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Abstract

Biodiversity, or the relative abundance of species, measures the persistence of an ecosystem. To 

better understand its modulation, we analyzed the spatial and temporal dynamics of a synthetic, 

chemical-mediated ecosystem that consisted of two engineered Escherichia coli populations. 

Depending on the specific experimental conditions implemented, the dominant interaction 

between the two populations could be competition for nutrients or predation due to engineered 

communication. While the two types of interactions resulted in different spatial patterns, they 

demonstrated a common trend in terms of the modulation of biodiversity. Specifically, 

biodiversity decreased with increasing cellular motility if the segregation distance between the two 

populations was comparable to the length scale of the chemical-mediated interaction. Otherwise, 

biodiversity was insensitive to cellular motility. Our results suggested a simple criterion for 

predicting the modulation of biodiversity by habitat partitioning and cellular motility in chemical-

mediated ecosystems.

Microbial ecosystems play fundamental roles in a wide variety of biological processes, 

including biogeochemical cycles in the biosphere 1–3, immunological defense against 

pathogens by gut microbiota 4,5, and engineered microbial consortia for biotechnological 

applications6. One important characteristic of microbial ecosystems is biodiversity, which 

represents species richness and relative abundance in relation to one another 7. A central 

challenge in microbial ecology is to elucidate the mechanisms underlying the maintenance 

of biodiversity, a vital element in determining the persistence and functionality of ecological 

communities 8–16.

There are two types of cell-to-cell interactions in microbial ecosystems 17,18. The first type 

occurs locally or requires direct cell-cell contact. One microbial species, for example, may 

kill another by contact. This contact may occur by epibiotic means (e.g., Vampirococcus 

attaches to the outer surface of Chromatium to induce killing 19,20), by periplasmic 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*To whom correspondence should be addressed. you@duke.edu Phone: (919)660-8408. Fax: (919)668-0795. Mailing Address: 
CIEMAS 2345, 101 Science Drive, Box 3382, Durham, NC 27708 USA. 

Author Contributions H.S. and L.Y. conceived the project; H.S., S.P. and M.G. performed the experiments; H.S. performed the 
mathematical modeling; H.S., S.P. and L.Y. analyzed the data; H.S., S.P., and L.Y. wrote the paper.

Competing financial interests
The authors declare that they have no conflict of interest.

HHS Public Access
Author manuscript
Nat Chem Biol. Author manuscript; available in PMC 2010 June 01.

Published in final edited form as:
Nat Chem Biol. 2009 December ; 5(12): 929–935. doi:10.1038/nchembio.244.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


invasion (e.g. Bdellovibrio upon gram-negative prokaryotes 21), or by invasion into the 

cytoplasm (e.g., Daptobacter upon Chromatium minus 19).

The second type occurs via small diffusible chemicals. This can happen when microbes 

compete for shared, diffusible nutrients or chemoattractants, when each species excretes an 

essential metabolite for the survival of the other, forming a mutualistic relationship 22, or 

when predator cells excrete diffusible hydrolytic enzymes that degrade and digest prey cells 

to generate diffusible nutrient molecules, which contribute to the predator’s survival (e.g., 

both Myxococcus and Lysobacter use lytic enzymes to prey upon other bacteria 23–25). 

Such chemical-mediated interactions play essential roles in determining many behavioral 

responses of microbes, such as sex, alarm and aggregation as well as predation 26–34.

Studies have highlighted the importance of cellular motility in determining biodiversity in 

model ecosystems with local interactions: reducing motility or dispersal promotes 

biodiversity 35,36. However, it remains vague how motility can impact biodiversity in 

chemical-mediated ecosystems where interactions can happen at longer length scales. 

Specifically, how does the combination of cellular motility and long-range interactions via 

diffusible chemicals affect biodiversity?

To address this question, we employed a synthetic chemical-mediated predator-prey 

ecosystem 37 (see Fig. S1 and Methods). This system consists of two engineered E. coli 

populations mediated by quorum-sensing (QS). The predator kills the prey by inducing 

expression of a killer protein (CcdB), whereas the prey rescues the predator by inducing 

expression of an antidote (CcdA) in the predator. The two populations also compete for 

shared resources in co-culture (Fig. 1a). Thereby, the programmed predation and the 

competition for nutrients occur through chemical diffusion. Overall, this synthetic system 

resembles many natural chemical-mediated predator-prey ecosystems in terms of their 

interaction characteristics, both of which involve diffusion-mediated interactions. We note 

that such ecological interactions have also been implemented using different strategies. In 

particular, several interesting synthetic ecosystems based on airborne inter-and intra-

kingdom communication, including commensalism, mutualism, parasitism and predator-

prey ecosystems were constructed recently 38. In their synthetic predator-prey ecosystem, 

the predator (E. coli) inhibited the prey (mammalian CHO cell) by outgrowing the prey; 

meanwhile, the prey synthesized and secreted β-lactamase (sBLA) which hydrolyzed 

ampicillin in the culture to promote survival of the predator 38. Such a synthetic predator-

prey ecosystem also involves two modes of chemical-mediated interactions, competition and 

predator-prey.

We found that, in our synthetic ecosystem, cellular motility had a negligible impact on 

biodiversity when the predator and prey cells were well-mixed in either liquid phase or soft 

agar. In contrast, decreasing motility promoted biodiversity when the predator and the prey 

were inoculated at a sufficient segregation distance on soft agar. The seemingly discrepant 

role of motility on biodiversity could be attributed to the existence of two critical 

segregation distances between the predator and the prey, as revealed by a mathematical 

model that described the spatiotemporal dynamics of the system. These results led us to the 

following conclusion: in a two-population chemical-mediated ecosystem, the biodiversity 
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was significantly modulated by motility if the segregation distance between the two 

populations was comparable to the interaction distance defined by the communication 

signals. Our results also indicated that the spatial distribution patterns of populations may 

result from different dominating modes of interactions. For example, in predation, the cell 

distribution pattern revealed a growth preference of the predator in the vicinity of the prey; 

however, in competition, the competitor grew in a largely uniform manner and was 

insensitive to the distance from the other competitor.

Results

Responses of predator and prey to growth and killing signals

We first characterized basic growth dynamics of the predator and the prey cells in both solid 

and liquid phases (see Supplementary Methods) in response to the growth and killing signals 

(Figs. 1b–d and Supplementary Results, Fig. S2). In each solid-phase experiment, growth 

was initiated from a 10µl overnight culture and measured by fluorescence imaging. 

Consistent with the system design logic (Fig. S1), growth and expansion of the predator was 

significantly inhibited by Isopropyl β-D-1-thiogalactopyranoside (IPTG 1) but further 

restored by 3-oxohexanoyl-homoserine lactone (3OC6HSL 2) (Figs. 1b, c). In contrast, 

growth and expansion of the prey was only inhibited when both IPTG and 3-oxododecanoyl-

homoserine lactone (3OC12HSL 3) were present (Figs. 1b, d). Similar results were obtained 

in the liquid phase (Fig. S2). Furthermore, our results confirmed the predation interaction 

between the predator and the prey: the predator expansion was enhanced by the prey 

whereas the prey expansion was drastically inhibited by the predator (Figs. 1c, d red lines; 

Fig 1b right panel).

We noted that MG1655 cells containing the prey construct grew better upon IPTG induction 

(Fig. 1d and Fig. S2B). A similar observation was made in the literature 39, and it was 

proposed that IPTG might promote growth of wild-type E. coli by influencing its global 

metabolism. This phenomenon might have partially masked the effects of programmed 

killing by IPTG-induced CcdBs; thus, the killing of the MG1655 predator was not complete 

(~50% reduction of cell density in solid phase, Fig. 1c). In Top10F’ cells, where the “hidden 

benefit” of IPTG induction was insignificant, IPTG-induced predator killing was much more 

drastic (Fig. S3A).

Motility had a negligible impact on biodiversity with well-mixed predator and prey

To quantify biodiversity in a mixed culture, we used the modified Simpson’s biodiversity 

index (BI) 7: , where xi is the fraction of the ith population in a co-

culture (i=1 for the predator and 2 for the prey). In a liquid culture, xi was calculated by 

using the densities of the two populations (e.g., x1 = predator density/total density). In a 

solid culture, xi was calculated by using the average densities over a spatial domain (Ω).

(1)

Song et al. Page 3

Nat Chem Biol. Author manuscript; available in PMC 2010 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where pi is the density distribution in Ω for population i. In either case, the BI reached a 

maximum for x1 = x2 = 0.5 (Fig. 2a).

To guide our experiments, we modeled system dynamics using partial differential equations 

(PDE, see Supplementary Methods and Eqs. S1–S5) for the solid phase and ordinary 

differential equations (ODE, Eqs. S8–S12) for the liquid phase. The ODE model accounted 

for cell growth and interactions (via QS-induced killing and rescuing), gene expression, and 

QS signals synthesis and degradation. The PDE model further accounted for spatial factors 

such as cellular motion by diffusion and chemotaxis 40–43 and signal diffusion (see 

Supplementary Methods for details).

We first examined the effects of motility on biodiversity of well-mixed cultures in two 

extreme cases: the liquid environment allowing maximum cellular motility and the solid 

environment with drastically reduced motility. We simulated the solid-phase dynamics by 

initial random arrangement of the predator and the prey cells over the spatial domain with a 

uniform distribution. Simulation indicated that the spatial average densities of the two 

populations in the solid phase (Fig. 2b inset, dots) were similar to those in the liquid phase 

(Fig. 2b inset, lines). As a result, the BI was similar for both conditions (Fig. 2b), indicating 

negligible effects of motility. In addition, modeling showed that the BI would decrease with 

time due to programmed predation, leading an initial, approximately equal amount of 

predator and prey (BI≈0.5) to the state in which the predator significantly exceeded the prey 

(BI≈0.1). To experimentally test these predictions, we used fluorescence microscopy to 

measure biodiversity in both a liquid culture and a solid culture at 5hr, 12hr, and 24hr post 

inoculation. These time points corresponded to the states before and after a culture reached 

its stationary state when nutrients were largely exhausted (see Supplementary Methods). 

This short incubation time also helped prevent mutants that might escape circuit control 

from dominating the culture. We noted that these quantifications focused on the temporal 

dynamics, not the asymptotic steady-state of the system, since recent studies emphasized the 

importance of the transient dynamics rather than the long-term behavior of ecological 

systems 44. Examination of transient ecological dynamics could provide a more relevant 

understanding of how population levels would change over time. Consistent with the model 

prediction, our experimental results showed that the BI decreased with time until settling at 

~0.1 after 12 hrs (Fig. 2c). They also showed that the biodiversity in the solid phase was 

essentially identical to that in the liquid phase (Fig. 2c), also consistent with the model 

prediction.

This observation was counterintuitive in the context of previous work that underscored the 

significant influence of motility on biodiversity 36. To gain further insight, we simulated the 

spatial distributions of the predator for varying motility (Fig. S4A). We found that, with zero 

motility (Dcell = 0), the coefficient of variation (CV = standard deviation/mean) of the 

predator distribution did not change significantly with time (Fig. S4B, same for the prey (not 

shown)). When cells were slightly motile (Dcell = 10−4 cm2/hr), the CV gradually decreased 

over time. At a sufficiently high motility (Dcell = 5×10−3 cm2/hr), the CV vanished quickly. 

Although motility significantly affected the variance of the populations’ spatial density 

distribution, it did not affect the ratio of their spatially averaged densities (<predator>/
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<prey>) or the BI over the entire spatial domain (Fig. S4C). These results again indicated 

that motility appeared to have a negligible influence on the biodiversity of this ecosystem.

Reduced motility could promote biodiversity in partitioned habitats

Studies on the metapopulation dynamics in ecosystems suggested that habitat partitioning 

might affect biodiversity45–49. We thus sought to examine how habitat configuration, in 

conjunction with motility, could affect biodiversity in our system. To simulate habitat 

partitioning, we seeded the predator and the prey separately at two focal points with varying 

distance in between, leaving the other locations with zero density. Our model predicted that 

increasing the segregation distance between the seeding points would promote biodiversity 

(Fig. 3a). If the predator and prey were seeded together (d = 0), the predator would disperse 

outward at a faster speed than the prey due to its growth advantage gained from the prey’s 

rescue. The outward dispersion of the predator would deplete chemoattractants in its path 

(Fig. S5), which would trap the prey at the inoculation point. Increasing the segregation 

distance between the two populations (e.g., d = 1 and 2 cm) would reduce the strength of 

long-range interactions, including killing and rescuing by the diffusible AHL signals and 

competition for chemoattractants and nutrients. This reduction would lead to less killing, 

faster growth, and more chemotaxis of the prey, resulting in a larger prey territory and 

density. To test the prediction experimentally, we seeded 10µl predator cells and 10µl prey 

cells at two separate locations with increasing distances (d = 0, 1, or 2cm) on pH-buffered 

soft (0.2%) M9 agar plates, which were incubated at 37°C for 20 hrs. We then measured the 

cell densities by fluorescence imaging (see details in Supplementary Methods). Figure 3b 

showed that the biodiversity indeed increased with increasing segregation distance, 

consistent with the model prediction (Fig. 3a). In particular, increasing initial partitioning 

distance from 0cm to 2cm increased the BI from ~0.07 to ~0.37 (0.3% agar).

Our model further predicted that decreasing motility would increase biodiversity when the 

populations were sufficiently segregated (Fig. 3a, d = 1cm or 2cm). This was mainly 

because motility affected the spatiotemporal interaction strengths between the predator and 

the prey under this condition. At a higher motility, the predator and the prey would approach 

each other at a faster speed; in turn, the prey would experience a higher level of 3OC12HSL 

secreted and diffused from the predator, thereby exhibiting a stronger predation effect. 

However, at a lower motility, the two populations would approach each other slowly; in 

turn, the prey would experience less killing, leading to faster prey growth and higher 

biodiversity. Again, this prediction was validated by experiments: at d= 1cm or 2cm, 

decreasing motility by reducing the agar density from 0.2% to 0.3% increased the BI by 

about 2~3 fold (Fig. 3b).

We further noticed that the promotion of biodiversity by motility with sufficient habitat 

partitioning did not require induced predation. For instance, without IPTG induction, the 

dominant interaction in our system was competition for nutrients (Fig. 1a). For the pair 

implemented in MG1655 cells, the uninduced predator had a significant growth advantage 

over the uninduced prey (Fig. 1b). Our results revealed two salient points. First, the spatial 

patterns and the biodiversity indices resulting from competition (see Supplementary Results, 

Fig. S6) were significantly different from those due to induced predation (Fig. 3), as 
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highlighted by the detailed comparison of the predator’s spatial patterns (Fig. S7). Second, 

similar to the case with induced predation (Fig. 3), reduced motility also increased 

biodiversity when the two populations were sufficiently segregated (Fig. S6, d = 1cm or 

2cm). Furthermore, the latter conclusion did not depend on chemotaxis either. In Top10F’ 

cells, which can diffuse in thin agar but with impaired chemotax, reduced motility also 

promoted biodiversity with sufficient segregation distance, as revealed by both modeling 

and experiments (Figs. S3B, D, F). However, this motility-mediated biodiversity modulation 

became negligible when competing populations had similar growth rates: neither motility 

nor segregation distance impacted biodiversity (see Supplementary Results, Figs. S3C, E, G 

(Top10F’) and Fig. S8 (MG1655)).

These analyses also revealed a potential limitation of the biodiversity index. As a lumped 

metric, it is convenient to use for summarizing system dynamics and has revealed a 

commonality between predation and competition in terms of the contributions of motility 

and population segregation to biodiversity. However, the metric can mask important 

differences in the spatiotemporal patterns resulting from different interactions. When 

predation was induced by IPTG, cell distribution patterns revealed a growth preference of 

the predator in the vicinity of the prey (Fig. S7A). Without IPTG induction, the uninduced 

predator population expanded almost uniformly from the seeding point toward all directions 

except near the uninduced prey population (Fig. S7B). This difference in pattern formation 

was also qualitatively captured by our model (Figs. S7C, D). However, since our model is 

drastically simplified (see Supplementary Methods and Reference 37), some fine details of 

the experimental patterns were not quantitatively captured by our model. Together, a 

combination of biodiversity index and population distribution patterns would provide a 

comprehensive picture of the commonality and difference in the system dynamics, with or 

without induced predation.

Effects of motility as constrained by two critical segregation distances

Our results appeared to suggest a conflicting role of motility in modulating biodiversity. 

When the predator and the prey were seeded in close proximity, motility had a negligible 

impact on biodiversity; when they were seeded separately, motility had a drastic impact on 

biodiversity. To resolve this apparent paradox, we examined the interplay between 

segregation distance and motility by simulation. We initiated each simulation by seeding 

individual cells in random patches separated by barren zones containing no cells (Fig. S9A). 

Also, the predator and the prey were not seeded in the same patch. By modifying the area of 

the barren zones, we could modulate the average segregation distance between the two 

populations. A typical result was shown in Fig. S9B, where we examined the dependence of 

biodiversity on the segregation distance at a fixed cellular motility (Dcell = 10−3 cm2/hr). It 

showed that an increasing segregation distance (d) had little impact on biodiversity until d 

exceeded a critical value (dc1), where the dependence of the BI on d went through a distinct 

transition. When d>dc1, the BI increased almost proportionally with an increasing d until d 

reached another critical distance dc2. When d > dc2, the BI again was independent of the 

furthering increment of d (Fig. S9B).
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The same trend relating segregation distance to biodiversity could be captured by 1-D 

simulations, which were much more efficient computationally. We initiated each simulation 

by seeding the predator and the prey at two focal points with a distance d, while setting the 

other places empty (Fig. 4a). Similar to the 2D simulations (Fig. S9), we could then 

determine the BI from the resulting predator and prey distributions (Fig. 4a). Under the same 

conditions, similar to the 2D results (Fig. S9B), 1D simulations also identified two critical 

transition points (dc1 and dc2) in the dependence of the BI on d (Fig. 4b). After the system 

reached stationary phase upon nutrient depletion, the dependence of the BI on d was 

approximately invariant with time (data not shown).

These transitions could be attributed to varying coupling strength by the diffusible nutrients 

and QS signals. When d < dc1, the chemical-mediated interactions were dominant, 

sufficiently strong, and did not depend significantly on small variations of the cells’ 

positions. Therefore, cell motility would not influence the strength of cell-cell 

communication and the biodiversity in this ecosystem (Fig. 4c, red line). When dc1 < d < 

dc2, however, the concentrations of chemicals (AHLs and nutrients) experienced by cells 

varied significantly with their positions, which in turn could be affected by their motility. 

This effect led to a drastically reduced biodiversity with increasing cellular motility (Fig. 4c, 

blue line). When d > dc2, the interaction between the populations was extremely weak and 

cellular movement would have a negligible contribution to the interaction and biodiversity 

(Fig. 4c, green line). When induced, the dominant interaction in our system was 

programmed predation by QS. We thus examined how the critical segregation distances (dc1, 

dc2) would change with diffusivity of the QS signals (DAHL), and found that both dc1 and dc2 

increased with the length scale of the chemical diffusion (dL) (Fig. 4d). The dependence 

curves divided the phase diagram in the “dc−dL”-parameter plane into three regions. In the 

upper and lower regions, motility had a negligible influence on biodiversity; in contrast, in 

the middle region, motility drastically influenced biodiversity (Fig. 4d).

Discussion

While chemical communication is widespread and central to many microbial ecosystems, it 

has been largely neglected in studies on the maintenance of biodiversity. It has been 

suggested that decreasing motility increases biodiversity in an ecosystem with local 

interactions 35,36. However, our results suggested a more complex picture in a chemical-

mediated system, where the biodiversity critically depended on the interplay between 

cellular motility (by diffusion and chemotaxis), chemical diffusion (of QS signaling 

chemicals and nutrients), and habitat configuration. We further developed a highly 

simplified, conceptual model to delineate how motility impacts cellular response at different 

segregation distances (see Fig. 5a and its legend). The “R-d” dependence revealed two 

critical segregation distances, dc1 and dc2 (logically similar to Fig. 4b). When d<dc1 or 

d>dc2, motility had a negligible influence on the response. When dc1<d<dc2, however, 

motility drastically influenced the response.

In summary, motility’s impact on biodiversity was determined by the relative magnitudes of 

the interaction length scale and the segregation distance between populations, as 

schematized in Fig. 5b. If the interaction length scale was much longer or much shorter than 

Song et al. Page 7

Nat Chem Biol. Author manuscript; available in PMC 2010 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the segregation distance, motility had little impact on biodiversity. Otherwise, motility 

would significantly impact biodiversity. In our system, the interactions were mediated by 

chemical diffusion, which had a longer length scale than motility. The populations thus 

needed to be segregated sufficiently, but not too far, to manifest the effects of motility (Fig. 

4c). In contact-based ecosystems, however, interactions occurred by physical contact and 

their length scale was that of cellular motility, which was comparable to the segregation 

distance between cells. In this scenario, motility had a significant impact on biodiversity, 

which provided an intuitive understanding of past studies on systems with local interactions 

35,36. Our conclusion held for other chemical-based interactions between two populations, 

including competition (Fig. S6). It would be interesting to explore if this conclusion would 

also hold for ecosystems with many populations in further studies. If so, Fig. 5b would 

represent a general, qualitative criterion that outlined the contribution of the three factors to 

biodiversity in a wide variety of ecosystems and that allowed for the classification of 

ecosystems based on the length scale of their interactions.

Efforts in engineering gene circuits have focused on pushing the limit in the ability to create 

systems with increasing complexity. The design of synthetic ecosystems represents a new 

frontier6 and involves programming different types of cell-cell interactions, such as 

mutualism 22,38,49, consensus 50, and predation 37,38. Consisting of well-characterized 

parts, these systems offer unprecedented flexibility to manipulate and analyze interactions 

between populations, as has been done in this work. The knowledge gained from such 

investigations may provide novel insights into naturally occurring ecosystem interactions. 

However, most studies in synthetic ecology have been confined to mimicking basic 

ecological interactions. Our study represents a significant advance in exploring ecological 

questions with a synthetic ecosystem.

Methods

General methods

See Supplementary Methods for the detailed experimental protocols and the development of 

the mathematical model and simulations. For the mathematical model (Eqs. S1–S5), the 

basal parameter values were estimated from literature or fitted to our experimental data (See 

Supplementary Table S1 and Figs. S10–S12).

Design logic of the synthetic ecosystem

Our synthetic ecosystem consisted of two E. coli populations that regulate each other’s gene 

expression and survival by engineered communication. The predator contained luxR/lasI 

quorum sensing (QS) genes, a ccdA antidote gene, and a ccdB killer gene (Fig. S1). The prey 

contained luxI/lasR QS genes and ccdB. Furthermore, the predator expressed GFPuv(lva) 

and the prey expressed mCherry, which allowed us to quantify the two populations by 

fluorescence. The plasmids carried by the predator and the prey were verified by 

sequencing.

The two circuits were both under the control of IPTG. Without IPTG induction, the two 

populations only competed for nutrients in a co-culture. With IPTG induction, the predator 
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growth would be inhibited by CcdB. CcdB killer protein, a toxin targeting the essential 

gyrase of E. coli, inhibited cell growth and caused cell death. The CcdB in our circuit was 

the wild-type CcdB with a fragment of lacZα fused to it (see details in reference 37.). The 

prey could rescue the predator by producing a QS signal (3OC6HSL), which diffused into 

the predator to induce CcdA expression to inhibit CcdB-mediated killing. The predator 

produced and excreted another QS signal (3OC12HSL) which crossed the prey cell 

membrane and elicited CcdB expression, killing the prey.

Plasmids and cell strains

The plasmids encoding the predator-prey function were detailed previously37. The only 

modification was the introduction of a plasmid Ptet-mCherry into the prey to better 

differentiate and quantify the predator and the prey populations (the predator cells 

constitutively expressed GFPuv(lva)). To construct the Ptet-mCherry plasmid, the PCR-

amplified mCherry gene was cloned into pProTet.E132 (BD Bioscience Clontech). MG1655 

cells were used for both the predator and the prey unless otherwise noted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spatiotemporal dynamics of the predator and the prey in response to IPTG and AHLs in 

solid phase. The experiments were performed on 0.2% M9 (pH=7) soft agar at 37°C.

(a) The interaction logic of the chemical-mediated synthetic predator-prey ecosystem. The 

two populations competed for nutrients and followed the programmed predator-prey 

interaction via QS.

(b) A snapshot (at 18th hr) of predator (upper panels, green) and prey (bottom panels, red) 

colonies without IPTG, with IPTG, and with IPTG and the corresponding AHLs. The right 

panel is a snapshot (at 18th hr) of the patterns resulting from the interaction between a 

predator colony and a prey colony: the plate was seeded with 10µl predator overnight culture 

(~106 cells) and 10µl prey overnight culture (~106 cells) 0.5cm apart. The patterns from 

duplicate measurements were similar; only one was shown.

(c) Predator expansion dynamics without IPTG, with IPTG, with IPTG and 3OC6HSL, and 

with IPTG and prey. Data for each time point were deduced from images as measured in (b), 

with the GFP intensity indicating the total predator density in a plate. Each bar indicated the 

range of GFP intensity measured in duplicate experiments. Unless noted otherwise, IPTG 

was applied at 1mM and AHLs were applied at 100nM.

(d) Prey expansion dynamics without IPTG, with IPTG, with IPTG and 3OC12HSL, and 

with IPTG and predator. Data for each time point were deduced from images as measured in 
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(b), with the RFP intensity indicating the total prey density in a plate. The RFP intensity 

reported the prey density. Each bar indicated the range of RFP intensity measured in 

duplicate experiments.
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Figure 2. 
Motility had a minor impact on the biodiversity if the predator and the prey were randomly 

distributed in close proximity.

(a) Dependence of the BI on the density ratio between the populations.

(b) Simulated time courses of the BI in the liquid (solid line) and solid phases (circles) 

showed little difference. The inset indicated the time courses of the predator and the prey 

densities in the liquid phase (solid lines) and the solid phase (dots). At time zero, the same 

amounts of the predator and the prey cells were seeded in each simulation.

(c) Experimental validation of the simulation results in (b) using fluorescence microscopy 

measurements. In liquid phase and soft agar (0.4% M9 agar), the biodiversity indices of the 

ecosystem were essentially identical. Data represented mean values ± standard deviation of 

triplicate experiments at each condition.
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Figure 3. 
Reduced motility promoted biodiversity if seeding habitats were partitioned.

(a) Modeling showed that decreasing motility increased the BI for a sufficient segregation 

distance (d = 1 or 2 cm), but not for d = 0. To reduce motility in modeling, we decreased the 

values of the cellular diffusivities (Dp1, Dp2) and chemotaxis constants (α1, α2) by four-fold 

from those of the high motility (base parameter values in Table S1 were used). The BIs were 

computed based on the predator-prey patterns at 20hr (c).

(b) Experiments validated the model prediction in (a) by using agar density to control 

motility: 0.2% M9 agar (high motility) and 0.3% M9 agar (low motility). The BIs were 
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computed based on the snapshots taken at 20hr after seeding the predator and the prey (d). 

Each error bar indicated the range of the biodiversity index measured in duplicate 

experiments.

(c) Simulated predator-prey patterns at high and low motility with different seeding 

segregation distances, corresponding to the conditions in (a). Snapshots were taken at 20hr 

after the simulation initiation.

(d) Experimentally measured predator-prey patterns (at 20hr) in 0.2% and 0.3% agar plates 

with varying seeding segregation distances (0cm, 1cm and 2cm), corresponding to the 

conditions in (b). The patterns from duplicate experiments were similar; one set was shown.
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Figure 4. 
Two critical segregation distances (dc1, dc2) in determining the impact of motility on 

biodiversity.

(a) One-dimensional (1D) distribution of the predator (green) and the prey (red), which were 

seeded at two focal points with a distance d (upper panel). The bottom panel showed their 

density distributions after 24hrs, obtained from numerical simulation of the 1-D PDE model.

(b) The 1-D PDE model revealed two sharp transitions in the dependence of the BI on d, 

defining dc1 and dc2. Below dc1 or above dc2, d had a negligible influence on the BI. For dc1 

< d < dc2, the BI increased almost linearly with d. The spatially averaged BI was calculated 

at 24hr.

(c) For d < dc1 or d > dc2, cellular motility had a negligible effect on the BI. For dc1 < d < 

dc2, the BI decreased almost exponentially with cellular motility.
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(d) Both dc1 and dc2 increased with the characteristic length scale of the QS signal diffusion 

(dL). dL was defined by , where DA2 was the diffusivity of 3OC6HSL, and dA2 is 

the degradation rate of 3OC6HSL. The phase diagram was divided by the “dc1, 2 ~ dL” 

curves into three regions. In the middle region, the cellular motility would drastically 

influence biodiversity. In the upper and lower regions, cellular motility would have a 

negligible influence on biodiversity.
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Figure 5. 
A general criterion in determining the impact of cellular motility on biodiversity.

(a) An abstract model delineated how cellular response (R) depends on the cellular 

segregation distance (d) in chemical-mediated ecosystems. The steady-state distribution of a 

chemical A satisfied a 1-D PDE: DA ¶2 A/¶ x2 − dAA = 0, with boundary conditions A(0) = 

A0, A(¥) = 0; where DA was the diffusivity, and dA was the degradation rate constant of A. 

The analytical solution to this equation was . The response of cells to A 

would be R = A/(KA+A), where KA was the half maximum response. The double-headed 

arrow, labeled “cell motility distance,” schematically represented a cell spreading distance 

(not to scale) by cell motility.

(b) If the interaction length scale was much greater or much smaller than the segregation 

distance, motility had little impact on biodiversity; if the interaction length scale was 

comparable to the segregation distance, motility would greatly impact biodiversity.
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Figure 6. 

Song et al. Page 20

Nat Chem Biol. Author manuscript; available in PMC 2010 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


