
Advances in non-invasive
biosensing measures to monitor
wound healing progression

Walker D. Short1, Oluyinka O. Olutoye II1, Benjamin W. Padon1,
Umang M. Parikh1, Daniel Colchado1, Hima Vangapandu1,
Shayan Shams2,3, Taiyun Chi4, Jangwook P. Jung5 and
Swathi Balaji1*
1Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas
Children’s Hospital and Baylor College of Medicine, Houston, TX, United States, 2Department of
Applied Data Science, San Jose State University, San Jose, CA, United States, 3School of Biomedical
Informatics, University of Texas Health Science Center, Houston, TX, United States, 4Department of
Electrical and Computer Engineering, Rice University, Houston, TX, United States, 5Department of
Biological Engineering, Louisiana State University, Baton Rouge, LA, United States

Impairedwound healing is a significant financial andmedical burden. The synthesis

and deposition of extracellular matrix (ECM) in a new wound is a dynamic process

that is constantly changing and adapting to the biochemical and biomechanical

signaling from the extracellularmicroenvironments of thewound. This drives either

a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM

deposition, structure, and composition lead to impaired healing in diseased states,

such as in diabetes. Validmeasures of the principal determinants of successful ECM

deposition and wound healing include lack of bacterial contamination, good tissue

perfusion, and reduced mechanical injury and strain. These measures are used by

wound-care providers to intervene upon the healing wound to steer healing

toward a more functional phenotype with improved structural integrity and

healing outcomes and to prevent adverse wound developments. In this review,

we discuss bioengineering advances in 1) non-invasive detection of biologic and

physiologic factors of the healingwound, 2) visualizing andmodeling the ECM, and

3) computational tools that efficiently evaluate the complex data acquired from the

wounds based on basic science, preclinical, translational and clinical studies, that

would allow us to prognosticate healing outcomes and intervene effectively. We

focus on bioelectronics and biologic interfaces of the sensors and actuators for real

time biosensing and actuation of the tissues. We also discuss high-resolution,

advanced imaging techniques, which go beyond traditional confocal and

fluorescence microscopy to visualize microscopic details of the composition of

the woundmatrix, linearity of collagen, and live tracking of components within the
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wound microenvironment. Computational modeling of the wound matrix,

including partial differential equation datasets as well as machine learning

models that can serve as powerful tools for physicians to guide their decision-

making process are discussed.

KEYWORDS

wound healing, extracellular matrix (ECM), biofilm, biosensor, machine learning,
impaired wound healing, perfusion, bioelectronics

1 Introduction

Wound healing is a complex physiologic process dependent

on many cellular and molecular factors, most often resulting in

the formation of a fibrotic scar. Human wound care and

treatment burden aiming to attenuate fibrosis and avoid

abnormal, pathologic healing represents a substantial portion

of the global medical industry. In the United States alone, close to

$1.5 billion are spent managing burns and burn-related injuries,

much of which is spent on secondary interventions managing the

resulting scar (Sen, 2021; Singer and Clark, 1999; Armstrong

et al., 2020). Additionally, over 80 million surgical incisions are

created each year on top of 12 million traumatic lacerations

(Schultz and Wysocki, 2009). Over 8 million patients have

chronic, non-healing wounds, the management of which costs

Medicare between $28 million and $96 million annually (Volk

et al., 2011; Olczyk et al., 2014). Aberrant healing can also lead to

hypertrophic scars and keloid formation, which affects roughly

11 million patients annually (Eming et al., 2007; Sorg et al., 2017).

Moreover, wounds are not only expensive to manage, but can be

life threatening: diabetic foot ulcers have a similar mortality rate

to cancer (30.5% vs. 31%) (Armstrong et al., 2020). Successfully

managing wound healing would alleviate a serious financial

burden on the medical system as well as significantly

contribute to reducing morbidity and mortality.

The paragon of successful wound healing is the regenerative

healing phenotype observed in midgestational fetal skin wounds.

While regenerative healing mechanisms are primarily explored

and modeled by researchers to alleviate the burden of scarring,

inducing regenerative ECM deposition should also be targeted as

an important objective in the healing of chronic wounds, which

are a more pressing issue beyond cosmetic wound healing.

Physiologically, wounds heal in a defined and organized

manner, progressing through the overlapping phases of

hemostasis, inflammation, proliferation, and remodeling

(Figure 1) (Singer and Clark, 1999). In the first phase,

hemostasis is achieved through vasoconstriction, activation of

the coagulation cascade, and clot formation. Damaged tissue

FIGURE 1
Phases of wound healing. (A) Wound healing progresses through four phases including hemostasis, inflammation, proliferation, and
remodeling. (B) Representative H&E staining of wounds in the inflammation stage demonstrating poor granulation tissue formation in an infected
wound. Arrows represent wound edge. Illustration created using Biorender.com.
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releases damage associated molecular patterns (DAMPs) that

signal recruitment of neutrophils and monocytes responsible for

scavenging bacteria and devitalized tissue. As the inflammation

phase winds down, the proliferative phase is dominated by

activated myofibroblasts and the synthesis of new extracellular

matrix (ECM). The ECM not only provides structural scaffolding

and integrity to the healing wound, but also simultaneously acts

as a reservoir for crucial growth factors (Schultz and Wysocki,

2009), and plays an active role in regulating cell migration,

differentiation, proliferation, and survival (Olczyk et al., 2014),

to promote wound neovascularization and keratinocyte-

mediated wound re-epithelialization. ECM synthesis and

remodeling are dynamic processes. Collagen serves as the

major constituent of the cutaneous ECM, with collagen type

III laid down first in the healing wound which is then replaced by

collagen type I during the remodeling phase, culminating in scar

formation and playing a major role in the stiffness of the skin

(Ben-Amor et al., 2014). Other components such as elastin,

laminins, chondroitin sulphate, and proteoglycans are essential

to ECM physiology, and contribute to biomechanical properties

of the skin allowing for elasticity, cell signaling and sensing

changes in surrounding microenvironment and shifting the

structural framework of the ECM in response to micro

environmental cues. Several differences among the wound

ECM constituents have been shown to play a critical role in

the regenerative wound healing phenotype based on the accrued

literature in fetal vs. adult dermal wound healing. These

differences include a higher ratio of collagen type III to

collagen type I in the regenerative wound microenvironment

with elevated and sustained levels of hyaluronan and an absence

of elastin as compared to the fibrotic wounds. Non-invasive study

of the differences in ECM patterns during the progression of

healing of fetal and adult wounds will provide insights to

recapitulate the regenerative phenotype.

Pathophysiologic states such as in diabetic ulcers, venous

ulcers, and immunosuppression lead to a cessation of normal

wound healing, leading to chronic wounds that are characterized

by a prolonged inflammatory phase with dysregulated ECM,

leading to dysfunctional epithelization. While normal wound

healing occurs in a highly regulated fashion from “outside-in”,

this coordinated process goes awry in chronic and difficult-to-

heal wounds, often characterized by a large wound size and

variable depths across the wound bed that are simultaneously

“stuck” in different healing phases (Tredget et al., 1997; Eming

et al., 2007; Gurtner et al., 2008; Ogawa, 2008; King et al., 2013;

Duscher et al., 2014; Balaji et al., 2017; Sorg et al., 2017; Rodrigues

et al., 2019; LeBleu and Neilson, 2020). These wounds can also be

viewed in the context of disrupted dynamic reciprocity. Dynamic

reciprocity (DR) is defined as ongoing, bidirectional interaction

amongst cells and their surrounding microenvironment, which

supports the concept that cells’ surrounding microenvironment

and the cells’ function and phenotype may depend on each other.

DR-driven biochemical, biophysical and cellular responses to

injury play pivotal roles in regulating wound healing responses.

Concerning ECM, dynamic reciprocity deems ECM an active

signaling entity rather than an inert scaffold (Bissell and Aggeler,

1987; Schultz et al., 2011). DR was reported by different groups;

the interaction between endothelial cells and ECM was first

described by Bornstein and others in 1982 as DR, with further

seminal work reporting the interaction of ECM with cells

through transmembrane receptors (Bissell et al., 1982;

Bornstein et al., 1982). DR is evident in all four stages of

normal wound healing, with integrins playing a key role in

modulating interactions between cells and the ECM. Elevated

protease levels in the chronic wounds hinder ECM—cell

interactions by integrin switching or lack of integrin

presentation due to destroyed/damaged attachment sites for

the cells in the ECM (Larjava et al., 1993; Lafrenie and

Yamada, 1996; Miyamoto et al., 1996; Lobmann et al., 2002).

Therefore, the functional cells in the wound are deprived of

signals required for migration, proliferation, and differentiation.

Further, the pathogenesis of these wounds has been linked to

persistently high proteolytic activity along with excess deposition

of ECM (Buccafusco and Serra, 1985; McCarty and Percival,

2013). Impaired healing and scarring also reduce the elasticity

and integrity of the remodeled tissue while impairing its function

(Davey et al., 2003; Corr and Hart, 2013), with even more severe

complications in patients who suffer from diseases that lead to

poor wound healing and chronic wounds, such as diabetes

mellitus (Weiser et al., 2018).

Current metrics for evaluating successful healing of a wound

rely primarily upon measuring re-epithelialization. When a

wound appears to be stalled in the progression of healing, a

physician investigates the factors usually involved in hampering

wound healing such as bacterial infection, inadequate perfusion,

and mechanical strain on the site of injury, often requiring

further imaging studies or procedures. These factors negatively

impact the successful deposition and remodeling of ECM in a

wound. However, the current standard of care does not evaluate

the integrity and quality of the ECM of the healing

wound–understandably, as non-invasive methods of evaluating

the ECM are not yet commonplace, and invasive assessment by

sampling tissue biopsies create additional morbidity at the site of

injury. Novel techniques that allow longitudinal, non-invasive,

multiparametric monitoring of the wound healing progress in

real time will be a significant boon to the field of wound care.

There are many new and emerging techniques that can be

utilized to further evaluate biologic factors in the healing wound

which ultimately determine the structure and function of the

ECM of a healed wound. Multimodal electronic biosensors that

have better wound interfaces can assess the wound state in real-

time with enhanced spatiotemporal resolution. Similarly,

mathematical models providing a theoretical map of the ECM

can be used to run simulations of wound healing end points

based on given inputs, which will aid in forecasting the healing

outcomes of complex wounds and allow for timely interventions.
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Machine learning algorithms can process complex chemical

signals and ECM data inputs to determine the state of wound

healing with the potential to predict optimal interventions to

promote wound healing. Together, these computational models

along with in vivo animal models will allow for the integration of

physiological, molecular, mechanical, and electronic processes

that increase both the number of independent signals that can be

monitored simultaneously and the number of stimuli that can be

administered to the repairing wound tissue.

These technologies may potentially lead to a transformative

wound healing approach that can expedite recovery, eliminate

incomplete healing with scarring, and reduce the risks of

infection and limb amputations (Zhang et al., 2021). In

addition, the ability to real-time monitor the wound status

without continuous screenings by medical professionals, may

result in substantially reduced treatment cost and facilitate

clinicians in more precisely tracking the healing process of the

patients, enabling developments of personalized and predictive

care. Biosensors, which actively monitor the early wound

environment for bacterial infection, perfusion, and mechanical

strain, will allow wound care providers the opportunity to

intervene on wounds that are predicted to fail to heal. Novel

non-invasive measures of the quality of the ECM deposition in

the healing wound will clue in providers as to the functional

dependability of the healed wound. Machine learning and deep

learning will allow extraction of the mass data provided by novel

biosensing and ECM visualizing modalities predicting wound

failure, and perhaps 1 day intervening, before human evaluation

has even taken place.

2 Wound interface biosensing

At the onset of the healing process, it is essential to establish

an infection free wound bed along with sufficient perfusion of the

granulating tissue to allow for successful ECM deposition.

Development of biosensors to detect bacterial contamination

through presence of a biofilm, odor, H2O2, temperature, pH, and

even direct bacterial detectors as well as perfusion via oxygen

sensors and near-infrared fluorescence have led to novel methods

to evaluate the progression and hinderance of wound healing.

Development of technologies such as these will allow physicians,

particularly vascular surgeons, to rapidly identify and intervene

upon wounds that display characteristics of non-healing wounds,

especially in the crucial timeframe immediately following

revascularization.

2.1 Detection of bacterial contamination
and biofilms

A constant source of consternation for clinicians,

infections are especially prevalent in chronic diabetic

wounds, contributing to dysregulated wound healing.

Sensors can be utilized to detect markers of infection like

bacterial by-products and toxins as well as enzymes secreted

by neutrophils (Ma et al., 2022; Nnachi et al., 2022; Ramasamy

et al., 2022). About two thirds of chronic wounds present with

bacteria that tend to produce a biofilm, a matrix consisting of

extracellular polymeric substances (EPS) (Zhao et al., 2013).

Bacterial biofilms form a protective barrier that encourages

the formation of multicellular communities through the

production of a complex matrix of glycoproteins and

polysaccharides and hinder healing by suppressing the

effectiveness of the host immune response to infection

(Volden et al., 2010). Biofilms also protect bacteria from

antibiotics at the concentrations which would normally kill

the bacteria. Therefore, wounds are often debrided when there

is a clinical suspicion of biofilm formation. Objective methods

of sensing biofilm formation would provide valuable clinical

information to indicate the need for wound debridement.

High-frequency acoustic microscopy is a novel technique,

which, when used in conjunction with targeted ultrasound

contrast agents, allows for detection and quantification of

bacterial biofilms (Anastasiadis et al., 2014). Another

promising method for detecting biofilms in the field of

wound healing is mass spectrometry. In 2013, Hines et al.

demonstrated, using a diabetic rat model, the ability of ion

mobility mass spectrometry (IM-MS) to accurately

characterize and model wound pathology through non-

invasive collection and analysis of a small sample of wound

exudate (Hines et al., 2013). Mass spectrometry has also been

used to characterize and quantify the presence of bacterial

biofilms, including in human dermal wounds (Charlton et al.,

2000; Ashrafi et al., 2018; Achek et al., 2020). In recent years,

this technology has been used for the detection of metastatic

breast and thyroid cancers, and has been translated into the

clinic in a handheld device, the MasSpec Pen System™, for real
time determination of tumor margins during pancreatic

cancer surgery (Zhang et al., 2017; King et al., 2021). This

technology may offer physicians a non-invasive, real-time

method for analysis of a wound and determination of

healing status. While this would require studies to model

the healing wound and determine the variables to assess, it

is a tool that could change the way wounds are assessed in the

clinic and provide a method for rapid characterization of the

ECM. Other indirect measures of bacterial contamination and

biofilm formation include wound pH, odor, hydrogen

peroxide levels, and temperature–which will be discussed in

the following sections.

2.1.1 pH sensors
pH is a sensitive indicator of bacterial infections in the

inflammation phase. pH of normal healing wounds is in the

range of 5.5–6.5 during the wound healing. However, in non-

healing infected wounds, pH tends to be above 6.5 (Schneider

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Short et al. 10.3389/fbioe.2022.952198

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.952198


et al., 2007). Although pH can be slightly affected by diet and

diseases, the variations of wound pH in response to the

infection are more severe. Thus, monitoring pH will

provide important data on possible infection in the

inflammation phase. pH can be easily measured with the

help of indicator dyes (Kromer et al., 2022; Srivastava

et al., 2022). However, care must be taken that these dyes

do not leach from the dressings. Sridhar and others have

developed a sensor based on a pH sensitive hydrogel between

two coils (Vijayaraghavan et al., 2009). The coils displace as

the hydrogel swells with changes in pH and result in a change

of inductance. This kind of electronic sensor will be ideal in

the future as we move toward smart wound dressings that can

detect changes in pH and deploy measures to address the

perturbations. pH monitoring does present difficulties,

however, as the pH of a non-infected wound tends to

fluctuate as a part of the physiologic wound healing

response. Thus, alterations in pH are not necessarily

specific to bacterial infection (Sharpe et al., 2013). Using

dual-sensors, which create composite data from multiple

readouts may add to the specificity of pH sensors. For

example, levels of uric acid indicate the severity of the

wound and decrease as the wound heals (Fernandez et al.,

2012). Sharifuzzaman et al. (2020) developed a wearable

biosensor for detection of uric acid, further integrated with

a temperature and pH detection system to correlate changes in

temperature, pH, and uric acid levels, allowing for more

precise recognition of bacterial infection. Direct bacterial

sensing is a much more specific measure to determine the

presence and severity of microbial contamination in a wound.

Preclinical dual-sensors are in development which perform

real-time monitoring of pH and bacterial cellular attachment

(Sheybani and Shukla, 2017). Simultaneous measurement of

pH and bacterial colony size allows for a much more specific

approximation of wound infection, and such a sensor could be

applied to flexible materials and integrated into functional

sensors such as bandages.

2.1.2 Odor sensors
Bacterial colonization can also be detected via odor

sensors that detect chemicals and other byproducts secreted

by bacteria. These sensors, known as “electronic noses,” can

identify bacterial strains based on their characteristic odor

(Wiggins et al., 1985; Pavlou et al., 2002; Allardyce et al.,

2006). Detection of volatile organic compounds from the

wound exudate is a complex process. For example, chronic

wound lesions secrete compounds detected by GC-MS, which

resolves these signals. The difficulty then lies in processing the

resultant plethora of information (Thomas et al., 2010). At

present, the instrumentation for resolving these peaks is quite

bulky. Therefore, sensors that offer portability and real-time

gas detection are needed. Low-cost alternatives to gas sensors

are chemiresistors and metal oxide detectors. However, these

lack sensitivity in obtaining fine distinctions amongst the

volatile gases.

2.1.3 Hydrogen peroxide sensors
Hydrogen peroxide (H2O2) is generated in the inflammation

phase of wound healing through oxidative damage, and thus,

detection of H2O2 may be helpful in assessing the state of a

wound and presence of contaminants. However, commercially

available, enzyme-modified electrode systems to detect H2O2

usually suffer from issues such as temperature and pH stability as

well as a complicated procedures for in vivo applications. To

address this issue, recent studies suggest using platinum as the

catalyst surface for direct non-enzymatic H2O2 sensing (Miao

et al., 2014). In particular, Platinum-Black (Pt-Black)

microelectrodes have proven to be highly sensitive for in vivo

H2O2 measurements, which also offers superior accuracy over a

large range of H2O2 concentrations (Ben-Amor et al., 2014; Du

et al., 2017; Yu et al., 2021; Xie et al., 2022). By deploying an array

of Pt-Black microelectrodes, the H2O2 concentration and the

resulting electrochemical currents can be readily monitored

using a standard potentiostat circuit.

2.1.4 Temperature sensors
Temperature is a key metric for understanding not only

infection, but perfusion as well. Infection is indicated in the case

of elevated temperature, yet decreased temperature can be a

marker of local ischemia and biofilm formation. Many

temperature sensors are made of carbon nanotubes and

connected to a transponder while others are colorimetric, and

detect up to ±0.5°C (Zang et al., 2012). These are low cost, yet are

superseded by electronic sensors that offer better sensitivity.

Nanodiamonds (ND) are another material which provide

non-invasive optical imaging with excellent mechanical and

optical properties (Khalid et al., 2020). Khalid et al. have

proposed the integration of nanodiamonds-silk materials to

develop temperature sensors. These hybrids are thermally

stable and are resistant to degradation as compared to silk

alone, when tested in a murine model. In addition to

temperature, these dressings also detect cell turnover and

antibacterial activity. These arrays will allow for a direct

digital output of temperature readings that can be fed back

into a controller on a smart wound.

2.2 Detection of tissue perfusion

Perfusion of the granulating wound bed, allowing for ideal

oxygenation, influx of nutrients and growth factors, and immune

function is essential for proper ECM deposition. In the case of

chronic wounds, there is often suboptimal macro and

microvascular perfusion to the wound bed providing

insufficient oxygen supply which leads to impaired healing

(Chan et al., 2011; Dargaville et al., 2013). Established
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methods of monitoring vascular perfusion to wounds typically

involve non-invasive means such as ankle brachial index, toe

pressures, laser speckle perfusion mapping, and laser Doppler

ultrasound flowmetry measurements performed at discreet time

points for superficial wound mapping. However, these methods

can be unreliable in the setting of calcified arteries common to

diabetic patients with critical limb-threatening ischemia (Ricco

et al., 2017). To overcome this drawback, novel advances in non-

invasive measures are being explored, such as pedal acceleration

time, which involves measuring the time from the start of the

systolic uprise in flow in a plantar artery to the peak of systole

(Sommerset et al., 2019). While pedal acceleration time has been

shown to reliably measure angiosomal perfusion to foot wounds,

it is not able to directly measure the perfusion to a wound as a

minimally invasive peripheral angiogram would (Sommerset

et al., 2019). All of these invasive and non-invasive measures

of tissue perfusion share a similar drawback; they are static

measures of perfusion. Continuous measures, however, may

be able to detect minute changes in oxygenation, therefore

informing providers of the potential need for an intervention

to improve blood flow.

Given these drawbacks, there is a clinical need for non-

invasive real-time measures of tissue perfusion. A step in the

right direction involves the use of fluorescence angiography to

determine perfusion to wounds. Indocyanine green fluorescence

angiography (ICGFA), a technique progressively being used in

the surgical setting, has proven to be useful in monitoring wound

perfusion as well (Whitlock et al., 2021). Its use involves injection

of a non-toxic and non-radioactive dye, which may then be

imaged using a laser and camera under which the dye fluoresces

(Patel et al., 2018). In one clinical study, poor perfusion measures

by ICGFA in patients who underwent endovascular interventions

were more predictive of failure of wound healing than other non-

invasive measures (Patel et al., 2018). Similarly, in another study

of patients with heel ulcerations, ICGFA measures successfully

identified local heel ischemia and allowed for rapid vascular

interventions to improve perfusion (Marmolejo and Arnold,

2018).

Another promising non-invasive measure of angiogenesis is

Cadence contrast pulse sequencing, which utilizes targeted

contrast agents, such as microbubbles, toward a specific

vascular marker expressed by endothelium (Stieger et al.,

2008; Streeter et al., 2011). This technique has been used to

quantify angiogenesis in vivo in a murine model of mammary

carcinoma (Anderson et al., 2011). Given the ubiquity of

ultrasound technology, this method of measuring angiogenesis

could be applied to chronic wounds in an outpatient setting.

As the principal purpose of perfusion is oxygen delivery to

the healing tissue, methods of direct oxygen detection are also

useful for evaluating the healing wound. Mostafalu et al.

developed a 3D-printed smart wound dressing that can sense

the oxygen concentrations in a wound. The bandage, along with a

flexible oxygen sensor, a microcontroller and wireless radio, are

all assembled into a compact system that can provide a direct

data readout as well as wirelessly transmit the oxygen

concentrations as the wound heals (Allardyce et al., 2006).

Researchers are also implementing oxygen-sensing

nanoparticles which can be directly incorporated into

dressings in contact with the wound surface. These particles

are excitable by ultraviolet light and emit fluorescent wavelengths

which correspond to the oxygen concentration in the wound

(Tavakol et al., 2020).

2.3 Mechanical injury and strain

Mechanotransduction is a critical factor in wound healing

and fibrosis (Wang and Thampatty, 2008). Proper coordinated

functional ECM deposition and wound healing rely on an

environment with minimal strain and no repeated injury.

Mascharak and others recently demonstrated that the

fibroblasts principally responsible for dysregulated ECM

deposition are activated by canonical mechanotransduction

pathways, the inhibition of which allows for coordinated ECM

deposition culminating in regenerative healing (Mascharak et al.,

2021). Diabetic wounds, due to the underlying sensory

neuropathy present in this population, are particularly

susceptible to repeated injury and strain which inhibits wound

healing. Wearable sensors are in development which allow for

precise and constant measurements of strain to alert patients and

physicians of mechanical environments, which pose a risk to the

successful healing of patients’ wounds. Mehmood et al. (2015)

developed a low power flexible sensing system which obtains real

time pressure, moisture, and temperature data that can be

wirelessly transmitted to the patient or care provider,

providing insensate diabetic patients with information they

can use to modify their activity and footwear. Aiming to

remove the reliance of a sensor capable of measuring at only

one point of the wound, Baldoli and others have developed smart

wearable textiles capable of measuring distributed pressure on

the foot, which also allows for measurements of pressure at the

wound-dressing interface (Baldoli et al., 2016). Such sensors as

above can be integrated into the wound dressings or patient socks

to help in decision-making. Diagnostic sensors may dictate the

course of treatment, whereas theragnostic sensors, which detect

parameters such as levels of a specific protein, are then linked to a

database of information regarding the wound, thus paving the

way for better and personalized therapies (Harding et al., 2007;

Dargaville et al., 2013).

2.4 Multiparameter sensors

While it is beneficial to obtain singular measures of the

healing wound in real time with sensors that measure physical

attributes such as temperature, odor and pH that can indicate
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infection and perfusion, single point measurements may not

accurately assess wound tissue biology, and it is essential to be

able to assess many different characteristics of a healing wound at

once (El-Ali et al., 2006; Ertl et al., 2014). To assess wound

healing in a more quantitative fashion, multimodal sensors that

can sample multiple points in the wound are being developed

(Chi et al., 2015; Park et al., 2018a; Park et al., 2018b; Park et al.,

2019) In recent years, the field of microfluidics and microanalysis

has allowed for the characterization and manipulation of micro/

nanometer-scale volumes of fluids. These innovations have

allowed for the development of multi-parametric in situ

biosensors that prepare, manipulate, and analyze biofluids in a

compact and contained manner (Whitesides, 2006; Swieszkowski

et al., 2020). The biosensing technology discussed previously,

along with microfluidic technology, has been integrated into in

situ multi-parametric cell profilers, exampled in.

Park et al. This technology incorporates impedance sensing,

static and dynamic optical recordings, extracellular potential

recording, and biphasic current stimulation into the same

2 mm × 3 mm chip with a 1,024 pixel resolution (Park et al.,

2018a). Additionally, Gao et al. developed a similar in situ

biosensor that assess a variety of biomarkers in a venous ulcer

including inflammatory mediators, bacterial load, and

physiochemical parameters like temperature and pH. This

device allowed real-time clinical feedback as well,

incorporating a portable wireless analyzer that interfaced with

the immunosensor to allow the clinician instant access to the

readings taken (Gao et al., 2021). To counteract problems such as

skin impedance, which makes the output signal weak,

microneedle platforms can be used. Microneedle electrodes

are capable of reading signals from the dermis with high

sensitivity while sampling biofluids for further analysis (Chen

et al., 2016; Lee et al., 2017). This technology can still be taken a

step further by incorporating an on-demand drug delivery

system into the wound dressing that can alter treatments in

real time based on sensor readouts. A smart dressing developed

by Mostafalu et al. (2018) incorporates a pH and temperature

sensor along with thermosensitive drug carriers and an

electronically controlled heater and onboard microcontroller

to automatically release drugs onto the wound in a

programmable, stimuli-responsive manner. The envisioned

future generation of wound dressings will establish

bidirectional communication between the wound and an

electronic interface that will guide deployment of therapeutics

into the healing wound in an artificial intelligence-guided closed-

loop manner (Figure 2).

3 Visualization of the ECM

3.1 Advanced imaging techniques

The aforementioned sensing modalities provide data

concerning predictors of successful healing, but none are

objective measures of the quality of the healing wound. For

this reason, we must focus on measures of the granulation tissue

that provides the provisional scaffolding for the healing

wound–the ECM. While invasive procedures, such as biopsy

and traditional histology, have been required to evaluate the

quality of wound healing and study the cell populations and

demarcate the wound boundaries, they bring with them

complications and confound the healing cascade by creating

new injury, which impairs the assessment of the functional

wound repair. Non-invasive interrogation of the functional

aspects of the extracellular wound matrix is highly powerful

in helping to understand the tissue repair continuum through

repeated measurements of the same wound as opposed to any

invasive measures. Non-invasive imaging modalities have

enabled us to conduct in-depth assessment of the ECM in the

wound bed and directly observe and characterize the scaffold’s

FIGURE 2
Schematic of dressing-impregnated microchip with simultaneous biosensing and medication delivery capabilities.
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mechanical structure and biomechanical properties, as well as

visualize the ECM remodeling process in various pathologies.

Imaging can provide a deeper understanding and greater

information of the wounds non-invasively rather than single

dimension diagnostics. The following sections will discuss the

recent advances in ultrasound-based imaging, optical coherence

tomography (OCT), and second-harmonic generation

microscopy, all of which are non-invasive measures which can

be used in a clinical setting to evaluate the quality of ECM

deposition and assess the progression of wound healing.

3.1.1 High frequency high resolution ultrasound
imaging

Ultrasound allows for a holistic and non-invasive evaluation

of a wound. This technique can analyze anatomy,

hemodynamics, elastography, and volume of a wound while

identifying variations in tissue type within the wound and

quantifying morphological features. Moreover, current non-

invasive techniques (thermography, macrophotography, laser

speckle, perfusion mapping, and laser doppler flowmetry) only

allow for superficial analysis of a wound. Ultrasound, on the

other hand, allows for visualization of deeper structures, which

greatly improves the ability to characterize full thickness wounds

(Gnyawali et al., 2020). Clinical studies are ongoing which aim to

characterize appropriately healing tissue parameters with high

frequency ultrasound; tissues such as fibrous granulation tissue,

cellular infiltrates, immature granulation tissue, and

neoepidermis can be identified based upon their echolucency

(Mohafez et al., 2018). Further advances in high resolution and

microscopic ultrasound are allowing for precise characterization

of ECM components and their orientation, which are promising

techniques that may be applied to the monitoring of wound

healing in the future (Morokov et al., 2019; Gnyawali et al., 2020).

Gnyawali et al. (2020) have developed a novel non-invasive

method of ultrasound imaging for repeated measure of wound

tissue morphometry, biomechanics and hemodynamics under

fetal regenerative, adult physiologic, and adult pathologic

(diabetic wound) conditions using murine models. Their

model uses high frequency, high resolution ultrasonography,

coupled with doppler flow imaging to obtain hemodynamic

properties of the blood flow in the artery supplying the

wound-site and measurements of tissue cellularity and elastic

strain for visualization of inflammation using Vevo strain

software. They were able to characterize stark differences in

elasticity, blood supply, and arterial pulse pressure that

distinguish regenerative vs. fibrotic wound healing patterns.

They further showed changes in the elasticity of wound-edge

tissue of diabetic wounds, where the severe strain acquired during

the early inflammatory phase persisted with a slower recovery of

elasticity in the diabetic cohort as compared to that of the non-

diabetic group. This imaging platform is versatile and clinically

relevant for real-time analyses of wound healing and allows for

multiple interrogations of the wound without disrupting the

healing process, providing insight into the mechanical and

functional aspects of the wound healing continuum, that can

be readily applied to monitor wound healing in patients

(Gnyawali et al., 2020).

In addition, high-frequency spectral ultrasound (SUSI) is an

emerging technology that could provide a safe, portable, non-

invasive diagnostic tool to detect ECM structure and fibrosis of

various wounds including deep wounds through the fat, muscle,

and bone along with dermis, and to the epidermis. SUSI, unlike

conventional ultrasound imaging, takes advantage of a wide

spectrum of signals based on radio-frequency backscattered

signals to detect characteristic parameters independent of the

function of the machine or the skill of the operator. SUSI allows

for an objective and quantitative characterization of tissue. These

spectral characteristics can be analyzed to identify specific tissue

types through factors other than morphology (Ranganathan

et al., 2018). In recent years, this technology has been used to

successfully identify metastatic infiltration of biomaterials by

cancer cells. This demonstration of cell specific identification

is promising, as it demonstrates the capability of the technology

to distinguish tissues at the cellular level and help to better

characterize a wound’s healing status as described at the cellular,

not gross morphological level (Bushnell et al., 2020).

3.1.2 Elastography
Elastography is an ultrasound-based, non-invasive imaging

modality that aids in the assessment of scaffold mechanical

properties, such as volume, stiffness, and density (Sigrist et al.,

2017). Recently, estimates of ECM stiffness and other stromal

components using this technique has been used as a biomarker in

assessing tumor microenvironments, as increased estimated

tumor stiffness correlates to increased collagen density and

fibroblast-rich environments (Riegler et al., 2018). Moving

beyond the tumor environment, elastography was next used to

evaluate tendon healing following reconstruction, providing

non-invasive means to monitor successful healing and

mechanical tissue properties (Gulledge et al., 2019;

Frankewycz et al., 2020). More recently, shear wave

elastography has been applied to objectively measuring human

scar stiffness, where it reliably measured the stiffness of burn

scars in a non-invasive manner (DeJong et al., 2020). This study

further demonstrated that novice ultrasonographers became just

as reliable as experienced ultrasonographers following a short

training session in, further supporting elastography’s possible

role in a bedside clinical environment of wound evaluation.

Elastography is limited in its use, however, as its spatial

resolution is large and is unable to resolve microscopic details

necessary for evaluation of collagen microstructures.

3.1.3 Optical coherence tomography
Optical coherence tomography scatters low-energy, high-

wavelength light within a specimen to construct an image of

the tissue structure and offers high-resolution, multi-sectional
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imaging. This modality has been widely used, in both

experimental and clinical settings, to visualize complex

microarchitecture assemblies at the micrometer level and has

been extensively reviewed (Cannon et al., 2022; Groux et al.,

2022; Ji et al., 2022; Sanchez et al., 2022). With regards to ECM

characterization, it allows for rapid quantification of the amount

of ECM that has been produced, as well as identification of

factors that affect production rate such as cell proliferation and

assessment of collagen microchannels within the ECM

(Bagnaninchi et al., 2007). Recent advances have combined

OCT with diffusion-sensitive technology using gold nanorods

(DS-OCT) to increase the resolution from micrometers to

nanometers, in order to appropriately distinguish collagen-

based heterogeneity within the matrix (Blackmon et al., 2016).

Within the last few years, a new technique has emerged that

combines the spectral domain of OCT with the ultrasound

transducer of elastography, called ultrasound and phase

sensitive optical coherence elastography (US-OCE). An

acoustic radiation frequency from the ultrasound wave

perturbs the surface of the specimen, resulting in a level of

displacement (Figure 3). This displacement is then measured

by the OCT system. Though seemingly simple, this technique

combines the strengths of both independent methods. US-OCE

has greater spatial resolution and is capable of quantifying the

deformations in the specimen, providing information on the

properties of the material as well (Wu et al., 2015; Liu et al., 2016;

Nair et al., 2019). Though it has mostly been tested in lenses and

small bowel tissue, OCT was recently trialed in a human study of

split thickness skin grafting to monitor vascular structures and

integration of the graft into the tissue (Deegan et al., 2021). This

technique is well suited to study ECM stiffness and structure in

wound healing.

3.1.4 Single-photon, multi-photon, and second
harmonic generation imaging

Optical imaging techniques such as single and multi-photon

microscopy are uniquely suited to visualize and quantify ECM

structure with minimal invasion over long periods of time,

thereby providing exquisite detail of the inherently dynamic

wound ECM remodeling from time of injury to weeks or

months of remodeling. As the microstructure of the collagen

is a primary determinate of the mechanical properties of the

scaffold, the bulk optical properties from imaging could be used

to predict bulk mechanical properties of the ECM.

Fluorescence-based single-photon and multi-photon

microscopy with specifically targeted probes capable of the

detection of ECM components can be used to assess the ECM

composition. Recent studies have utilized collagen-mimetic

peptides (CMPs), which are synthetic chains of amino acids

and replicate the strands in natural collagen fibers, to detect

damaged collagen (Dones et al., 2019; Ellison et al., 2020).

However, the availability of specifically targeted probes with

clinically approved fluorescence agents, such as Indocyanine

green (ICG), and instrumentation is still limited. As well,

molecular imaging enables non-invasive visualization of

cellular and subcellular processes that may allow early

detection, quantification, staging, and phenotyping of fibrosis.

The role of molecular imaging probes for detecting fibrosis and

fibrogenesis, the active formation of new fibrous tissue, and their

application to models of fibrosis across organ systems and

FIGURE 3
Optical coherence tomography and elastography. (A) Schematic of optical coherence tomography. (B) Set up for Optical Coherence
Elastography. Red box designates location of sample/subject of interest. (C) Elastographic map of mouse skin with scar denoted within white dotted
lines. (D) Cross section of normal skin using OCE. (E) Cross section of scar using OCE. Illustration generated using Biorender.com. OCE images
courtesy of Dr. Kirill Larin Lab at the University of Houston.
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fibrotic processes has been reviewed elsewhere (Montesi et al.,

2019). The availability of probes for the detection of ECM

molecules, including collagens type I and III, oxidized

collagen, fibrin and elastin, as well as for detection of

neutrophil degranulation and vascular leak makes this

imaging methodology much appealing to study cutaneous

wound healing progression. Furthermore, these PET/SPECT

probes require very low mass doses and have the properties of

rapid clearance from the blood pool with low uptake in other

organs making it highly translational.

Multiphoton microscopy is capable of high resolution, three-

dimensional imaging of the ECM to a depth on the order of 1 mm

using femtosecond pulses of near-infrared (NIR) laser light. Fibrillar

collagen responds to near-infrared laser light with both second

harmonic generation (SHG) and two-photon excited fluorescence

(TPF). SHG microscopy uses the second-order, nonlinear optical

response to visualize tissue microarchitecture without tagging or

destruction of the specimen (Guo et al., 1997). SHG occurs when

two incident photons interact with the non-centrosymmetric triple-

helical structure of collagen and combine to form a single emitted

photon of exactly half the wavelength or twice the energy, offering a

label-free measure of intact collagen with high spatial resolution.

During the remodeling phase, collagen type III is replaced with

collagen type I, thus changing the overall collagen architecture. The

changes in collagen fiber layering and deposition in the creation of

the new ECM can be directly visualized and tracked with this

method. Recent studies have detailed the imaging of collagen fibers

in the skin, the lung, and the retina (Mostaco-Guidolin et al., 2017).

Tanaka et al. (2013) performed SHG imaging on in vivo samples to

observe changes in dermal collagen fibers in living rat burn models.

The strength of this imaging technique relies on its use of the

collagen dipole to discern orientation, since, in wound healing,

collagen fibrils tend to present in a non-linear orientation.

Combining SHG that detects intact collagen only, with

fluorescence-based single-photon detection of denatured or

fibrillar collagen with probes, will provide a clear demarcation of

normal skin, wound boundary, and fibrotic remodeling. A drawback

of SHG, however, is that it is limited to providing a two-dimensional

representation of the tissue of interest. Furthermore, this technique is

expensive, with bulky equipment that utilizes non-eye-safe class IV

lasers, thereby limiting its clinical application. In contrast, 3D second

harmonic generation tomography (SHT) rotates the specimen to

collect images from all three planes to create a 3D image (Campbell

et al., 2017), which can help characterize the intricate collagen

assemblies within the ECM.

4 Computational modeling of
the ECM

With massive innovations in sensing and imaging

technology, multitudes of multimodality data will be collected

which can be used to instantaneously understand the progression

of a healing wound and predict the final healing outcome.

However, the amount of data to be processed will be too

burdensome or impossible for simple human interpretation,

thus computational models of the ECM and the healing

wound must be developed. Using these models will facilitate

wound parameter extraction and processing, linking the qualities

of the healing wound which will predict successful or failed

wound healing outcome, allowing the wound care provider to

intervene in a timely fashion to improve the chances of optimal

wound healing.

4.1 Modeling in the different stages of
wound healing

Much work has been done to model the proliferative phase of

the wound healing process, as this phase represents the period of

fibroblast proliferation and ECM deposition which closes the

wound. These models are two-to-three variable models that

attempt to simulate proliferation of cells as functions of tissue

oxygen tension, capillary and fibroblast density, and/or

mechanical factors including cell traction and ECM

deformation. Initially, inputs to these numerical models

included the presence of endothelial cells, macrophage-

released chemokines, and new blood vessels (Pettet et al.,

1996). Later models evolved to include vascular networks and

interactions between independent and dependent factors,

executed by modeling angiogenesis as a function of VEGF or

tissue oxygen tension (Dor et al., 2003; Schugart et al., 2008).

Most recent models included several ECM components such as

ECM deformation and cellular traction forces, as well as other

wound conditions like growth factor, oxygen concentrations, and

the presence of new blood vessels and fibroblasts (Valero et al.,

2014). The purpose of these models is to mathematically simulate

optimal ECM formation in wound healing, which then allows

researchers to define pathologic states of wound healing such as

in the case of bacterial contamination and inadequate perfusion.

Mathematically modeling the remodeling phase is

complex, as this phase is characterized by the interaction of

variety of factors. Schluter et al. (2012) proposed that, within

this phase, ECM fibers represent one of the most important

factors guiding cellular migration to the wound. By estimating

cell speed and size, total traction forces on the ECM, and ECM

rearrangement due to these traction forces they found that 1)

matrix stiffness and density leads to decreased cell movement

(increased persistence of the cells within the matrix), 2) more

orderly matrix structure leads to increased persistence, and

finally, 3) in general, under wound healing conditions, cells

tend to follow one another and matrix stiffness influences this

behavior positively (Schluter et al., 2012). Using models such

as these allow researchers to optimize the ideal wound

stiffness for cellular reparative function and then develop

techniques to measure stiffness in non-invasive ways.
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4.2 Holistic wound healing evaluation with
data-driven models

Integrating the three distinct healing phases, inflammation,

proliferation, and remodeling, into a coherent system has been a

central challenge of devising computational models of ECM and

wound state dynamics. Numerical solutions that couple wound

closure due to cell migration and angiogenesis have been

explored using finite element and finite difference methods to

solve the diffusion-reaction equations that define the physiology

of the system and the hyperbolic equations governing the

interface (the skin).

More advanced approaches have focused on introducing

disease or injury states to the computational model used to

describe ECM and tissue dynamics. Surgical tension wound

states, tissue necrosis, and tissue ischemia have all been

explored as additional conditions in which models have been

compared to experimental findings with predictive success (Xue

et al., 2009; Tepole et al., 2014; Valero et al., 2014). In addition,

these models with pathologic states that complicate wound

healing also serve as platforms to explore novel therapeutic

factors to reverse and regenerate tissues.

All the models described thus far have been non-linear,

partial differential equations systems with finite element

methods solutions. While models such as these can use single

parameter inputs to predict an expected outcome, they are unable

to take conglomerate multimodality data and extract a computed

outcome. In the data science realm, models that use machine

learning may serve to help predict wound outcomes and guide

decision making, but unlike differential equations systems, they

can learn and adapt from the data they are given over time. Due

to the high dimensionality of imaging and sensing data, most

deep learning models have focused on wound stratification in

images, but recently, models have been developed on risk

stratification and healing prediction of wounds based on a

large database of images and patient demographics (Wang

et al., 2015; Li et al., 2018; Moccia et al., 2019). These two

types of models are summarized in Table 1. Future models

may be able to combine the two techniques, to create a

learning framework that uses ECM composition and structure,

as well as known signaling pathways of patient-specific wounds

to predict wound healing outcomes. This can become a powerful

tool to help physicians guide their decision making.

4.3 Machine intelligence for wound
healing approaches

With the many and varied new methods under development

for collecting extremely large amounts of data surrounding the

status of the ECM and a wound’s progression through the phases

of the healing process, there is an unprecedented need for high

dimensional data modeling to analyze the information and allow

wound care providers to make informed decisions regarding

treatment without significant delays. Thus, it is imperative to

process high dimensional data, which has been acquired with a

high sampling rate, into real-time feedback to enhance the

system’s performance, and guide physician interventions based

upon predicted wound healing outcome. To do this, various

advancements in data-driven approaches with machine learning

have been developed and utilized. The future may hold an

adaptive “closing of the loop”, allowing an artificial controller

to read the outputs of the computational algorithms from the

multi-modal sensing to accurately assess the wound state in real-

time, then trigger smart delivery systems to release therapeutics

and drugs, without provider decision making.

4.3.1 Machine learning
Machine learning models have been used in the wound

healing space to judge the state of wound healing based on

TABLE 1 Advantages and disadvantages of partial differential equation systems and deep learning systems.

Non-linear partial differential
equations system

Deep neural network/Deep
learning system

Advantages Can see and control input variables Hierarchical feature learning ability transforming high-dimensional data into low-
dimensional latent features

Ability to model highly complex systems as a function of specific
input variables

Ability of integrating multimodal data

Ability to handle noisy data

Disadvantages Labor and computationally intensive Computationally expensive

Difficult to change model given new data Less interpretability

Selected
Readings

Alber et al. (2019) Wang and Gao (2019)

Benhammouda and Vazquez-Leal (2014) Ching et al. (2018)
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wound measurements, gross images, and spatial frequency-

domain imaging by a number of groups (Papazoglou et al.,

2010; Rowland et al., 2019; Berezo et al., 2021; Squiers et al.,

2021). Using machine learning algorithms trained on data gained

in both human and animal experiments, models can be

developed to determine the state of a wound based on the

analysis of hand-picked, meaningful, and clinically relevant

biophysical, biochemical, and histologic parameters, using

linear regression models mapping sensor measurements to

linearized approximation of the wound state. This kind of

feature extraction has previously been demonstrated through

the segmentation of clinical images and analysis of distinct and

explicit biomarkers such as texture, shape, and color in order to

diagnose and evaluate the clinical state of wounds in a variety of

clinical pathologies (Cui et al., 2019; Kassem et al., 2021; Oukil

et al., 2021). For example, the IDx-DR 2.0 algorithm has been

utilized to detect diabetic retinopathy through feature extraction

and analysis of clinical images of the retina (Abramoff et al., 2016;

Obeid et al., 2019). Moreover, a classical machine learning

pipeline utilizing NIS-Elements AR to analyze re-

epithelialization of burn wounds has been validated through

intraclass correlation to clinician analyzed images (Bloemen

et al., 2012). This demonstrates the viability of machine

learning algorithms to successfully and meaningfully predict

wound outcomes as compared to the current standard of care.

However, classic machine learning requires an expert, such as a

physician, to curate the data processed by the machine, in essence

informing the machine as to what input to “focus” on (feature

extraction) in developing predictive model. This method of data

analysis allows for precise and quantifiable feature extraction

guided by experts that can be easily cross-validated to improve

accuracy. However, the need for human influence in machine

learning can allow unrecognized or uncharacterized patterns in

the data to go overlooked. This weakness can be overcome by

utilizing deep neural network modeling with reinforcement

learning (Figure 4).

4.3.2 Deep neural network modeling (deep
learning)

Improving upon explicable models to predict wound healing

outcomes, deep neural networks (DNN) represent a potential

powerful tool for evaluation of healing wounds, as it allows for

analysis of wounds without explicit feature extraction, allowing

for previously unrecognized patterns to be analyzed and

FIGURE 4
Illustration of potential machine learning applications to wound healing. (A) Schematic of machine learning vs. deep neural network use to
improve wound healing outcomes. (B) Machine learning to modulate interventions to improve wound healing. Illustration created using
Biorender.com.
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quantified. As the data collected by the above methods becomes

greater in complexity and quantity, using machine learning

becomes burdensome for correction and improving the

trained models. DNNs differ from machine learning in that

they are capable of hierarchical feature extraction which

eliminates burdensome and costly feature engineering, thus

allowing for simultaneous evaluation of greater magnitudes of

data throughput. Over the past several years, DNNs have proved

to be powerful tools for a wide range of modeling and prediction

tasks, and have been shown to be effective in the diagnosis and

prognostication of a variety of different pathologies (Janowczyk

and Madabhushi, 2016; Cui et al., 2019; Chan et al., 2020; Morid

et al., 2021; Yang et al., 2021). For example, like the explicable

model, a DNN would take biophysical and biochemical inputs

from the wound and output a prognosis for the wound. A novel

application of neural networking to wound healing is processing

simple photographs of wounds into a segmentation mask from

which the wound area can be extracted (Cui et al., 2019), which

aids in negating the significant burden of subjective inaccuracy of

the human-performed measurements. This directly impacts

patient care as the improvement in diabetic wound size in the

first 4-weeks of healing is predictive of successful ultimate wound

healing (Sheehan et al., 2006; Lavery et al., 2008; Sprigle et al.,

2012).

Utilizing reinforcement learning makes sequential

decision making possible. Reinforcement learning is the

goal-directed learning exercised by biologic systems driven

by achieving rewards while avoiding punishment (Wang et al.,

2021). Machine Learning and DNNmodels are not suitable for

sequential decision making in the changing environment. The

power of reinforcement learning not only lies on the fact that

the quality of each action is not measured by immediate

reward, but also that it can discover the sequence of

decisions (optimal policy) that maximizes the reward in

unseen environment.

Finally, as with any image analysis, it is necessary to

consider image quality and standardization. In order to

overcome the inherent variation in image quality, lighting,

and other factors, it has been shown that a composite

approach in which images are pre-processed and segmented

allows utilization of DL without the requirement of extensive

training as previously required (Li et al., 2018). As well, this

issue can be minimized by creating a standard procedure for

image acquisition, with successful implementation in place by

the Diabetic Foot Consortium through their eKare database of

patient DFU images (Mamone et al., 2020). While in the past

DNN have been considered as an undecipherable “black box”,

recent studies have shown that it is possible to visualize

explanations of features extracted by convolutional neural

networks (CNNs) by utilizing the flowing gradient to final

CNN layer to create a localization map highlighting important

regions in the image for predicting the concept (Selvaraju

et al., 2019).

Moreover, there are a variety of commercially available

architecture CNNs that have been validated in a variety of

clinical settings, ranging from skin wound healing to the

detection of lung damage in SARS-CoV2 patients from lung

images (Ohura et al., 2019; Yang et al., 2021). With the

availability of such options, it is necessary to consider the

many upshots and pitfalls for each, and develop image

analysis pipelines that can reliably and reproducibility used

for modeling.

4.3.3 Closing the loop (artificial intelligence)
Current advances in computational analysis in wound

healing aim to culminate in an entirely hands off

implementation and utilization of the predictive data

given by the machine learning and DNN models to

improve wound healing with adaptive treatment regimen.

This can be accomplished by designing and developing smart

dressings that can sense various biophysical and biochemical

parameters and deploy interventional therapeutics. The

outputs from the models can feed back into an onboard

controller that, using well understood and highly

interpretable classical linear control systems, will enable

tuning of interventions to correct for deviations from the

ideal progression through the wound healing phases along a

number of variables (Kailath, 1980). This process can be

further fine-tuned by implementing reinforcement learning,

where the algorithms detect the effects of interventions on

the wound state and determine if the intervention had the

desired outcome, reinforcing said intervention if it worked,

and eliminating it if it has an adverse effect (Wang et al.,

2021). By comparing outcomes of a given intervention to the

expected outcome of the ideal intervention and minimizing

the gap between these two variables, the smart dressings will

be able to adapt to unique wounds, patients, and contexts.

This technology exists already in the form of Q-learning and

policy gradients, although it has yet to be utilized in a smart

wound dressing device format (Watkins and Dayan, 1992;

Peters and Schaal, 2008).

5 Conclusion

The ECM in a healing wound is a critical and active

regulator of cell behavior. Its composition and structure are

key modulators in preventing aberrant scarring and fibrosis.

Novel physiologic biosensors, advanced imaging techniques,

mathematical models, and in vitro and in vivo studies all

contribute to our overall understanding of the changes that

take place during the inflammatory and remodeling phases of

wound healing which determine the structural and

functional quality of ECM through the healing process.

Translating these pre-clinical methods of non-invasive

wound measurements and data processing, providers will
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be able to faithfully monitor, predict, and possibly intervene

in the wound healing process to improve difficult-to-heal

wounds.
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