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A Facile Stereoselective Total Synthesis of (R)-Rugulactone
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An efficient and novel synthesis of (R)-rugulactone has been achieved employing Sharpless asymmetric epoxidation of allyl alcohols
followed by selective hydride reduction of epoxy alcohols and olefin cross metathesis reactions.

1. Introduction

The 6-alkyl and aryl substituted 𝛼-pyrones (6-arylalkyl-
5,6-dihydro-2H-pyran-2-ones) possess important biological
properties such as antitumor, antiviral, antifungal, and anti-
inflammatory [1–12]. These properties arise as a result of
Michael acceptor property of 𝛼-pyrones towards the amino
acid residues of the receptors. The biological assays of 6-
arylalkyl-5,6-dihydro-2H-pyran-2-one, (R)-rugulactone (1),
which has been extracted from the evergreen tree Crypto-
carya rugulosa [13] of Lauraceae family, have been found to
inhibit the nuclear factor (NF-𝜅B) activation pathway occur-
ring in different types of cancers [14–18]. Due to the attractive
biological activity of (R)-rugulactone (1) (Figure 1), several
total syntheses have already been reported in the literature
[19–25]. In those reported syntheses the chiral center was
created by different means: by Jacobsen’s hydrolytic kinetic
resolution of epoxides [19], by Keck’s asymmetric allylation
[21], by proline catalyzed 𝛼-aminoxylation [22] of aldehydes,
by enzymatic resolution of racemic homoallylic alcohols [23],
and by using a chiral pool [24, 25]. In this communication,
we describe the stereoselective synthesis of (R)-rugulactone
starting from inexpensive starting materials. The Sharpless
asymmetric epoxidation of allyl alcohols followed by selective
hydride reduction affords 1, 3-diols with high stereoselectiv-
ity.These chiral 1, 3-diols are versatile synthetic intermediates
for a variety of biologically active molecules [26–28].The ret-
rosynthetic strategy of our synthesis is depicted in Scheme 1,

which involves Grubb’s crossmetathesis between compounds
11 and 12.

2. Materials and Methods

2.1. General Information. Solvents were purified and dried
by standard procedures before use. Optical rotations were
measured using sodium D line on a JASCO-181 digital
polarimeter. IR spectra were recorded on Thermo Scientific-
Nicolet 380 FT-IR Instrument. 1H NMR and 13C NMR
spectra were recorded on Brucker AC-200 spectrometer.
Elemental analysis was carried out on a Carlo Erba CHNS-O
analyzer. Full experimental details, 1H and 13CNMR spectra,
can be found in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/767954.

2.2. ((3S)-3-(2-(Benzyloxy)ethyl)oxirane-2-yl)methanol, 4. (−)-
Diethyl tartarate (0.2 g, 1mmol) and Ti(O-iPr)

4
(0.23 g,

0.8mmol) were added sequentially to a suspension of 4 Å
molecular sieves (3 g) in CH

2
Cl
2
(20mL) at −20∘C and the

suspension was stirred for 30min. A solution of compound
3 (0.6 g, 2.6mmol) in dry CH

2
Cl
2
(15mL) was then added

dropwise at the same temperature followed by the addition
of tBuOOH (0.45 g, 2mmol) and the reaction mixture was
stirred for 12 h at −10∘C. When the starting material was
not observed on the TLC, the reaction was quenched with
20% NaOH solution saturated with NaCl (1mL) and the
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Figure 1: (R)-Rugulactone (1).
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Scheme 1: Retrosynthesis of (R)-rugulactone.

reaction mixture was stirred vigorously for another 30min
at RT. The resulting reaction mixture was filtered through
Celite, the solvent was evaporated, and the crude product
was purified by column chromatography over silica gel (60–
120mesh, EtOAc/hexane 3 : 7) to afford pure epoxy alcohol 4
in 87% yield (0.54 g); [𝛼]D

25: + 16.9 (c 0.6, CHCl
3
); IR (neat):

] 3478, 3125, 3053, 2920, 1585, 1267, 1250, 1192, 1124, 1094, 845,
790, 744 cm−1; 1H NMR (200MHz, CDCl

3
): 𝛿 1.87–1.97 (m,

2H), 2.98 (s, 1H), 3.10 (s, 1H), 3.58–3.66 (m, 3H), 3.86–3.94
(dd, J = 2.65, 9.98Hz, 1H) 4.52 (br s, 2H) 7.25–7.35 (m, 5H);
13C NMR (50MHz): 𝛿 32.0, 53.7, 58.5, 61.7, 73.0, 127.6, 128.4,
138.1; Anal. Calcd for C

12
H
16
O
3
: C, 69.21; H, 7.74. Found C,

69.45; H, 7.85.

2.3. (R)-5-(Benzyloxy)pentane-1,3-diol,5. To a stirred solution-
of epoxy alcohol (0.15 g, 0.75mmol) in THF (5mL) at −15∘C
dropwise solution of sodium bis(methoxyethoxy)aluminum
hydride (Red-al) (3.5M solution in toluene, 1.2mmol) was
added. The reaction mixture was stirred for 6 h at the same
temperature. When no starting material was observed on
TLC, the temperature was raised to 0∘C, reaction mixture
was quenched with citric acid solution, and the resultant
reaction mixture was stirred for another 10min. Then con-
tents were decanted leaving behind a residue, which was

further dissolved in water and extracted with EtOAc thrice.
The combined organic layers were evaporated under reduced
pressure, and the residue was chromatographed over silica gel
(60–120 mesh, EtOAc/hexane 3 : 7) yielding pure diol (0.14 g,
96%) as viscous liquid; [𝛼]D

25: −5.8 (c 0.6, CHCl
3
); IR (neat):

] 3447, 3123, 2186, 1769, 1576, 1478, 1267, 1181, 1134, 1096,
748 cm−1; 1H NMR (200MHz, CDCl

3
): 𝛿 1.65–1.83 (m, 5H),

3.63–3.75 (m, 2H), 3.81–3.86 (m, 2H), 4.04–4.16 (m, 1H), 4.53
(br s, 2H), 7.25–7.35 (m, 5H); 13CNMR (200MHz, CDCl

3
): 𝛿

36.5, 38.4, 61.4, 69.0, 71.7, 73.4, 127.8, 128.5, 137.7; Anal. Calcd
for C
12
H
18
O
3
: C, 68.54; H, 8.63. Found C, 69.15; H, 7.95.

2.4. (R,E)-6-(4-Oxo-6-phenylhex-2-enyl)-5,6-dihydro-2H-pyran-2-
one(R)-Rugulactone, 1. Grubb’s second generation catalyst
(123.1mg, 0.145mmol) was added to the stirred solution
of lactone (R)-9 (200mg, 1.45mmol) and 5-phenylpent-1-
ene-3-one 10 (693.173mg, 4.347mmol) in CH

2
Cl
2
; stirring

was continued for 12 h at 45∘C; when starting material
was completely consumed (checked by TLC), the reaction
mixture was concentrated and purified by silica gel (100–
200mesh) chromatography (EtOAc/hexane 3 : 7) to yield (R)-
1 (293mg, 75%) as a colorless oil. [𝛼]D

25 = −46.2 (c 1,
CHCl

3
), Lit5 [𝛼]D

25 = −46.9 (c 1, CHCl
3
); IR (neat): ] 3067,
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Scheme 2: Reagents and conditions: (a) (i) DMSO, (COCl)
2
, Et
3
N, CH

2
Cl
2
, −78∘C, 1 h. (ii) Triethyl phosphonoacetate, NaH, dry Benzene,

0∘C-RT, 8 h, 95%. (b) LiAlH
4
, AlCl

3
, THF, 0∘C,1 h, 82%. (c) (−)-DET, Ti(O-i-Pr)

4
, TBHP, dry CH

2
Cl
2
, molecular sieves 4 Å, −15∘C, 87%.

(d) Red-al, THF, −20∘C, 6 h, 96%. (e) TBDMSCl, Et
3
N, DMAP, CH

2
Cl
2
, RT, 8 h, 96%. (f) Na, Liq. NH

3
, dry THF, −78∘C, 15min, 92%. (g)

(i) DMSO, (COCl)
2
, Et
3
N, CH

2
Cl
2
, −78∘C, 1 h. (ii) EtO

2
CCH
2
P(O)(OCH

2
CF
3
)
2
, NaH, dry THF, −78∘C, 2 h, 74%. (h) CSA, MeOH:CH

2
Cl
2

(1 : 1), RT, 85%. (i) DMSO, (COCl)
2
, Et
3
N, CH

2
Cl
2
, −78∘C, 1 h. (ii) (C

6
H
5
)
3
PCH
3
I, n-BuLi, THF, 0∘C, 82%. (j) PTSA, MeOH, 3 h, 91%.

O

O O

O

O

O
+
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Scheme 3: Reagents and conditions: (a) Grubb’s 2nd generation catalyst (5mol %), dry CH
2
Cl
2
, 45∘C, 12 h, 75%.

2925, 2818, 1720, 1626, 1038, 992, 928, 845, 756 cm−1. 1HNMR
(200MHz, CDCl

3
): 𝛿 2.29–2.36 (m, 2H), 2.59–2.68 (m, 2H),

2.87–2.93 (m, 4H), 4.47–4.61 (m, 1H), 6.01–6.07 (dt, J = 1.70,
6.50Hz, 1H), 6.13–6.23(dt, J = 1.49, 14.53Hz, 1H), 6.71–6.92
(m, 2H), 7.16–7.26 (m, 5H); 13C NMR (50MHz): 𝛿 29.0, 30.0,
37.6, 41.8, 121.6, 128.4, 128.5, 133.5, 139.9, 141.0, 144.4, 163.4,
198.6; Anal. Calcd for C

17
H
18
O
3
: C, 75.53; H, 6.71. Found C,

75.46; H, 6.69.

3. Results and Discussion

As outlined in Scheme 2, our synthetic strategy com-
menced with 3-benzyloxypropanol. The primary alcohol of
3-benzyloxypropanol was oxidized by using Swern’s protocol
to the corresponding aldehyde, and thenHorner-Wadsworth-
Emmons olefination of aldehyde afforded 𝛼, 𝛽-unsaturated
ester 2 in 95% yield. The compound 2 was subsequently
reduced to allyl alcohol 3 by employing alane reduction
(LiCl/LiAlH

4
) conditions [29]. The allyl alcohol 3 was then

subjected to Sharpless asymmetric epoxidation [30, 31] to
produce epoxy alcohol 4 in 85% yield, whichon selective
hydride reduction with Red-al [32, 33] yielded 1, 3-diol 5. The

two hydroxyl groups in 5 were completely protected from its
disilyl ether 6. The subsequent removal of benzyl group was
achieved by using Birch debenzylation [34] protocol to afford
alcohol 7, which was further oxidized to aldehyde and Still-
Gennari modification of Horner-Emmons [35] olefination
of the crude aldehyde produced Z/E 95 : 5 mixture of 𝛼,
𝛽-unsaturated ethyl esters in favor of desired isomer 8.
The geometric isomers were easily separated using silica gel
column chromatography to get pure Z isomer of ethyl ester in
74% yield. Later the primary silyl ether was selectively cleaved
to produce alcohol 9, which on further oxidation followed
by Wittig olefination furnished unsaturated ester 10. Further
𝛼, 𝛽-unsaturated ester 10 was stirred in methanol for 2 h in
presence of p-toluene sulfonic acid to furnish 11 in 91% yield.

The remaining task was to couple the fragment 5-phenyl-
pent-1-en-3-one [36] 12 and lactone 11 (3 : 1 ratio) by cross
metathesis [37–39], which was implemented by refluxing
them in CH

2
Cl
2
in presence of Grubb’s second generation

catalyst [40] (5mol%) to deliver enantiomerically pure (R)-
rugulactone (1) in 74% yield as colorless oil, [𝛼]D

25: −46.2 (c
1, CHCl

3
), Lit [41] [𝛼]D

25: −46.9 (c 1, CHCl
3
) (see Scheme 3).
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4. Conclusions

The stereoselective total synthesis of naturally occurring
bioactive compound (R)-rugulactone has been successfully
achieved employing Sharpless asymmetric epoxidation of
allyl alcohol, selective hydride reduction of epoxy alcohol,
and olefin crossmetathesis reactions as the key steps.The syn-
thetic route can conveniently be utilized for the preparation
of various analogs of (R)-rugulactone useful for biological
evaluation.
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