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Non-extrastriate projections to area V1 in monkeys, now demonstrated by several anatom-
ical studies, are potential substrates of physiologically documented multisensory effects
in primary sensory areas. The full network of projections among association and primary
areas, however, is likely to be complex and is still only partially understood. In the present
report, we used the anterograde tracer biotinylated dextran amine to investigate projections
to areas V1 and V2 from subdivisions of the parietal association cortex in macaque. Parietal
cortex was chosen to allow comparisons between projections from this higher association
area and from other previously reported areas. In addition, we were interested in further
elucidating pathways to areas V1 and V2 from parietal areas, as potentially contributing to
attention and active vision. Of eight cases, three brains had projections only to area V2,
and the five others projected to both areas V1 and V2.Terminations in area V1 were sparse.
These were located in supragranular layers I, II, upper III; occasionally in IVB; and in layer VI.
Terminations in V2 were denser, and slightly more prevalent in the supragranular layers. For
both areas, terminations were in the calcarine region, corresponding to the representation
of the peripheral visual field. By reconstructions of single axons, we demonstrated that
four of nine axons had collaterals, either to V1 and V2 (n = 1) or to area V1 and a ventral
area likely to be TEO (n = 3). In area V1, axons extended divergently in layer VI as well
as layer I. Overall, these and previous results suggest a nested connectivity architecture,
consisting of multiple direct and indirect recurrent projections from association areas to
area V1.Terminations in area V1 are not abundant, but could be potentiated by the network
of indirect connections.
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INTRODUCTION
An increasing number of physiological studies in humans and
monkeys have provided evidence of multisensory processing in
primary or early sensory areas (Lomber et al., 2010; Molholm and
Foxe, 2010; Shams and Kim, 2010). Auditory–visual (e.g., Ghaz-
anfar et al., 2005), auditory–somatosensory (Foxe et al., 2002),
and visual–somatosensory interactions (Merabet et al., 2008) have
been extensively investigated. The anatomical substrates of these
interactions are likely to include projections between primary

Abbreviations: A1, primary auditory area; AP, anteroposterior (stereotactic direc-
tion); BDA, biotinylated dextran amine; CF, calcarine fissure; DV, dorsoventral
(stereotactic direction); IPL, inferior parietal lobule; ML, mediolateral (stereotactic
direction); MT, middle temporal area; Opt, cortical area Opt of Pandya and Seltzer
(1982); OTS, occipito-temporal sulcus; PEc, cortical area PEc of Pandya and Seltzer
(1982); PF, cortical area PF of Pandya and Seltzer (1982); PFG, cortical area PFG of
Pandya and Seltzer (1982); PG, cortical area PG of Pandya and Seltzer (1982); S1,
primary somatosensory area; SPL, superior parietal lobule; STP, superior temporal
polysensory area of Bruce et al. (1981); TEO, cortical area TEO of Von Bonin and
Bailey (1947); TF, cortical area TF of Von Bonin and Bailey (1947); TH, cortical area
TH of Von Bonin and Bailey (1947); V2L, lateral part of the secondary visual area
in rodents; V2M, medial part of the secondary visual area in rodents; WGA-HRP,
wheat germ agglutinin-horseradish peroxidase conjugated.

cortices of different modalities as well as from cortical association
areas to primary cortex. Projections to area V1 have been demon-
strated from both early auditory and multisensory association
areas in several anatomical studies in monkeys (auditory cortex:
Falchier et al., 2002; Rockland and Ojima, 2003; area STP in the
superior temporal sulcus: Falchier et al., 2002; perirhinal cortex:
Clavagnier et al., 2004; and areas TF and TH in the parahippocam-
pal gyrus: Doty, 1983; Kennedy and Bullier, 1985; Rockland and
Van Hoesen, 1994; and in New World monkeys, Lyon and Kaas,
2002). Projections have been reported from visual area V2 to non-
primary auditory cortex in monkey (Rockland and Ojima, 2003;
Falchier et al., 2010), sparsely between areas V1 and several audi-
tory areas in ferrets (Bizley et al., 2007), and from areas V2M and
V2L to primary auditory cortex in rodents (rats: Smith et al., 2010;
mice: Banks et al., 2011). Overall, results so far suggest that there
are cross-modal projections originating from both association and
primary cortical areas, but that those from association cortices are
more abundant.

In the present report, we use anterograde tracers to investi-
gate projections to areas V1 and V2 from subdivisions of parietal
association cortex in monkeys. The parietal cortex is characterized
by a high degree of multisensory and sensorimotor integration
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for action organization (Fogassi and Luppino, 2005; Rozzi et al.,
2008; see Table 1). Thus, we were interested in identifying features
of parieto-visual projections, as possible substrates of phenom-
ena such as shifting spatial attention (see, e.g., Andersen and
Buneo, 2002; Berman and Colby, 2009). Anterograde tracers pro-
vide direct evidence of density of terminations; and the injection
sites can be more easily confined to a given area, in contrast with
retrograde tracers in area V1, which often involve adjoining area
V2. We have also carried out reconstructions of nine single axons
in order to provide new information about detailed topography,
possible collateralization to multiple areas, extent of terminal field,
and laminar organization. Some of these data were presented
schematically in a previous short report (Rockland and Ojima,
2003).

MATERIALS AND METHODS
Eight young adult macaque monkeys received injections of the
anterograde tracer biotinylated dextran amine (BDA) in different
parts of the inferior parietal lobule (IPL) and in the superior pari-
etal lobule (SPL). Procedures were in accordance with institutional
guidelines, as specified in approved Animal Care and Use Forms
(University of Iowa).

Surgery was carried out under sterile conditions after the ani-
mals were deeply anesthetized with barbiturate anesthesia (Nem-
butal, 25 mg/kg i.v.) preceded by a tranquilizing dose of keta-
mine (11 mg/kg i.m.). Cortical areas of interest were localized
by direct visualization, subsequent to craniotomy and durotomy,
in relation to sulcal landmarks (i.e., intraparietal sulcus and lat-
eral fissure). Injections of BDA [10% in 0.0125 M phosphate-
buffered saline (PBS; 1:1 mix of 3,000 and 10,000 MW), 0.5–
2.0 μl per injection; Molecular Probes] were made by pressure
via a 10-μl Hamilton syringe. One to three injections were made,
with total tracer volumes of 1.0–2.5 μl per craniotomy. Animals

Table 1 | Functional properties of the injected areas.

Area Properties

PF Organization of eating behavior. Somatosensory information instru-

mental to the execution of appropriate food-related or explorative

mouth motor acts1

PFG Organization of hand and hand-to-mouth actions, aimed to manipu-

late and interact with objects on the basis of their physical prop-

erties, their location in peripersonal space and their behavioral

value1

PG Organization and control of “reaching-with-the arm and the eye” at

the limit between the peri- and extrapersonal space, on the basis of

several visual information about the position, motion, and behavioral

values of the target stimuli1

Opt Coding of eye- and arm-directional visuomotor signals. Integration

and transformation of retinal and extra-retinal signals to head-, body-

or world-centered coordinates2

PEc Somatosensory and visuomotor processing for the early stages of

motor control for arm movements toward targets in the peripersonal

space3

1Rozzi et al. (2008); 2Battaglia-Mayer et al. (2007); 3Breveglieri et al. (2008).

were administered postsurgical doses of antibiotics and anal-
gesics, allowed to recover, and survived 18–29 days after injec-
tions. They were then re-anesthetized, given an overdose of Nem-
butal (75 mg/kg) and perfused transcardially, in sequence, with
saline containing 0.5% sodium nitrite, 4% paraformaldehyde, and
chilled 0.1 M phosphate buffer with 10, 20, and 30% sucrose.

Brains were cut serially in the coronal plane by frozen micro-
tomy (at 50 μm thickness) and processed histologically for BDA
(Ding et al., 2000). To develop BDA, tissue was reacted for 20–
24 h in avidin-biotin complex (ABC Elite kits; Vector Laborato-
ries, Burlingame, CA, USA) at room temperature (one drop of
reagent per 7 ml of 0.1 M PBS with 0.5% Triton-X). In the final
step, BDA was demonstrated by 3,3′-diaminobenzidine tetrahy-
drochloride (DAB) histochemistry with the addition of 0.5%
nickel-ammonium sulfate (yielding a black reaction product).

The parietal injections as a group covered almost the full extent
of the IPL (see Figure 1), from caudal (Cases P5 and 35) to rostral
(Case 28). In correlation with previous studies, these injections
were considered to involve parts of areas Opt, PG, PFG, and PF
(Pandya and Seltzer, 1982; Gregoriou et al., 2006; and see review in
Lewis and Van Essen, 2000). One injection was placed in SPL, area
PEc (Pandya and Seltzer, 1982). All the injection sites used in this
study were restricted to the cortical gray matter, and involved the
entire cortical thickness or at least layers II-upper VI. Results from
these injections have been used also in previous studies (Rockland
and Van Hoesen, 1999; Ding et al., 2000; Rockland and Ojima,
2003; Zhong and Rockland, 2003).

Axon reconstruction was carried out as previously described
(Ding et al., 2000; Rockland, 2002; Zhong and Rockland, 2003).
That is, sections were scanned with a 10× or 20× objective to
identify labeled processes in the gray matter. Candidate axons were
then reconstructed through sequential sections, by aid of a cam-
era lucida microscope attachment. Both intermediate (200×) and
higher magnifications (400× or 1,000×) were used selectively,
and data images on paper were adjusted and merged manually
by xerox or by Adobe Photoshop, after scanning and digitizing.
Axon dimensions [anteroposterior (AP), dorsoventral (DV), and
mediolateral (ML)] are derived as a “hollow” or bounded figure.
Usually, terminations are not continuously distributed within this
bounded space, but occur sporadically and in patches. Reconstruc-
tions were deemed complete or “reasonably complete” if we could
identify the main axon as it traveled from the white matter into the
cortex, and if we could verify that we had traced various branches
to their end point. The criteria for end points were: (1) the appar-
ent end point was not at the top or bottom of the section, or (2)
the profile of interest could no longer be found in the adjacent
section. Incomplete branches are designated by black circles.

Both areas V1 and V2 are easily identified, except for the ros-
tral border of V2. This border was conservatively judged as about
6.0 mm from the border with V1, and further evaluated with ref-
erence to other studies (Gattass et al., 1981; Van Essen et al., 1984;
Horton et al., 1999). In this report, we use “early sensory areas”
to designate V1 and V2 together. “Association cortex,” unless oth-
erwise specified, is used globally for both higher and lower order
areas, as defined by synaptic proximity to the primary area.

The photomicrographs shown in the present study were
obtained by capturing images directly from the sections using
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FIGURE 1 | Summary of the parietal injection sites used for this

study. At left, the BDA injections (n = 8) are schematically mapped
onto a lateral view of a macaque monkey left hemisphere. A schematic
mapping of parietal lobe subdivisions is shown at the right, as adapted
from Pandya and Seltzer (1982) and Gregoriou et al. (2006). AMTS,

anterior middle temporal sulcus; CS, central sulcus; IAS, inferior arcuate
sulcus; IOS, inferior occipital sulcus; IPS, intraparietal sulcus; LF, lateral
fissure; LS, lunate sulcus; PMTS, posterior middle temporal sulcus; PS,
principal sulcus; SAS, superior arcuate sulcus; STS, superior temporal
sulcus.

a digital camera (AxioCam HRC) attached to the microscope
(Zeiss Axioskop 2 plus). Individual images were then imported
into Adobe Photoshop so that they could be processed, eventu-
ally assembled into digital montages, and reduced to the final
enlargement. In most cases, image processing required lighting,
brightness, and contrast adjustments. These were matched to the
real microscope image.

RESULTS
GLOBAL TOPOGRAPHY OF PARIETAL PROJECTIONS TO THE CALCARINE
FISSURE (CF)
Seven large injections were made so as to cover most of the IPL
(Figure 1). The rostralmost injection was at the border of areas
PF/PFG (Case 28), two injections were judged to be fully in area PG
(Cases 29 and 34), three injections involved part of both areas PG
and Opt (Cases 26, 31, and P5), and one injection was restricted to
area Opt (Case 35). One injection was located in the SPL, in area
PEc (Case P4).

Among these eight cases, the smaller injections involving only
part of Opt (Case 35) or PG (Cases 29 and 34), had projections
only to area V2 in the CF. The five other injections, projected to
both areas V1 and V2. None projected only to V1. Results are
summarized in Table 2.

Projections to area V2
Projections from the two PG cases (29 and 34) were principally
dorsal in the CF (Figure 2, Case 29). From the rostral part of V2,
terminations were detected almost continuously toward the cau-
dal pole for 9.0 mm (Case 34) or 11.0 mm (Case 29). At rostral
levels, terminations were at or near the border with V1, and more
caudally, these extended onto the medial interhemispheric wall.
In Case 34, but not 29, there was an additional small cluster of
terminations in ventral V2, rostrally, near the border with V1.

Table 2 | Presence and dorsal/ventral location in the CF of the

labeling in V1 and V2.

Case Injected area V1 V2

28 PF/PFG d, v d

34 PG – d, v

29 PG – d

35 Opt – d

31 PG/Opt d, v d, v

26 PG/Opt d, v d, v

P5 PG/Opt d, v d, v

P4 PEc d d

Bold indicates the prevalent location of the labeling.

The Opt injection (Case 35) also produced terminations in dor-
sal V2. These were at the border with V1, rostrally, and persisted
for about 5.0 mm caudally. With caudal progression, these shifted
away from the border, to the adjacent medial wall.

Projections to areas V1 and V2
Figure 2 shows two representative cases (28 and P5) of the ter-
mination pattern in area V1. That is, terminations occurred far
rostrally in the CF and continued caudally for about 12.0 mm
(Cases 26 and P5) or 7.0 mm (Case P4, injection in PEc). With
caudal progression, terminations shifted from the dorsal V1/V2
border to the depth of the CF. In Case 31, however, the terminal
focus persisted as a strip, about 5.0 mm long, adjoining the border
with V2 and did not extend to the rostralmost V1.

The terminal focus in V2 mirrored that in V1 (Figure 2); that is,
terminations (1) were at the upper bank of the CF, (2) were located
at the V1/V2 border rostrally, (3) shifted onto the medial inter-
hemispheric wall with caudal progression, and (4) extended along
a strip of cortex about 7–8 mm long. In Case P4 (see Figure 4), with
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FIGURE 2 | Drawings of representative coronal sections to indicate

location of anterograde labeling (red crosses = labeling in V1, green

circles = labeling in V2), resulting from injections at different

rostrocaudal levels of the IPL (from rostral to caudal, Cases 28, 29, and

P5). Sections are in a rostral to caudal order, from left to right. Short lines

mark dorsal and ventral borders between V1 (gray shading) and V2. Black
region in the third section of Case P5 indicates part of the injection site. The
caudal extension of the lateral ventricle appears in gray, in the rostral sections.
CF, calcarine fissure; Cg, cingulate sulcus; OTS, occipito-temporal sulcus;
POS, parieto-occipital sulcus. Other abbreviations as in Figure 1.

an injection in area PEc, terminations were restricted to a smaller
zone, only about 2.0 mm long. For Cases P5 and 26 (injections lat-
erally in PG and adjoining Opt), some terminations also occurred
in ventral V2 (Figure 2, for Case P5), forming two foci. One rostral
focus was near the border with area prostriata, extended caudally
for only about 2.0 mm, and remained at the border location. A
second focus occurred 3–5 mm caudal (or, 5–7 mm from the ros-
tral border of V1), and was detected for about 7–9 mm (Figure 5,
for Case 26).

Relation to visual field
Extrapolating from published visual field maps (Gattass et al.,
1981; Van Essen et al., 1984; Horton et al., 1999), we can infer:
(1) that areas PF-PFG and PG-Opt project to V1 from the far
periphery representation to about 20˚ of eccentricity (12 mm), (2)

that there is a strong preference for the lower visual field (upper
bank of the CF), (3) that there is some preference for the vertical
meridian representation, especially in the far periphery (rostral
CF), and (4) that the terminal focus typically shifts away from the
vertical meridian representation with caudal progression. Simi-
lar conclusions hold for area V2, except that some parts of area
PG/Opt have projections as well to the upper visual field (lower
bank of the CF). Area PEc appears to have less extensive projections
than the areas in the IPL. These are directed to the lower vertical
meridian representation in V1 and V2, from the far periphery into
about 25˚ of eccentricity.

Laminar distribution of terminations and cells
Terminations in area V1 were in supragranular layers I, II, upper
III, and in layer VI. As illustrated below in Figures 4A,B, and
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5A, reconstructions of individual axons revealed that terminations
could be bistratified, but there was also one axon with termina-
tions exclusively in layer VI. Boutons could be detected in the
subgriseal white matter (Figure 3F), and along the trunk of the
axon as it ascends to the pia. Surprisingly, a few boutons occurred
also in layer IV (Figure 3A). In V2, terminations were denser, with
some slight prevalence for the supragranular layers (Figure 3E).
Again, a few boutons occurred along the main ascending axon
trunk, including in layer IV. Some very sporadic retrograde label-
ing was noticed in dorsal V2, mainly in deep layer III (Cases 31
and 35). This can be taken as evidence of reciprocal projections
from V2 to the injection site. Since BDA only sporadically results
in retrograde labeling (“BDA gives a capricious retrograde label-
ing,” Vercelli et al., 2000), the number of labeled cells is likely to
be less than what would be seen after injections of a conventional
retrograde tracer in parietal areas (compare Figure 4 in Cavada
and Goldman-Rakic, 1989).

SINGLE AXON RECONSTRUCTION
Nine axons were analyzed by serial section reconstruction, from
Cases P4, P5, 26, and 28 (Figures 4 and 5). Four partial reconstruc-
tions (of segment length ∼2.0 mm) were available for comparison.
By this approach, individual arbors are revealed to be highly diver-
gent (range: 1.5–3.5 mm AP, 4.0–12.0 mm DV). The nine axons
(with one additional, illustrated in Figure 3, Rockland and Ojima,
2003) exhibited a high degree of non-uniformity in their specific
geometry and laminar distribution. In addition, reconstruction
showed that some axons could be restricted to V1, whereas others
had collaterals to V1 and an extrastriate area (V2 or TEO). For
five axons with apparent arborization only in V1, the possibility
remains that there are collaterals to V2 or another areas, from
branches deep in the white matter.

One axon from P5 (Figure 4A) had three distinct clus-
ters restricted to layer VI of area V1. These each measured
slightly > 1.0 mm DV × 0.3–0.75 mm AP, with a center-to-center
spacing of about 2.0 mm. The number of boutons was counted as
2,880.

Two axons had terminations in V1 along with an additional
collateral beyond the CF. This was followed in the white matter to
a dense termination focus in the occipito-temporal sulcus (OTS),
likely to be area TEO (see also Figure 3,Rockland and Ojima,2003).
One of these axons had terminations in layer I alone (0.5 mm
DV × 2.5 mm AP; Figure 4C; total boutons = 1,722); and the other
(not illustrated) had a small collateral in layer VI as well as the main
terminal focus in layer I (0.5 mm DV × 1.5 mm AP). A third axon,
previously illustrated in Figure 3 of Rockland and Ojima (2003),
terminated in layer VI alone (1.0 mm DV × 0.75 mm AP).

Five axons had terminations in layers I, II, and VI of area V1
(Figures 4B, 5A). Terminations often formed small arbors, espe-
cially in layer VI. These were of variable size and spacing, with
some tendency for a center-to-center spacing of about 2.0 mm.
For the axon shown in Figure 4B, 1,696 boutons were scored in
the upper layers and 1,072 in the deeper layers (total = 2,768). One
of these axons (Case 28; not illustrated) had three small, spatially
separate arbors in layer IVB, as well as in layers I, II, and VI.

Finally one axon (Case 26) had terminations in both areas V1
and V2. The portion in area V1 was restricted to a small collateral

in layer I (Figure 5B, section 80), but the main trunk continued
rostrally for another 10.0 mm, into V2, where five further branches
were identified (sections 280, 303, 323, 351). The branches were
each separated by approximately 1.0 mm AP, but finer branching
and terminations could not be followed in this case.

Relation to visual field
Five of the axons in our sample had an asymmetrical spatial extent,
estimated as slanted-perpendicular to the horizontal meridian.
One axon (Figure 4B) was more symmetrical, having extension
measured as 3.1 mm × 3.0 mm. The three axons from Case P5
with collaterals to the OTS region had arbors that were more
restricted (∼0.5 mm), but with a slight bias for the AP dimension
(1.5–2.5 mm).

The visual map as extrapolated from the literature can be
expected to vary in the individual animals. However, as the hori-
zontal meridian is usually located just dorsal to the fundus of the
CF (Gattass et al., 1981), we can note that the axon in Figure 4A
may lie near the horizontal meridian; the axon in Figure 4B closer
to the lower vertical meridian representation, and the axon in
Figure 4C, in the upper visual field. Although the global termi-
nation pattern is biased to the lower visual field, many of the
axon reconstructions are close to the location of the horizontal
meridian.

Several of the axons had multiple arbors, arranged in a patchy
distribution. Patchiness was particularly conspicuous for arbors
in layer VI. The axon illustrated in Figure 4A had three arbors
in layer VI; the axon in Figure 5A had three rather large arbors in
layer VI (about 0.5 mm edge to edge) and three smaller ones. Layer
VI arbors are typically offset from those in the upper layers. The
patches in layer VI are consistent in their spacing (about 2.0 mm
center-to-center) with that of a left-eye, right-eye hypercolumn.

DISCUSSION
Several earlier studies reported that area V2 in monkeys was con-
nected with frontal or parietal association cortex. Most of these
studies reported labeled neurons in area V2 after retrograde tracer
injections, in frontal cortical areas (Barbas, 1988; Schall et al., 1995)
or parietal areas (Cavada and Goldman-Rakic, 1989; Baizer et al.,
1991; Lewis and Van Essen, 2000). Neurons in V2 were located in
the vicinity of the CF, corresponding to the far peripheral visual
field representation, consistent with the present findings. In one
study, anterogradely labeled terminations were remarked in cal-
carine area V2, after injections of tritiated amino acids in the
frontal eye fields (Stanton et al., 1995). None of this earlier work
detected connections to or from area V1. This is not surprising,
since the anterograde signal from tritiated amino acids or WGA-
HRP is dustlike, and would be hard to distinguish from noise in
the case of light projections, such as occur in area V1. Moreover, as
stated above, most of these earlier investigations used retrograde
tracer injections in parietal or frontal areas. If the projections to
area V1 are not reciprocal, no labeled neurons would result in V1.

In more recent work, projections have been documented to pri-
mary auditory cortex (A1) in rodents from extrastriate visual areas
(Smith et al., 2010; Banks et al., 2011); to A1 in ferrets from both
primary visual and higher order visual areas, but only sparsely
from the former (Bizley et al., 2007); and to caudal auditory areas
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FIGURE 3 | Photomicrographs of axons in the CF, anterogradely

labeled by BDA injections in IPL. (A,B) Two sequential sections from
ventral V1 (see Figure 4C). Labeled segments are visible in all layers
(arrowheads). Higher magnification (insets) show terminations in
layer IV (A) and I, II (B), where the hollow arrows point to corresponding
features at the two magnifications. (C) Another field of BDA labeling in V1.
Terminations in layer I (hollow arrow) are shown at higher magnification
in (D). (E) A field of BDA-labeled terminations in dorsal V2. Arrowhead

indicates an ascending axon segment. (F) BDA-labeled terminations in layer VI
of area V1. The dashed line indicates white matter border (WM). (G) A field of
labeled axon segments in the white matter subjacent to V1. Inset, from hollow
arrow, shows five segments at higher magnification. (E) is from Case 28, all
the other examples are from Case P5. Scale bar in (A) applies to (B) and (C)

(200 μm); scale bar in the inset in (B) applies to inset in (A) (10 μm); scale bar
in (D), applies to (F) and inset in (G) (100 μm). Scale bars in (E) and
(G) = 100 μm.
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FIGURE 4 | Continued.

from visual area V2 and prostriata in monkeys (Falchier et al.,
2010). In the prairie vole, a behaviorally specialized rodent, direct
connections have been shown from both V1 and S1 to A1, and

from A1 and S1 to V1, but these are described as “moderate to
sparse” (Campi et al., 2010); and in the gerbil, from both S1 and
V2 to A1 (Budinger et al., 2006). In monkeys, anterograde tracer
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FIGURE 4 | Camera lucida reconstructions of three axons in area V1 (CF),

anterogradely labeled by injections of BDA in PG/Opt, Case P5 (A,C), and

PEc, Case P4 (B). The reconstructions are tilted slightly, relative to the section
outlines, for the sake of formatting, and correspond to the orientation of the
dorso-medial directionality compass; for the coronal section outlines dorsal is
at the top. The axon in (A) extends over a territory measuring about 5.0 mm
DV by 1.5 mm AP. Three distinct foci can be discerned (hollow arrows), all
restricted to layer VI, and separated by 1.5-2.0 mm, center-to-center. The axon
in (B) is again divergent, and extends over a territory measuring 3.1 mm ML
by 3.0 mm AP. For this axon, terminations are distributed in both the supra-
and infragranular layers. Three supragranular foci (hollow arrows) can be
identified, separated by 1.0–1.2 mm center-to-center; and there is also a
suggestion of three infragranular foci. The axon in (C) has terminations almost
confined in layers I, II (except for a few boutons along the main axon, in layer
IV, see Figure 3A). Its terminations are slightly more local, concentrated over
a territory of 0.5 mm DV by 2.5 mm AP. Also distinctive, a second collateral
(short, solid arrow) continues to a projection focus in the OTS (at section 313),

approximately 5 mm rostral. For this axon, the main axon was followed
caudally for another 1.7 mm (to section 179), toward the injection site. (See
photomicrograph, Figures 3A,B). In this and the next figure, the asterisk and
small dashes denote the main axon [section 83 in (A), 199 in (B), 179 in (C)].
Numbers correspond to individual sections, where larger numbers are rostral.
The black regions in sections 258 [in (B)] and 220 [in (C)] correspond to part of
the injection site. The reconstruction was deemed complete, except as
designated by solid black circles. The approximate location of the axons is
marked on the numbered coronal section outlines. Short lines on the external
border of the cortex indicate the V1–V2 border. White matter (WM) is marked
by dashed lines, for the section level indicated by the number. A broken line of
short dashes (with numbers in italics) is used to distinguish segments of
axons which are offset in the z -axis, but appear to overlap in this collapsed,
2-dimensional image. In (B) and (C), thick lines indicate the pial surface
(“pia”), drawn at the section indicated by the number. Orange circles and red
crosses indicate the location of labeling both in V1 but in different sections.
Other conventions as in Figure 2.

injections in both early auditory areas (Rockland and Ojima, 2003)
and parietal association areas (present report) resulted in denser
terminations in V2 than in V1. Retrograde tracer injections in the
calcarine area in monkey result in retrogradely labeled neurons
in both primary and association auditory cortex (Falchier et al.,
2002), but the injections were large and may have involved some
of V2.

Single axon reconstruction reveals that the axons projecting
from parietal areas to V1 are highly divergent, with the exception
of a small group shown to have collaterals to V1 and an extrastriate
area in the OTS. This high degree of divergence is characteristic of
projections to layer I, as often described for feedback projections
within the visual system; for example, projections from area MT
(Rockland and Knutson, 2000), area TEO (Rockland et al., 1994)
or more anterior temporal areas (Rockland and Drash, 1996). One
axon in our present sample had demonstrable branches in both
area V1 and V2, also consistent with previous reports of collater-
alized visual feedback projections (Rockland and Knutson, 2000).
Projections to A1 from extrastriate visual areas in the rat are shown
by axon reconstruction to travel for considerable distance in layer
I (Smith et al., 2010).

Unusually, however, the axons in our sample could have termi-
nations along the ascending portion of the main trunk (Figure 3).
This has been reported for at least one other layer I-targeting
projection; namely, projections from hippocampal CA1 to frontal
cortex in monkeys (Zhong et al., 2006). The parallel fibers in the
cerebellum also have boutons along their ascending portion; and
in one interpretation, this ascending portion has been argued to
have a greater functional influence in Purkinje cell excitation than
the parallel fiber beam (Rokni et al., 2008).

Six of the reconstructed axons in this study had a distinct asym-
metry, with a significantly greater extension in the DV dimension.
This appears as outlining the upper and lower banks of the CF,
when it is sectioned coronally; that is, traveling away from the
vertical meridian representation at the V1/V2 border, deeper into
the visual field, toward the horizontal meridian representation.
Another feature evident from the single axon analysis was a rather
distinct modularity, especially in layer VI. This was most conspic-
uous for the axon illustrated in Figure 4A, where arbors were
confined exclusively to layer VI; but the profiles in Figures 4B and

5A also had patchy terminal foci in layer VI. These patches are
separated by approximately 2.0 mm center-to-center, which could
be correlated with the classical hypercolumns and thus argue for a
specifically visual function.

Another important clue to the functional importance of these
connections would seem to be the selective targeting of the periph-
eral visual field and the lower visual field representation. Func-
tional specialization of the lower and upper visual quadrants is
well known (Previc, 1990): the lower visual quadrant (dorsal cor-
tex) has been linked with global vision in peripersonal space,
whereas the upper visual quadrant (ventral cortex) is associated
with local perceptual mechanisms and far visual space (Previc,
1990; Christman and Niebauer, 1997). It is reasonable that parietal
areas, considered as concerned with sensorimotor integration and
motor planning in near peripersonal space (Fogassi and Luppino,
2005) favor the dorsal CF.

Specialized connectivity in relation to the peripheral visual field
is not unusual. Differential projections have been identified in the
marmoset monkey for area MT, in its peripheral and central visual
representations (Palmer and Rosa, 2006). In macaque monkeys,
the projections from MT to V1 have been shown to have dual,
eccentricity related laminar patterns: those to peripheral field rep-
resentations of V1 terminate in layers I, IVB, and VI, but those
to more central representations terminate only in layers IVB and
VI (Maunsell and Van Essen, 1983; Ungerleider and Desimone,
1986; Shipp and Zeki, 1989; Krubitzer and Kaas, 1990; Rockland
and Knutson, 2000). Furthermore, the peripheral visual field of
the early visual areas is the target of projections from STP and
auditory areas (Falchier et al., 2002; Rockland and Ojima, 2003).

Previous investigations using both retrograde tracer injections
in V1 (Rockland and Van Hoesen, 1994) and anterograde tracer
injections in area TEO (Distler et al., 1993; Rockland et al., 1994)
documented projections to area V1 from TEO, but not to cal-
carine V1. Lack of projections from TEO to areas V1 or V2 in the
CF would be consistent with the predominance of central visual
representation in TEO (Boussaoud et al., 1991).

Inferior parietal lobule convexity areas have in common the
functional property of generating motor representations integrat-
ing sensory and motor inputs. These representations can be used
for organizing actions in space or they can remain at the level of
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FIGURE 5 | Continued

pure representation subserving the understanding of space rela-
tions and actions of others in a subject-centered perspective (Rozzi
et al., 2008). Action planning in the parietal cortex may influence
perception in the visual periphery with a broad effect on a relatively
large visual field representation. It may have a role in modulating
peripheral visual stimuli in relation to the planned action, or in the

context of top-down shifting spatial attention (see, e.g., Andersen
and Buneo, 2002; Berman and Colby, 2009; in humans Rushworth
et al., 2001; for attentional processes in V1 see, e.g., Silver et al.,
2007; Roelfsema et al., 2010).

Multisensory effects have been discussed in the context of sen-
sory integration and, in particular, shown to be associated with
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FIGURE 5 | Camera lucida reconstructions of two axons terminating

in the CF, anterogradely labeled by injections of BDA in parietal areas

PF/PFG, Case 28 (A) and PG/Opt, Case 26 (B). Both these axons are
widely divergent. The axon in (A) extends over a territory 11.0 mm DV by
3.5 mm AP. Terminations are limited to V1, but occur in both supra- and
infragranular layers. Four main foci can be discerned, separated by variable
intervals of about 0.3–3.0 mm. The axon in (B) has a small terminal focus
in layer I of V1 (around section 80), but has terminations mainly in layer I

of V2. In V2, four collaterals (short, solid arrows), spaced about 1.0 mm
apart (AP), extend variable distances from the ventral V1/V2 border. The
total extent of this axon is 13.0 mm AP by 3.6 mm DV. Dashes at sections
179–212 indicate a gap (in the summary reconstruction, but not in the raw
data), where a portion of the axon has not been depicted, for the sake of
space. Asterisk denotes the main axon, which was followed toward the
injection site until section 160 (almost 4 mm rostral). Conventions as in
Figures 2 and 4.

reductions in reaction time speed (Wang et al., 2008; Sperdin
et al., 2009). In addition, somatosensory inputs to area A1 appear
to function as a phase reset of ongoing neuronal oscillations, with
the result that accompanying auditory inputs arrive during a phase

of high excitability, with amplified neuronal effects (Lakatos et al.,
2007). There are similar findings for visual to auditory inputs
(Kayser et al., 2008). Recordings of multi-unit activity and sin-
gle unit responses in the caudal auditory belt, concurrent with
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audio-visual movies, result in a depression of auditory responses
by visual stimulation (Kayser and Logothetis, 2007).

CONCLUSION
Areas V1 and V2 in the CF receive a wide network of non-
extrastriate connections, both from modality related auditory and
somatosensory areas, and from higher order association cortices.
These may be implicated, directly and/or indirectly, in multiply
interconnected neural networks.

The projections demonstrated in this report are not dense,
especially those to area V1. However, there are precedents where
numerically few cells are known to exert a distinct influence; for

example, the sparse population of cholinergic interneurons in the
nucleus accumbens (Witten et al., 2010). The projections to V1
might also be potentiated by the recurrent network of direct and
indirect connections; that is, sparse direct projections to V1 may
be reinforced via projections to V2 or other areas, projecting in
turn to V1 or V2 or both.
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