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Current cell-based therapies to treat degenerative diseases such as osteoarthritis (OA) fail

to offer long-term beneficial effects. The therapeutic effects provided by mesenchymal

stem cell (MSC) injection, characterized by reduced pain and an improved functional

activity in patients with knee OA, are reported at short-term follow-up since the improved

outcomes plateau or, even worse, decline several months after MSC administration.

This review tackles the limitations of MSC-based therapy for degenerative diseases and

highlights the lessons learned from regenerative species to comprehend the coordination

of molecular and cellular events critical for complex regeneration processes. We discuss

how MSC injection generates a positive cascade of events resulting in a long-lasting

systemic immune regulation with limited beneficial effects on tissue regeneration while in

regenerative species fine-tuned inflammation is required for progenitor cell proliferation,

differentiation, and regeneration. Finally, we stress the direct or indirect involvement of

neural crest derived cells (NCC) in most if not all adult regenerative models studied

so far. This review underlines the regenerative potential of NCC and the limitations of

MSC-based therapy to open new avenues for the treatment of degenerative diseases

such as OA.
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INTRODUCTION

Epimorphic regeneration is a process allowing some vertebrates to regrow complete functional
appendages after previous amputation. Adult mammals are not able to regenerate their limbs
after injury. However, few vertebrates such as anurans can regenerate their tissues during early
development before their metamorphosis and others such as teleost can regrow appendages
throughout life. The teleost group presents many specimens able to regenerate. Among them, the
zebrafish, Danio rerio, is able to regenerate their fins throughout its life, and is a relevant model
at adult and larva stages to study this process (White et al., 1994; Marques et al., 2019). In most
mammalians, the regenerative potential is tightly limited to some species like the African spiny
mouse Acomys or the MRL mouse that exhibit enhanced regenerative abilities (Clark et al., 1998;
Seifert et al., 2012). However, young humans and adult mice present regenerative abilities after digit
tip amputation (Choi et al., 2014).

Eventually, the loss of this regenerative ability and aging will lead to osteoarticular degenerative
diseases such as osteoarthritis. Until now, the only treatments used in this context are directed
at relieving symptoms including the pain and the decrease of mobility. These last years, efforts
in the field of cellular therapy have been performed to bring new outcomes for the treatments.
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Numerous clinical assays have been conducted using
mesenchymal stem cells (MSC) and showed their capacity
to regulate the inflammatory response in patients with severe
osteoarthritis among others. Indeed, MSC injection induces
an immediate local immune response by releasing paracrine
factors and cytokines that could generate a cascade of events
resulting in a long-lasting systemic immune regulation (Pers
et al., 2016, 2018). Thus, phase I and II clinical studies have
shown that MSC-based therapy in osteoarticular diseases such
as osteoarthritis (OA) is safe and well-tolerated but the joint
function is not fully restored in the long term (Pers et al., 2016,
2018; Cosenza et al., 2017; Borakati et al., 2018; Iijima et al.,
2018). This absence of long-term therapeutic effect mediated by
MSC in OA patients might be due to limitations encountered by
MSC related to their intrinsic properties and/or the pathological
environment they are exposed to. The heterogeneity of MSC
populations associated with their phenotypic, metabolic, and
functional instabilities has been also suspected to have greatly
contributed to limit their success in OA therapy (Djouad et al.,
2005; Isern et al., 2014; Liu et al., 2019).

An emergent explanation of this heterogeneity is the dual
embryonic origin of MSC: one source is the mesoderm
and the other is the neural crest (Sowa et al., 2013; Isern
et al., 2014). This latter MSC source is well-known to give
rise to multiple derivatives during development including
peripheral nervous system and skeletal elements, which make
them an interesting source of MSC in the context of
osteoarticular diseases.

The epimorphic regeneration process is well-known to be

dependent of the innervation and in particular of the neural
crest derived cells (Brockes, 1987; Kumar and Brockes, 2012;

Johnston et al., 2016). In order to have a better understanding
of the mechanisms that could stimulate joint tissue regeneration,
it is important to decipher first the molecular and cellular
processes responsible for tissue and organ regeneration in
integrated models. Among them, models of regenerative species
can provide significant clues and point an overview of this

complex phenomenon.
In this review, we will discuss the current problems

encountered with MSC-based therapies in the context of
OA. We will question their limitations while reviewing
their regenerative abilities through the release of trophic
factors and their adaptive response to the inflammatory
microenvironment. Nonetheless, MSC regenerative abilities may
diverge with their heterogeneity highlighting the importance of

their embryonic origins with a focus on the neural crest (NC)
source known to play a critical role during regeneration in
regenerative models.

We will discuss the ability of cells derived from NC to

orchestrate a regenerative response by coordinating molecular
and cellular events. We will also tackle the importance of

unraveling the mystery of regeneration in regenerative species
to overcome the mammalian limitations. Overall, this review
aims to approach one pending question: how we can properly
activate/enhance the regenerative potential in the context of
osteoarticular diseases?

MESENCHYMAL STEM CELL-BASED
REGENERATIVE MEDICINE FOR
OSTEOARTHRITIS

Osteoarthritis and Mesenchymal Stem
Cell-Based Therapy
Osteoarthritis (OA) is the most common degenerative and
inflammatory joint disorder (Pers et al., 2015). Despite the
increase in the incidence of OA, there is still no effective
pharmacotherapy capable of restoring the original structure
and function of damaged articular cartilage. Consequently, cell-
based therapies for OA have become thriving areas of research.
Mesenchymal stromal/stem cell (MSC) have turned into the
most extensively explored new therapeutic product. In the early
1990s, these cells have attracted a great interest for regenerative
medicine. MSC can be isolated and characterized from a wide
variety of adult tissues including bone marrow (BM), bone,
adipose tissue, synovial membrane, and palatine tonsil, as well
as from prenatal structures such as umbilical cord, placenta,
and amniotic fluid (Bieback et al., 2004; Djouad et al., 2005;
Miao et al., 2006; Janjanin et al., 2008; Maumus et al., 2013).
To be referred as MSC, a cell must express a combination of
unspecific but characteristic markers including CD73, CD90, and
CD105 and negative for markers of hematopoietic stem cells
(Dominici et al., 2006). Moreover, MSC are multipotent cells
able to differentiate into cells of various cell lineages including
adipocytes, chondrocytes, and osteoblasts (Dominici et al., 2006).
Because of their relative ease accessibility and isolation associated
with their self-renewal potential and multipotency, MSC have
been, for decades, candidates of choice for a wide range of clinical
applications. MSC mainly exert their regenerative properties
through the secretion of bioactive factors that have potent anti-
apoptotic, anti-fibrotic, and anti-inflammatory effects (Le Blanc
and Ringden, 2006; Djouad et al., 2009a; Caplan and Correa,
2011).

Our understanding of the regenerative properties of MSC has
been, in part, improved thanks to the use of experimental mouse
models of degenerative diseases. These studies have notably
highlighted that the intra-articular (IA) injection of murine
MSC reduces synovial thickening, osteophyte formation, and
cartilage destruction in experimental OA (ter Huurne et al.,
2012; Diekman et al., 2013; Schelbergen et al., 2014). Then, large
number of phase I or II clinical trials has thus been launched and
has shown that IA MSC injection is safe and well-tolerated (for
reviews see Pers et al., 2015; Wang et al., 2019). However, while
IA MSC injection has shown improvements in pain and function
of OA knees at short-term follow-up, their efficacy on long-term
clinical outcomes and cartilage regeneration remains unreported
(Ha et al., 2019).

Within a damaged tissue, MSC release trophic factors allowing
them to communicate with and educate the surrounding cells.
In musculoskeletal applications, MSC therapeutic potential leans
on the trophic activities of both administrated exogeneous MSC
and the resident cells they might empower within the joint
space. The secretome of MSC exposed to an inflammatory
microenvironment not only protects the phenotype and the
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functions of mature and progenitor cells within the joint
such as chondrocytes but also potently regulate the immune
response (Djouad et al., 2009a; Maumus et al., 2013; Hofer
and Tuan, 2016). Indeed, MSC exert potent and well described
immunoregulatory properties but not in their naïve state.
Rather, stimulation with pro-inflammatory cytokines reveals
their immunosuppressive potential that acts in a dose-dependent
manner and through both contact-dependent mechanisms and
soluble factors (Djouad et al., 2003).

Mesenchymal Stromal/Stem Cell
Regenerative Properties
Given the complexity of the regeneration process, multipotent
MSC themselves with poor engraftment and limited survival
rates cannot give rise to a fully renewed, well-structured and
functional complex tissue (for review see Pittenger et al., 2019).
Once in the injured tissue microenvironment, MSC start to
release some factors such as programmed cell death 1 ligand
1 (PD-L1), prostaglandin E2 (PGE2), interleukin (IL)-10 and
IL-6, and increase their indoleamine 2,3-dioxygenase (IDO)
activity (human MSC) or nitric oxide (NO) production (mouse
MSC) (Aggarwal and Pittenger, 2005; Spaggiari et al., 2008;
Djouad et al., 2009a; Nemeth et al., 2009; Bouffi et al., 2010;
Luz-Crawford et al., 2012; Gu et al., 2013). Altogether, these
factors are key mediators for MSC immunoregulatory potential
(Djouad et al., 2009a). Thus, MSC are highly plastic cells that
might adopt either a pro- or an anti-inflammatory response
according their inflammatory environment to potently regulate
the immune response within the injured tissue (Waterman et al.,
2012; Khedoe et al., 2017; Cassano et al., 2018; Avery et al.,
2019). Whether this immunoregulatory plasticity is restricted to
a particular subset ofMSC and variable betweenMSC donors and
tissue source has never been investigated. The identification and
characterization of a particular immunoregulatory subset ofMSC
will significantly improve MSC-based therapy for degenerative
diseases exhibiting deleterious inflammatory effects.

MSC also enhance tissue repair by producing trophic
factors that promote angiogenesis and empower endogenous
cell proliferation, functionality, and differentiation (Caplan and
Dennis, 2006). The capacity of MSC to release trophic factors can
be enhanced under specific culture conditions that differ from
the pro-inflammatory stimulation well-described in the context
of MSC immunomodulatory properties. Indeed, MSC cultured
under hypoxia exhibit an enhanced capacity to produce trophic
factors such as HIF-1α and HGF promoting the release of pro-
angiogenic, anti-apoptotic, and anti-fibrotic molecules (Liew and
O’Brien, 2012). In the deleterious environment of degenerative
OA, enhanced HIF1 expression level is pivotal for chondrocyte
survival (Pfander et al., 2006). Moreover, the anti-hypertrophic
and anti-fibrotic potential of MSC on OA articular chondrocytes
has been shown to be partly mediated by the production of HGF
(Maumus et al., 2013).

The heterogeneous clinical efficacy of MSC in human OA
might be, in part, associated to the variable inflammatory
microenvironment that MSC encounter once injected in
OA knees. During OA development, chronic inflammation

has been attributed to a self-perpetuating cycle of local
damage, inflammation, and repair leading to the comparison
of OA joint with a chronic wound (Scanzello et al.,
2008). Indeed, joint damage leads to the production of
extracellular matrix (ECM) breakdown products that activate
fibroblasts-like synoviocytes (FLS), synovial macrophages,
and chondrocytes that produce locally inflammatory
mediators. This local inflammation promotes cartilage
degradation amplifying the vicious cycle of innate immune
activation in OA (Sokolove and Lepus, 2013). Thus,
inflammation is persistent in OA and the inflammatory
signals might vary according the cells activated within the
OA joint.

This perpetual inflammatory microenvironment can be
also deleterious for MSC properties and even worse can
pejoratively activate them in pro-inflammatory MSC similarly
to FLS that induce the local production of inflammatory
mediators in response to ECM breakdown products. Moreover,
pro-inflammatory cytokines such as TNF-β repress MSC
osteogenic differentiation through the activation of NF-
κB phosphorylation and NF-κB-regulated gene products
associated with inflammatory and degradative processes
(Constanze et al., 2020). Regarding the chondrogenic
potential of MSC, deleterious effects of IL-1 and TNFα
have been demonstrated (Majumdar et al., 2001; Djouad et al.,
2009b).

The heterogeneity of MSC subpopulations and its
consequence on MSC-based therapy has been tackled recently.
Indeed, some authors have considered whether among the
heterogenous MSC population they are some subsets of MSC
with a higher regenerative potential and whether particular
subsets are more regenerative whatever the damaged tissue we
are studying (O’Connor, 2019). Thus, using single cell RNA
sequencing method, MSC heterogeneity has been intensively
studied and the existence of several distinct MSC subsets that
possess diverse functions has been shown (Huang et al., 2019;
Rennerfeldt et al., 2019; Sun et al., 2020). More advances on the
identification and characterization of such MSC regenerative
subsets are needed for the identification of the most suitable
MSC population for a given application and thus significantly
improve MSC-based therapy for OA.

Sex-Dependent Differences in
Mesenchymal Stem Cells Biology and in
OA Occurrence and Severity
Sex-dependent differences on MSC biology have been intensively
studied. First, a sex-dependent MSC transcriptome and
secretome was reported (Zeller et al., 2009; Bianconi et al., 2020).
Genes associated to several processes such as differentiation,
inflammation, and cell communication are differentially
expressed in female and male MSC (Bianconi et al., 2020).
Indeed, MSC differentiation is sexually dimorphic and might
be influenced by different factors including genetic factors
in the case of osteogenesis (Zanotti et al., 2014). Also, MSC
derived from rat female secrete more growth factors and less
proinflammatory cytokines than their male counterpart (Zeller
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et al., 2009). These discrepancies between female and male
MSC could significantly impact the clinical outcome assessment
underlying that the donor sex should be considered for proper
and optimal use of MSC in clinic.

Moreover, although complex in the pathogenesis of OA, the
role of endogenous sex hormones and reproductive factors on
OA of the hip, knee, and hand has been evidenced (Hussain
et al., 2018). Thus, differences in terms of severity and occurrence
of OA have been reported. Main sex differences have been
found at the level of synovial inflammation, cartilage degradation,
osteophyte formation, subchondral bone deterioration, and pain
(Javaheri et al., 2018; Sannajust et al., 2019). For example, in rats,
a more severe inflammation of the synovial membrane as well as a
more intense degradation of the cartilage and subchondral bone
have been observed in females as compared to males (Javaheri
et al., 2018). This exacerbated severity in females is associated
with a more important infiltration of macrophages positive for
CD68 in the synovial membrane. Sex-dependent differences in
severity have also been observed in a large animal model such as
in pig females that exhibit worse biomechanical outcomes and
more important cartilage damage than males (Kiapour et al.,
2015a,b,c). In humans, OA incidence is also sexually dimorphic.
Indeed, after the age of 50, women have a higher rate of OA
than men. Research has investigated the contribution of sex
hormones, reproductive factors, and hormone supplementation
to osteoarthritis (Contartese et al., 2020). Although complex in
the pathogenesis of OA, the role of endogenous sex hormones
and reproductive factors on OA of the hip, knee, and hand has
been evidenced (Hussain et al., 2018).

Mesenchymal Stem Cell Embryonic Origin
Despite the promising results of MSC-based therapy to treat
degenerative diseases such as OA in preclinical models, the
identification of a molecular signature to isolate a specific
homogeneous population of MSC that would meet regenerative
medicine needs is still pending. MSC are currently used in
clinic to induce tissue repair, however, the repaired tissue is
structurally different to the native tissue and non-functional. This
might be due to the phenotypic and functional heterogeneity
of MSC that exhibit a mixed ontogeny. Although mesenchymal
tissues derive from different developmental origins, the cranial
NC for the face, and the mesoderm for the trunk, it has long
been thought that MSC derive from mesoderm. Over these
last two decades, many questions in the field of MSC has
revolved around their origin. Takashima and colleagues have
shown, using Sox1-Cre/YFP transgenic midgestational mouse
embryos, that MSC can be isolated from trunk neuroepithelial
cells while they cannot from mesodermal cells (Takashima
et al., 2007). In contrast, in post-natal BM, they found that
neuroepithelium/NC-derived MSC were still present but to a
lower extent (Takashima et al., 2007). Thus, the authors conclude
that during the development a first wave of MSC derives from
the neuroepithelium and NC followed by a second wave of
MSC from an unknown origin that emerges after birth. More
recently, using Nestin/GFP;Wnt1Cre2;R26/Tomato transgenic
mice, the existence of ontogenically distinct MSC was confirmed
with evidence for functional disparities between MSC derived

from different germ layers (Isern et al., 2014). Indeed, MSC
positive for Nestin that form the niche of HSC in perinatal BM
originate from NC and modestly contribute to endochondral
ossification. These cells preserve their MSC activity after birth. In
contrast, MSC negative for Nestin derived from the mesoderm
are mainly involved in fetal endochondrogenesis and do not
maintain their activity after birth (Isern et al., 2014). Together
these studies suggest the transient co-existence of MSC with
different embryonic origins within the bone marrow during the
development and that NC-derived MSC retaining their activity
after birth might participate to the physiological turnover of the
skeleton in adults (Figure 2).

These findings suggest that the heterogeneous clinical efficacy
of MSC in human OAmight be, in part, associated to the variable
proportion of MSC derived either from the mesoderm or neural
crest within the BM or the other sources of MSC. Moreover, the
findings made by Isern and colleagues clearly demonstrating that
active NC-derived MSC are still present in the BM of mammals
after birth (Isern et al., 2014) raise the following questions: Why
are NC-derived MSC not recruited to the injured and degraded
OA joint to activate the regeneration process? Can exogeneous
NC-derived MSC be more efficient to treat OA?

In line with this hypothetical enhanced regenerative potential
ofMSC derived fromNC, it is nowwell-accepted that epimorphic
regeneration in regenerative models relies on neural crest cells.
Indeed, neural crest-derived nerve mesenchymal cells participate
to bone and dermis formation during digit tip regeneration in
mammals (Carr et al., 2018). Thus, a better understanding of how
neural crest derived cells are involved in regeneration will open
up a whole new avenue for degenerative disease treatment.

LIMB REGENERATION IN VERTEBRATES

As has been discussed earlier in this review, a therapy in OA
based on “regenerative” factors, rather than MSC based therapy,
will likely be used in the future (Figure 1). Moreover, other
cell sources than MSC or MSC derived from NC should be
considered and studied on their secretome and will undoubtedly
help to identify key molecules that govern regeneration. To
identify such cells that govern regeneration and the factors they
release, numerous studies now focus on vertebrate species able
to regenerate their limbs, and on the discovery of endogenous
factors that explain this rare ability. This mechanism is called
epimorphic regeneration and relies on several steps. After
amputation there is a reepithelization of the wound, which
will lead to the formation of a specialized structure called
“apical epithelial cap” or AEC. Then, there is the formation
of a particular structure called the blastema, with a peak of
proliferation. The last step consists in repatterning to obtain
a fully formed limb theoretically identical to the former one.
Few vertebrates are capable of such process, among them the
famous axolotl and salamander, which regenerate limbs during
all their life, but also teleost fishes such as Zebrafish. Some
amphibians such as Xenopus are able to regenerate but only
during the very first steps of development and lose their abilities
after metamorphosis. The blastema composition is still debated,
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FIGURE 1 | From MSC-based suppression of immune response in OA to the regeneration of OA joints using a cocktail of anti-inflammatory and regenerative factors

(regenerative cocktail). Osteoarthritis (OA), the most common inflammatory and degenerative joint disease, is complex and multifaceted characterized by cartilage

(Continued)
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FIGURE 1 | degradation, subchondral bone changes, osteophytes formation, and synovium inflammation. MSC administration suppresses immune cell migration,

activation, and production of inflammatory cytokines leading to a reduced inflammation in OA joints without allowing joint tissue regeneration. The development of

novel therapeutic strategies to both regulate the immune response and induce tissue regeneration leans on a better understanding of the regeneration process

possible in some vertebrates. This relies on the identification of the mechanisms underlying regeneration that will determine key factors that control inflammation while

orchestrating stem cell proliferation, differentiation, and tissue regeneration.

nevertheless the current consensus is that it is formed by an
heterogenous mass of cells, mainly dedifferentiated cells from
injured or surrounding tissues, entering the cell cycle. The
reason why mammals in their vast majority cannot regenerate
appendages at adult stage, or form a blastema, is unknown.
Lately, at least two systems have been described for their
involvement in blastema formation and overall regeneration: the
immune system and the nervous system. These systems will be
tackled in further details below.

Among immune cells, macrophages have particularly
triggered scientist attention in the context of regeneration
(Chazaud, 2014; Wynn and Vannella, 2016). In salamander,
macrophages, monocytes, and granulocytes are detected since
1-day post amputation. They accumulate very fast and their
early depletion completely inhibits the regeneration process,
whereas a late depletion only delays it (Godwin et al., 2013).
In zebrafish, macrophages also play a crucial role during fin
regeneration in adult and larvae (Petrie et al., 2014; Nguyen-
Chi et al., 2015, 2017). As in salamander, early recruited
macrophages are important for blastema formation and the late
ones more involved in tissue remodeling. Likewise, adult mouse,
macrophage involvement during digit tip regeneration has
been described. These cells are necessary to the whole process:
from the AEC formation to the repatterning of the appendage
(Simkin et al., 2017). If the importance of these cells has been
widely described, their effector functions are less known in the
context of regeneration. Because of their plasticity and their
abilities to polarize in response to the environment, recent
studies have been focused on inflammatory mediators released
by macrophages and their functions during regeneration. The
zebrafish mutant cloche, which has no hematopoietic tissue, is
not able to regenerate (Hasegawa et al., 2015). The first step
of wound healing is conserved but there is no proliferation
of blastema cells, and extensive apoptosis. To understand if
a diffusible factor produced by hematopoietic cells could be
responsible for maintenance and proliferation of blastema cells,
the authors co-cultured mutant fin explants with wild type (WT)
or mutant larva extracts. Proliferation rescue happened in the
co-cultures with WT larva extract, suggesting the existence
of hematopoietic derived diffusible factors (Hasegawa et al.,
2015). Next, the authors showed an IL-1β abnormal expression
triggering long lasting and uncontrolled inflammatory phase.
Similarly, macrophage depletion triggered aberrant IL-1β
overexpression. Moreover, in intact larvae, an overexpression of
IL-1β triggered ectopic expression of some blastemal markers
(Hasegawa et al., 2017). Furthermore, we have shown the crucial
role of TNFa/TNFR1 axis mediated by macrophages during
caudal fin regeneration, which induces blastema proliferation
(Nguyen-Chi et al., 2017). These studies show that macrophages
likely adjust the inflammatory response during the regeneration.

Other teams have investigated the inflammatory modulation
role during regeneration, showing that inflammation blockade
is deleterious for the regeneration process (Mathew et al.,
2007; Kyritsis et al., 2012; Li et al., 2012). It suggests that
inflammation is necessary to the regeneration but needs
to be fine-tuned. However, the mechanisms by which
macrophages are recruited and controlled remain unknown.
The identification of such mechanisms is critical to determine
the role of an appropriate macrophage response in the
context of degenerative mammalian diseases such as OA.
Since regeneration medicine is an integrated process, the use
of regenerative animal models for an integrated vision of
regeneration is highly informative not only to identify all the
cellular components required for the formation of the blastema
but also to determine how these components communicate
and regulate each other to give rise to a regenerated tissue.
In this context, the role of the nervous system has been
intensively investigated.

Nerve Dependency During Regeneration
Process
The formation of the two crucial structures (e.g., “AEC” and
the blastema) for epimorphic regeneration are tightly linked
to innervation. That nerve dependency has been discovered by
Todd in 1823 who has observed an impaired limb regrowth after
sciatic nerve transection (Todd, 1823; Dinsmore and Solomon,
1991). Later, Singer established the “neurotrophic hypothesis”
based on experiments in amphibians and in chick embryos
(Singer, 1952; Geraudie and Singer, 1981; Fowler and Sisken,
1982). This theory has been widely accepted and applied to other
models to identify trophic factors secreted by the nerve and
responsible for the maintenance of the AEC and the blastema
subsequently. One useful model developed in the salamander is
the “accessory limbmodel” (Endo et al., 2004, 2015), which allows
to isolate more easily the sufficient and necessary neurotrophic
factors secreted during regeneration. This model consists in the
brachial nerve deviation to a skin wound on the limb side to
induce the formation of an ectopic blastema-like structure. If
this manipulation is followed by a graft from the epidermis,
at proximity of the injury, the blastema formation leads to the
formation of an entire accessory limb, demonstrating the tight
cooperation between AEC-blastema and the nerve. Moreover, if
the wound healing is not dependent of the nerve, the formation
of the AEC that allows the blastema establishment is nerve
dependent. Interestingly, the peripheral nerve system arises from
a structure called the neural crest (NC). These neural crest cells
(NCC) intrigued for a long-time developmental biologists as they
give rise to a broad number of derivatives but also because of
their plasticity.
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Neural Crest Cells
The neural crest cells (NCC) are a transient embryonic
cell population emerging during neurulation in vertebrates,
discovered by (His, 1868) and following experiments conducted
by Höstradius with ablation of NC to observe their contribution
to organ/part of the body formation (Le Douarin, 2004). NCCs
arise from the folding of neural plate into the neural tube
orchestrated by a fine-tuned gene regulatory network (GRN)
composed of different groups participating to successive events
leading to their final fate (Sauka-Spengler and Bronner-Fraser,
2008). The first is their induction with factors secreted from
mesoderm and notochord such as signaling pathway molecules
including bone morphogenetic proteins (BMP), WNT, Sonic
Hedgehog (SHH), fibroblast growing factor (FGF), and Retinoic
Acid (RA). Then, their spatial definition takes place with neural-
plate border defining molecules (Zic1, Msx1/2, Pax3/7, and Ap2),
which will allowNCCs to progress toward their specification with
expression of characteristic markers (FoxD3, Sox10, and Snail).
In the neural-plate border, specific signals induce a complex
transcription factor network that will control NC specification
and epithelial-to-mesenchymal transition (EMT). After this
transition from an epithelial to a mesenchymal phenotype, NCC
acquire a migratory phenotype and migrate through the cranial
and trunk regions of the embryo (see for review Green et al.,
2015). Considered as a key feature in vertebrate evolution thanks
to their morphological contribution, NCC GRN is conserved
across them but can differ slightly as certain transcription factors
may be crucial to their formation or not. Although cell types
derived from NCCs are found in invertebrates, most important
evolutionary aspects are cranial elements, glia, neurons, and
pigment cells (Le Douarin et al., 2004; Bronner and LeDouarin,
2012).

Neural Crest Cells Multipotency
NCCs give rise to many derivatives and their migratory potential
allows their presence in virtually all the tissues (Trainor, 2005).
However, the question of their multipotency has remained
elusive. The NCCs have been defined either as a heterogeneous
population containing restricted progenitors, which fate is
determined early during the development, or as amultipotent cell
population (Dupin and Sommer, 2012; Le Douarin and Dupin,
2016). Some evidences have been proposed in favor of the first
hypothesis in the chick embryo. This model proposed that NCC
were determined from the emergence of the crest, according
to their position within the neural tube. Recently, a study
investigated this point, using a new transgenic line (Baggiolini
et al., 2015) has revealed that pre-migratory and migratory NCC
are multipotent. They have thus resolved this controversy using
in vivo cell fate mapping of trunk NCC with the R26R-Confetti
mouse and demonstrated that the majority of pre-migratory and
migratory NCC are multipotent. In another model, the Xenopus
Larvae, the expression of pluripotency factors at blastula stage
and neurula stages was studied (Buitrago-Delgado et al., 2015).
They showed that NCC derived from these selected blastula cells
with pluripotency characteristics have the ability to retain and
maintain them along their evolution (Buitrago-Delgado et al.,
2015).

FGF, Wnt1, or BMP signaling pathways are activated during
the induction of NCCs. Thus, NCC pluripotency was at first
accredited to a gain of function phenomenon following their
exposure to molecules of FGF,Wnt1, or BMP signaling pathways.
However, more recently, in Xenopus, it has been demonstrated
that NCC arise from a subset of pluripotent cells that has retained
FGF-mediatedMap Kinase signaling (Geary and LaBonne, 2018).

Importantly, multipotent NCC have also been identified in
the neonatal and adult mammals (Motohashi et al., 2011, 2014;
Kunisada et al., 2014; Motohashi and Kunisada, 2015). Indeed,
they have been identified in the adult rat palatum, periodontal
ligament (Techawattanawisal et al., 2007; Widera et al., 2007,
2009), and in the dental pulp tissue (Sasaki et al., 2008).
Moreover, multipotent cardiac multipotent NCC have been
identified. This latter cells form spheres in vitro, present NCC
characteristics and differentiate, in addition to cardiomyocytes,
into NC derivatives such as peripheral nervous system neurons,
glial cells (Tomita et al., 2005).

Neural Crest-Derived Stem Cells During
Tissue Repair in Adult Mammals
Neural crest-derived stem cells (NCSC) are not restricted to the
embryonic NC, but they are also present in several NC-derived
tissues in adult vertebrates. Some post-migratory NCSC have
conserved similarities with their embryonic counterparts such as
their capacity to differentiate into a large variety of cell types.
Moreover, these cells have been described for their role in the
context of tissue repair (Figure 2), in part, through their capacity
to regulate the immune response. Indeed, in the defected sciatic
nerve of rats, epidermal-neural crest stem cells (EPI-NCSC) was
shown to promote the recovery of structure and function of
nerve bridged with artificial nerve by regulating inflammation
and providing a supportive microenvironment for the defected
nerve repair (Li et al., 2017). Similarly, transplantation of another
NCSC population named olfactory ensheathing cell (OEC) has
been described to improve and promote axon regeneration after
a complete low-thoracic spinal cord transection in adult rats,
through neuroprotective and immunomodulatory mechanisms
that create a permissive environment (Khankan et al., 2016). This
tissue repair potential has been extended to other NCSC such
as the skin-derived precursors pre-differentiated into Schwann
cells (SKP-SC). Indeed, following sciatic nerve injury SKP-SC
administration significantly improves the mean axon counts and
behavioral recovery (Khuong et al., 2014). Finally, the use of
other NCSC such as dental pulp stem cells (DPSC) and inferior
nasal turbinate stem cells (ITSC) should be further considered
for bone repair given their capacity to generate into osteoblasts
(Schurmann et al., 2014; Fujii et al., 2018; Amghar-Maach
et al., 2019). Regarding periodontal regeneration a comparative
study has shown that periodontal ligament stem cells exhibit a
higher regenerative potential than DPSC (Amghar-Maach et al.,
2019). Altogether, these studies underline the potent regenerative
capacity of NCSC, in part, through the regulation of the
immune response. This potential should be further investigated
in comparative studies in order to identify the optimal NCSC
source for a given therapeutic application.
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FIGURE 2 | Overview of the repair or regenerative potential of neural crest cells.

Schwann Cells in Regenerative Models
As we mentioned, regeneration relies on innervation and in
particular on nerve associated cells such as neural crest derived
cells including Schwann cells (SC) or Schwann cell precursors
(SCP). In the context of adult skin repair in mice, SC contribute
to dermis regeneration in a Sox-2 dependent manner (Johnston
et al., 2013). In newts and salamander, during epimorphic
regeneration, SC accumulate in the regenerating limb and
produce factors sufficient for blastema cell proliferation and
regeneration of distal structures (Kumar et al., 2007; Kumar and
Brockes, 2012). Similarly, in mammalian models of regeneration
such as murine the digit tip regeneration that depends on nerve
(Rinkevich et al., 2014; Johnston et al., 2016), SCP have been
shown to dedifferentiate and release growth factors after the
removal of the distal digit. Depletion of SCP impaired the
proliferation rate of mesenchymal precursors within the blastema
and digit regeneration while exogeneous SCP transplantation as
well as the local injection of their paracrine factors (oncostatin
and platelet-derived growth factor AA) rescued the impairment
in digit tip regeneration induced by SCP ablation or denervation
(Johnston et al., 2016). Going further, it has recently been shown
that injured nerves also contains mesenchymal precursor cells
that directly participate to skin and bone formation during digit
tip regeneration (Carr et al., 2018). Altogether, these studies
demonstrate that in response to digit tip removal, local tissue and
nerve lesions induce SC dedifferentiation and release of growth

factors that promote neural crest-derived mesenchymal cell
proliferation, migration toward damaged tissues, differentiation,
and digit tip regeneration (Johnston et al., 2016; Carr et al., 2018).

Interestingly, after peripheral nerve injury, SC secrete several
trophic factors that promote macrophage recruitment. In this
context, SC recruit pro-inflammatory macrophages and promote
their polarization toward an non-inflammatory phenotype
(Stratton and Shah, 2016). Thus, SC have been suggested to
regulate the inflammatory response. However, this hypothesis
has only been explored in the context of peripheral nerve injury.
Investigating this aspect in epimorphic regeneration could allow
us to better understand the inflammatory regulation and identify
crucial factors involved in these regulatory mechanisms.

CONCLUSION

This review underlines how the well-recognized heterogeneity
of MSC has greatly contributed to limit their success in
degenerative disease therapies. Additionally, among MSC
subsets ontogenically distinct, there is a need for a molecular
characterization of MSC heterogeneity and the identification of
a specific phenotype for regenerative MSC that would permit
their enrichment during the manufacturing process. As discussed
above, this heterogeneity could be related to their dual embryonic
origins. From a therapeutic point of view, it is critical to
determine which MSC subsets are preferentially expended using
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the routine protocols for MSC isolation and amplification
and compare the regenerative potential of NC-derived MSCs
with the ones that derive from the mesoderm in experimental
models of degenerative diseases. Moreover, although MSC are
potent immunoregulatory cells, inflammation has been shown
to be deleterious for certain MSC’s functions, among which are
their differentiation potential thus limiting their regenerative
potential. Thus, whether there is a particular subset of MSCmore
susceptible to the deleterious effects of inflammation needs to
be defined.

Additionally, this review points out the high importance
of studying regenerative species in order to comprehend the
coordination of molecular and cellular events during this
particularly complex phenomenon. Lately, NC-derived cells have
emerged as a novel source of pro-regenerative cells. However, the
precise mechanisms behind the capacity of these cells to control
inflammation and orchestrate regeneration are not fully known
and their identification would pave the way for the development
of novel therapeutic strategies for degenerative diseases such as
OA characterized both by an abnormal immune response and
tissue degradation.

Herein, the regenerative models we described could allow us
to overcome MSC-based therapy limitations by precisely helping

to identify the key events leading to a complete restoration of
the injured tissues. The orchestrator role of the NC-derived cells
during the regeneration may leads to the discovery of crucial
molecular factors allowing to regulate both the inflammatory
response and the renewal of the lost tissue (Figure 1). These
perspectives open the way for future therapies based on pro-
regenerative factors to treat OA.
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