. It is not appropriate to analyze these tests based
on the unidimensional joint hierarchical modeling approach.
Zhan et al. (2020) proposed a multidimensional lognormal
RT model, but they are not modeled jointly with RA. In
addition, Man et al. (2019) proposed a joint-modeling approach
that integrates compensatory multidimensional IRT model
and unidimensional lognormal RT model. The joint-modeling
approach can only be considered as a PMHM. However, in
addition to the specific latent traits measured by the different
groups of items, there is also a general latent trait that may be
measured by all items in the between-item multidimensional
test. Unidimensional or multidimensional IRT and RT models
cannot describe this feature. Simultaneously, there is no
hierarchical framework model that integrates RTs and RAs into
the joint model framework and takes into account the general
effects of between-item multidimensional tests. Therefore, a
bi-factor joint hierarchical modeling approach for between-
item multidimensional RAs and RTs is proposed in this study.
Meanwhile, the parameters of the bi-factor joint hierarchical
model can be performed well using the HMC algorithm in
simulation. Based on the two fitting indexes of WAIC and LOO,
the application of empirical data showed that the BFHM is the

best fit model. This means that it is necessary to consider the
general effects (general latent trait) and the multidimensionality
of RTs in between-item multidimensional tests.

Some other issues should also be further considered. First, the
high-order model (Huang et al., 2013) and testlet model (Zhan
et al., 2018) both also consider the general effect. Under certain
conditions, the two models are equivalent to the bi-factor model.
It is necessary to compare the fit of the three models in RA
and RT based on joint hierarchical modeling in the follow-up
study. Second, the bi-factor RT model is based on the lognormal
RT model (van der Linden, 2006). However, item RTs do not
always follow a lognormal distribution. Therefore, some other
distribution models should be considered, such as Shifted Wald
distribution (Anders et al., 2016) and the semi-parameter model
(Wang et al., 2013). Finally, the joint hierarchical model cannot
fully explain the relationship between the RT and accuracy (e.g.,
Meng et al., 2015; Guo et al., 2020). Therefore, a dependent joint
hierarchical model can be obtained with some extensions.
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