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Acute inflammation is a localized and self-limited innate host-defense mechanism against
invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in
humans, play pivotal roles in host defense by eradicating invading pathogens and debris.
Ideally, elimination of the offending insult prompts repair and return to homeostasis.
However, the neutrophils` powerful weaponry to combat microbes can also cause tissue
damage and neutrophil-driven inflammation is a unifying mechanism for many diseases.
For timely resolution of inflammation, in addition to stopping neutrophil recruitment,
emigrated neutrophils need to be disarmed and removed from the affected site.
Accumulating evidence documents the phenotypic and functional versatility of
neutrophils far beyond their antimicrobial functions. Hence, understanding the
receptors that integrate opposing cues and checkpoints that determine the fate of
neutrophils in inflamed tissues provides insight into the mechanisms that distinguish
protective and dysregulated, excessive inflammation and govern resolution. This review
aims to provide a brief overview and update with key points from recent advances on
neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and
emerging therapeutic approaches that target neutrophils to enhance the resolution
of inflammation.

Keywords: neutrophil, neutrophil trafficking, apoptosis, neutrophil extracellular trap, pro-resolving mediators,
GPCRs, resolution of inflammation
INTRODUCTION

Acute inflammation is a localized, self-limited, multicellular innate host-defense mechanism against
invading pathogens and tissue injury. Polymorphonuclear neutrophil granulocytes play pivotal roles
in host defense and are rapidly deployed to the affected sites, where they engage in immediate and
intense antimicrobial responses (1–3). Elimination of the offending insult ideally prompts repair of
the collateral tissue damage, restoration of tissue function and return to homeostasis (4). However,
the neutrophils` powerful weaponry to combat pathogens can cause collateral damage to the host
(5). This will then amplifies the initial response through feed-forward inflammatory mechanisms,
leading to loss of functional tissue and ultimately to organ dysfunction (6). Neutrophil-driven
inflammation is a common mechanism for many diseases, including reperfusion injury,
atherosclerosis, cancer, autoimmune diseases, neurodegeneration, and obesity (1, 5, 7). The
capacity of neutrophils to augment tissue damage beyond that evoked by the initial infection or
tissue injury itself, suggest that early checkpoints control neutrophil kinetics and fate within the
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inflamed tissue to prevent secondary tissue damage by these
effector cells. To assure timely resolution of inflammation,
neutrophil influx needs to be stopped, and emigrated
neutrophils need to be disarmed and removed from the
affected sites.

Neutrophils sense and integrate signals from the
inflammatory microenvironment, which modulate their
survival and function, and generate cues that can orchestrate
innate or adaptive immune effector responses (1, 8). These
include secretion of granular proteins (9, 10) cytokines (11),
extracellular vesicles (12), neutrophil extracellular traps (13) and
formation of membrane tethers (named cytonemes) (14). The
role of neutrophils in initiation and progression of a wide range
of pathologies makes neutrophils attractive therapeutic targets.
However, the critical requirement of neutrophils for antibacterial
host defense limits the usefulness of therapies that globally
reduce neutrophil numbers or functional responses. Current
treatments that target single mediators of inflammation may
have limited efficacy because of the redundancy within the innate
immune system andmany eventually become immunosuppressive
(15). Arguably, an ideal therapeutic strategy would be to prevent
or reverse neutrophil-mediated tissue injury without impairing
their ability to control microbial invasion. One way to develop
innovative approaches for the treatment of inflammatory
pathologies is to exploit neutrophil biology to enhance the
resolution of inflammation. We provide here a brief overview
and update with key points from recent advances on neutrophil
heterogeneity, functional versatility and signaling, which can be
exploited to enhance resolution of inflammation.
NEUTROPHILS IN HOMEOSTASIS
AND PATHOGENESIS

Protective Versus Uncontrolled
Inflammation
The acute inflammatory response is protective and resolves on
their own. Neutrophils are the most abundant leukocytes in
blood and form the first line of cellular defense against invading
pathogens (1, 2). Neutrophils deploys a potent enzymatic and
chemical arsenal to neutralize and clear invaders and necrotic
tissues (2, 3) and to facilitate repair (16). Neutrophil trafficking
into tissues is a multistep, tightly controlled process (17–19).
Aberrant neutrophil recruitment and activation causes tissue
damage that amplifies the initial inflammatory response and may
continue to chronicity (3, 5, 9).

Preclinical data indicate that impaired neutrophil removal from
inflamed tissues results in aggravation and prolongation of the
inflammatory responses (5). Accumulating evidence indicates that
ongoing inflammation is a prominent component ofmanydiseases,
including cardiovascular, acute respiratory, neurodegenerative,
metabolic, and autoimmune diseases, arthritis, inflammatory
bowel disease, periodontitis and sepsis (7, 18).

The resolution of inflammation is an active process, integrating
mechanisms that lead to the restoration of normal tissue function.
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This process is governed by specialized pro-resolving lipid
mediators (lipoxins, resolvins, protectins and maresins), proteins
(e.g., annexin A1and galectins) and gaseous mediators (e.g.
hydrogen sulfite and carbon monoxide) produced during
resolution of self-limited inflammation (15, 20, 21).These
mediators act predominantly on phagocytes and other immune
cells to instruct repair. Their biosynthesis, receptors, cellular
targets, signaling pathways and networks have been described in
several excellent reviews (15, 20), and mapped into the searchable
Atlas of Inflammation Resolution (21), hence will not be reviewed
here. Low grade ongoing inflammation is thought to impair
activation of the resolution process (5, 22). Defect in resolution
mechanism is increasingly being recognized as an important
trigger for acute exacerbation of chronic inflammatory
conditions as reported for atherosclerotic plaque rupture (23,
24) or propagation of bacterial infection in mice (25).

While pro-resolving mediators signal through several distinct
receptors, two receptors, theb2 integrinMac-1 (CD11b/CD18) and
formyl peptide receptor 2/lipoxin A4 receptor (ALX/FPR2) have
emerged as master regulators of neutrophil responses and fates.

Mac-1 functions as a bidirectional allosteric “signaling
machine” (26). Mac-1 is best known for mediating neutrophil
adherence to the activated endothelium and the extracellular
matrix (17, 18) and phagocytosis of complement C3b-opsonized
bacteria (27). Mac-1 binding to platelets, immune complexes or
myeloperoxidase generates survival signals (28), leading to
preservation of Mcl-1, the central regulator of lifespan of human
neutrophils (29). Phagocytosis of opsonized bacteria induces ROS-
dependent activation of caspase-8, which overrides Mac-1
ligation-activated survival signals, resulting in apoptosis (30, 31).
Caspase-8 forms a complex with FLIP (FLICE-inhibitory protein),
which inhibits RIPK3-dependent necrosis and prevents
degranulation (32, 33). Mac-1 also binds neutrophil elastase that
directs reverse transendothelial migration (34).

ALX/FPR2 is a member of the formyl peptide receptor family,
consisting of three class A G-protein-coupled receptors that share
significant sequence homology (35). Formyl peptide receptors
recognize pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) to initiate innate
immunity. ALX/FPR2 binds an unusually large number of
structurally diverse ligands, including proteins, peptides and
lipids, and conveys contrasting biological effects (35, 36). For
example, ligation of ALX/FPR2 with the acute-phase protein
serum amyloid A or the antimicrobial peptide LL-37 activates
proinflammatory circuits (37, 38). Annexin A1, annexin A1-
derived peptide Ac2-26, lipoxin A4, aspirin-triggered 15-epi-
LXA4 and 17-epi-RvD1 also signal through ALX/FPR2 to limit
neutrophil trafficking and lifespan and to promote efferocytosis
(25, 39, 40), critical events in the resolution of inflammation.
Interestingly, opposing ALX/FPR2 ligands, such as serum amyloid
A and lipoxin A4, allosterically inhibit each other to bias ALX/
FPR2 signaling to promote either inflammation or resolution (37,
41). ALX/FPR2 can form homodimers and heterodimers with
FPR1 receptor in ligand-dependent manner, resulting in alternate
patterns of downstream signal coupling that dictate neutrophil
functional responses (42–45). Recent data suggest that lipoxin A4
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may act as a biased allosteric modulator, exerting a dual regulatory
mechanism on intracellular cAMP accumulation and Ca2+

mobilization (45). Binding of serum amyloid A to ALX/FPR2
decreases formation of homodimers and induces phosphorylation
of ERK and Akt, whereas lipoxin A4 engagement increases
heterodimerization with FPR1 with activation of the JNK-
caspase-3 pathway, leading to apoptosis in neutrophils (42, 43).
While the structural basis of diverse downstream signaling
remains largely unexplored, ALX/FPR2 contains a C-terminal
motif that mediates receptor recycling following endocytosis and
provides protection against apoptosis (46).

Evolving evidence suggest that neutrophils also contribute to
wound healing, revascularization and tissue repair (16, 47, 48).
Infiltrating neutrophils provide fibronectin as “emergency
extracellular matrix” to promote early bone fracture healing
(49) and neutrophil-derived matrix metalloprotease 9 facilitates
tissue repair in acute lung injury (50). Neutrophil gelatinase-
associated lipocalin (NGAL) was reported to orchestrate post-
myocardial infarction by increasing the capacity of cardiac
macrophages to clear apoptotic cells in mice (51). Conversely,
defect in phagocytosis or neutrophil-induced genomic instability
in epithelial cells impedes resolution of inflammation and wound
healing (12).
Neutrophil Heterogeneity
Neutrophils are traditionally viewed as a relatively homogeneous
cell population with highly conserved function. This perception is,
however, rapidly evolving as accumulating data indicate
heterogeneity in morphology, phenotype or function under
homeostatic and a variety of pathological conditions (52–57).
Neutrophil classification has traditionally relied on morphology,
gradient separation or surface markers. However, the exact
function of some neutrophil subpopulations remain elusive.
Single cell RNA sequencing revealed transcriptomically distinct
neutrophil populations, even amongst mature peripheral
neutrophils (58, 59) and neutrophils associated with chronic
inflammatory states (58, 60–62). Different neutrophil states in
healthy mice and humans can be projected onto a signal
development continuum (termed neutrotime) characterized by
clearly defined poles separated by a smooth transcriptome shift
(63). Linking the neutrophil transcriptome to the neutrophil
phenotype or functional properties will, however, require further
investigations. For instance, expression of CD177+ (together with
membrane-bound proteinase 3) on a subset of human neutrophils
facilitates their transmigration (64), hence antimicrobial defense,
whereas the elevated frequency of CD117+ neutrophils is
associated with increased risk of relapse in patients with ANCA-
dependent vasculitis (65, 66). VEGF-A recruits a distinct subset of
neutrophils with proangiogenic properties into transplanted
hypoxic tissues to facilitate restoration of blood supply (67).
Reduced CD62L expression on circulating neutrophils defines
“senescent” or “aged” neutrophils, which are destined for
clearance (68). Neutrophil senescence is controlled by circadian
oscillations in the hematopoietic niche (69), the microbiome (70)
and the clock-related genes, such as Bmal1 and the CXCR2
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signaling pathway (68). Functional heterogeneity, such as
competitive phagocytosis (71), in the human circulating
neutrophil pool has also been reported, though linking
functional responses to phenotype remains challenging.

The widely used term “low density neutrophils” (“low density
granulocytes” or “granulocytic myeloid-derived suppressor
cells”) also refers to a heterogeneous population of
CD66b+mature and immature neutrophils with both
proinflammatory and immunosuppressive properties (53).
Both immature (banded neutrophils) and hypersegmented
neutrophils have been identified in this neutrophil subset (53).
Hence, the buoyant density of neutrophils is partially coupled to
maturation and may rather reflect a spectrum of different
densities found in healthy individuals (72). Since mature
neutrophils decrease their density when activated in vitro,
circulating low density neutrophils have been suggested to
acquire the activated phenotype within the tissue, perhaps
indicating neutrophils that underwent reverse transmigration
(72, 73). Consistently, homing neutrophils to the lung was found
to switch to an activated phenotype irrespective of the
inflammatory disease (74). Low density neutrophils have been
implicated in the pathogenesis of systemic lupus erythematosus,
albeit it is uncertain whether they are premature neutrophils
released from the bone marrow (75) or represent a distinct
lineage of neutrophils caused by genomic damage (76). CD10
was suggested as a marker to distinguish proinflammatory and
immunosuppressive neutrophils within heterogeneous
neutrophil populations in patients with acute or chronic
inflammatory diseases (77). A recent study has identified two
neutrophil subsets, CD123+ immature neutrophils and
programmed death-ligand 1 (PD-L1)+/CD10- neutrophils as
potential biomarkers for patients with sepsis (78). Future
studies are needed to elucidate the contribution of these
subsets to the pathogenesis of sepsis.

Distinct subsets of tumor infiltrating neutrophils have also
been identified. The N1 subset, characterized by hypersegmented
nuclei possesses potent tumor killing capacity, whereas the N2
subset that displays an immature phenotype favors tumor
growth in mice (79). Although the origin of the N1 and N2
populations is uncertain (80), TGF-b and IFN-b have been
implied in polarizing neutrophils toward the N1 phenotype
(81, 82). Another subset of tumor-associated neutrophils with
antigen-presenting cell features has been found to trigger an anti-
tumor T cell response in early-stage of human lung cancer (83).
Tumor growth is associated with loss of this neutrophil subset
and functional divergence of tumor-associated neutrophils
(83, 84).

Mature neutrophils exhibit transcriptional and translational
plasticity in response to signals from the inflammatory
environment (11) and display a cell-specific pattern of non-
coding regulatory regions (85). Thus, de novo synthesis of
cytokines and membrane receptors, e.g. program death ligand 1
(PD-L1), may alter neutrophil function and contribute to
heterogeneity. The importance of gene expression regulation of
neutrophils is illustrated by the association of altered methylation
profiles with susceptibility to lupus erythematosus (86). Metabolic
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reprogramming also occurs during the neutrophil life cycle.
Neutrophils may utilize glycogen for fuel during phagocytosis or
under hypoglycemic conditions (87, 88), and glycogen levels may
directly control their lifespan (89). Furthermore, neutrophils
exposed to PGE2 or PGD2 induces a phenotype switch from
LTB4 production to lipoxin production, which marks the
resolution phase (15, 90), further highlighting the functional
diversity of these cells.

Fate of Emigrated Neutrophils
Neutrophils recruited to the site of infection or tissue injury
engage in different activities to respond to the initial insult, which
will also determine that fate and govern their ultimate removal
from the inflamed area, critical for protective inflammation and
return to homeostasis. By contrast, suppression of certain
neutrophil functions or excessive neutrophil responses
Frontiers in Immunology | www.frontiersin.org 4
contribute to uncontrolled inflammation and may lead to
chronicity. These responses are discussed in the following
sections and summarized on Figure 1.

Neutrophil Swarming
Following transendothelial migration, neutrophils congregate or
swarm in tissues, forming clusters around the infected or
damaged core to seal off the affected site (90–93). Neutrophil
contact with necrotic cells is critical to initiate swarming (94),
followed by coordinated LTB4 release form neutrophils (91, 95),
leading to formation of a stable LTB4 gradient that drives
concerted waves of neutrophil migration (91, 95). Microscale
protein arrays have identified numerous protein mediators,
including galectin-3, CXCL8, lipocalin-2 and pentraxin-3that
can further enhance LTB4-driven neutrophil swarming (95).
Mac-1 (CD11b) and LFA-1 (CD11a) mediate neutrophil
FIGURE 1 | Fate and roles of emigrated neutrophils in protective vs. uncontrolled inflammation. Neutrophils are rapidly recruited from the circulation to the infected or
injured tissues. Following extravasation, neutrophils swarm toward the infected sites to localize infection and from a tight wound seal. Neutrophils may trap, neutralize and
kill invading pathogens through necroptosis, phagocytosis or release of extracellular traps (NETs). Phagocytosis of opsonized bacteria usually induces apoptosis followed
by phagocytosis of apoptotic cells by macrophages via efferocytosis. Neutrophils integrate pro-survival and apoptosis-promoting cues from the inflammatory environment,
which governs their lifespan. Apoptotic neutrophils express CCR5, which by binding chemokines prevents further neutrophil recruitment. Excessive swarming and
necroptosis may aggravate and perpetuate tissue damage. Neutrophils may egress from the inflammatory locus through reverse transendothelial migration (TEM) or
lymphatic vessels, which dampen neutrophil accumulation, but may also lead to immune evasion and dissemination of local inflammation. Neutrophils carrying bacteria
that they cannot destroy, may serve as “Trojan horses” to disseminate the infection on phagocytosis of apoptotic neutrophils by macrophages. CRAMP, cathelin-related
antimicrobial peptide; DAMPs, damage-associated molecular patterns, JAM-C, junctional adhesion molecules C; LTB4, leukotriene B4; LXA4, lipoxin A4; PAMPs,
pathogen-associated molecular patterns; RvD1, resolvin D1; RvE1, resolvin E1.
March 2022 | Volume 13 | Article 866747
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accumulation in the collagen-free injury center (91). Chemokine
receptor trafficking and the LTB4 receptor BLT1 coordinate
dense neutrophils clusters to form a tight wound seal (91, 96).
Development of human neutrophil swarms is associated with
lipid mediator class-switching, leading to generation of lipoxin
A4 and resolvin E3, which, in turn, can limit swarm size (95). By
cloaking the injured area (sensing and removing debris as well as
damage-associated alarmins), tissue-resident macrophages also
contribute to sealing off the damage by preventing initiation of
the LTB4-driven feedforward signaling cascade that results in
neutrophil swarms (94).

Neutrophil swarming has been found to limit tissue damage
and contain pathogens in a variety of preclinical models (91, 94,
97, 98), indicating a protective role. Swarming behavior of
neutrophils from patients following major trauma or patients
receiving immunosuppressive therapy is deficient and is
associated with increased susceptibility and reduced ability to
clear bacterial (99) or fungal infections (100). Excessive
neutrophil swarming leads to collateral tissue damage through
release of neutrophil granule content via frustrated phagocytosis
or necrosis (3, 101) as exemplified by pulmonary ischemia
reperfusion injury in mice (97) and inflammation flares around
uric acid crystals in gout (102).

Reverse Transendothelial Migration
and Lymphatic Exit
Advances in intravital imaging technologies have revealed that
transmigrated neutrophils can also exhibit motility away from
inflamed sites, return across the endothelium and re-enter
circulation (34, 103–106). Neutrophil reverse transmigration is
most prevalent in tissues subjected to ischemia-reperfusion
injury (106, 107). Luminal to abluminal transendothelial
migration is regulated by various junctional proteins, including
VE-cadherin, platelet endothelial cell adhesion molecule-1 and
CD99, whereas reverse transmigration predominantly depends
on junctional adhesion molecule-C (JAM-C) (106). Under
ischemic conditions, excessive production of LTB4 induces
neutrophil degranulation, expression of neutrophil elastase on
Mac-1, which leads to JAM-C degradation and reverse
transmigration (34). Reverse transmigrated neutrophils display
a different phenotype, characterized by high ICAM-1 and low
CXCR1 expression, increased capacity to produce superoxide
and prolonged lifespan (103, 106), thereby contributing to the
heterogeneity of circulating neutrophils. The biological
consequences of reverse transmigration are unclear and may
depend on the circumstances. As reverse transendothelial
migration leads to removal of neutrophils from the inflamed
site, it may function as a protective mechanism that limits the
inflammatory response (104, 108). On the contrary, reverse
transmigration could lead to systemic propagation of
inflammation or distant organ injury in mice subjected to
cremaster muscle or lower-limb ischemia-reperfusion injury
(34, 106).

An alternative way of neutrophil egress from the inflamed site
may involve the exit through the lymphatic vessels. During
infection, neutrophils were detected carrying living bacteria
from the infected tissue to draining lymph nodes in mice
Frontiers in Immunology | www.frontiersin.org 5
(109–112). Skin egress of neutrophils via lymphatic vessels
depends on CXCR4 and its ligand CXCL12 expressed by
lymphatic endothelial cells as well as on Mac-1 (111, 113),
though the counter-ligand for Mac-1 remains to be identified.
Staphylococcus aureus-pulsed neutrophils recruited into the
lymph node acquire the phenotype (expression of major
histocompatibility complex (MHC) II and the costimulatory
molecules CD80 and CD86) and functionality of antigen-
presenting cells to initiate adaptive immunity (111, 114). By
contrast, other studies have proposed that neutrophils carrying
bacteria or viruses may lead to immune evasion and permit the
dissemination of the infection upon engulfment by macrophages
(115, 116).

Neutrophil Lifespan, Apoptosis
and Efferocytosis
Mature neutrophils have a short half-life in the circulation (117,
118) and die rapidly via apoptosis (119). Following recruitment
to inflamed tissues, neutrophil lifespan is increased through
delaying apoptosis in response to PAMPs, DAMPs and
environmental signals, though the extent of increased lifespan
remains unknown (120, 121). Neutrophils contribute to
interstitial acidosis, which serves as a danger signal (121) that
extends neutrophil lifespan by preserving the expression of the
anti-apoptotic protein Mcl-1 (122). Hypoxia or bacterial
infections even under normoxia were shown to induce release
of HIF-1a and HIF-2a, which generates survival cues for
neutrophils and enhances their bactericidal activity to restrict
systemic spread of infection (123, 124). Activated neutrophils
release myeloperoxidase that activates a Mac-1-centered feed-
forward loop to induce degranulation and generate survival
signals, thereby perpetuating the inflammatory response (28).
Conversely, genetic deletion of myeloperoxidase or disruption of
the myeloperoxidase-triggered feedforward loop with 15-epi-
LXA4 limits neutrophil-evoked tissue damage and facilitates
resolution (40, 125, 126).

Extended neutrophil lifespan through delayed apoptosis is a
common feature of many inflammatory diseases, including sepsis
(127, 128), acute respiratory distress syndrome (129), severe
asthma (130) and acute coronary syndrome (131), and is
associated with disease severity. In experimental models,
suppressing neutrophil apoptosis prolongs and aggravates the
inflammatory response (28, 132), whereas promoting neutrophil
apoptosis with cyclin-dependent kinase inhibitors (133), 15-epi-
LXA4 (40), or IFN-b (134) accelerates the resolution of
inflammation. Consistently, genetic deletion of the pro-
apoptotic ARTS protein hinders the execution of the intrinsic
apoptosis program in neutrophils and delays activation of
resolution programs (135).

Phagocytosis of complement-opsonized bacteria or necrotic
cells overrides survival signals generated by Mac-1 ligation and
accelerates neutrophil apoptosis (also known as phagocytosis-
induced cell death or PICD) (30, 31). Complement-mediated
phagocytosis is governed by a delicate balance between Mac-1
and the complement C5a receptor (C5aR or CD88) (136, 137).
Thus, reduced Mac-1 expression or genetic deletion of C5aR
disables phagocytosis and reduces bacterial killing (136, 138).
March 2022 | Volume 13 | Article 866747
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Bacterial or mitochondrial DNA signaling through TLR-9
upregulates Mac-1 expression and induces neutrophil elastase
and proteinase 3-mediated shedding of C5aR, leading to reduced
phagocytosis of E. coli, suppressed PICD and efferocytosis,
thereby prolonging acute lung injury in mice (25). Conversely,
by preventing TLR9 activation-mediated Mac-1 upregulation
and C5aR shedding, aspirin-triggered 15-epi-LXA4 and 17-epi-
RvD1 restore the balance between Mac-1 and C5aR and
consequently enhance phagocytosis, bacterial killing, PICD and
the resolution of lung injury (25). Of note, the pro-resolving lipid
mediators resolvin E1 and resolvin D5, which signals through the
LTB4 receptor BLT1 (31) and GPR32 (139), respectively, can also
enhance phagocytosis of bacteria by naïve neutrophils.

Removal of apoptotic neutrophils (and other cell types) by
macrophages is critical for restoring tissue homeostasis. The
detection and elimination of apoptotic cells are orchestrated by
“find-me” and “keep-out” signals that regulates recruitment of
phagocytes to the vicinity of apoptotic cells and “eat-me” signals
that allow recognition and engulfment (139–143). Apoptotic cells
release nucleotides, such as ATP and UTP through caspase-
mediated activation of pannexin 1 channels, which act as key
“find-me” signals (144, 145). By contrast, lactoferrin released by
apoptotic cells inhibits neutrophil chemotaxis without hindering
monocyte recruitment (146), thereby assuring the recruitment of
appropriate phagocytes for clearance of apoptotic cells and limit
inflammation. Efferocytosis induces a metabolic switch in
engulfing macrophages, leading to glycolysis and lactate release
through SLC16A1 and reprograms macrophages from the
inflammatory phenotype to an anti-inflammatory phenotype
(22, 147, 148) and subsequently to a CD11blow subset with
minimal phagocytic activity, increased oxidative phosphorylation
and expression of IFN-b-related gene signature (134, 149). By
promoting neutrophil apoptosis and efferocytosis as well as
reprogramming macrophages to the CD11blow phenotype,
IFN-b orchestrates bidirectional cross-talk between neutrophils
and macrophages to accelerate resolution (134). Genetic deletion
or pharmacological inhibition of cyclin-dependent kinases 5 and 9
drives neutrophil apoptosis and reprograms macrophages, thereby
facilitating neutrophil clearance and resolution (133, 150).

Neutrophils carrying Toxoplasma gondii or Leishmania donovani,
which they cannot destroy, may serve as “Trojan horses” to
disseminate the infection following macrophage engulfment (115,
116). The Gram-negative intracellular coccobacillus Francisella
tularensis can evade phagosomal elimination and replicates in the
cytosol (151) parallel with sustaining mitochondrial integrity and
delaying neutrophil apoptosis (152, 153). Continued accumulation of
dysfunctional neutrophils at the infection site is thought to contribute
to disease exacerbation.

NETosis
Among the neutrophil defense armory is the release of
extracellular traps (NETs), consisting of a nucleic acid scaffold
decorated with histones and granular proteins to entrap and kill
bacteria, viruses and fungi (13, 154, 155). Suicidal NET release
(commonly referred to as NETosis) occurs in response to various
stimuli and classically involves activation of protein kinase C and
Frontiers in Immunology | www.frontiersin.org 6
the Raf-MEK-ERK pathway, NADPH-dependent translocation
of neutrophil elastase and myeloperoxidase from cytosolic
granules into the nucleus, leading to the breakdown of
chromatin and the nuclear envelop. NETs are extruded
following the rupture of the neutrophil cell membrane (13).
Hence, NETosis may be considered as a distinct form of necrotic
cell death (156). Differences in NET composition have also been
reported (157, 158), though the implications of these differences
remain to be investigated. NET release may also occur in the
absence of cellular suicide (also known as vital NETosis) in
response to recognition of certain bacteria or PAMPs (154). For
example, HMGB1 released from activated platelets or necrotic
cells evokes NET release through interactions with TLR4,
independent of NADPH oxidase (159), while suppressing
phagocytosis (160). Vital NETosis requires vesicular trafficking
of DNA for delivering the NET out of the cell without requiring
membrane perforation (161). NET caused by extrusion of
mitochondrial rather than nuclear DNA does not cause lytic
cell death (162). Reports also exist that neutrophils that had
already underwent vital NETosis were still capable of chasing
and imprisoning live Staphylococcus aureus or Candida albicans,
whereas NETs recruited additional neutrophils in a swarming-
like behavior (161, 163). Although limited information is
available on the molecular switches that trigger phagocytosis,
NETosis or degranulation, it is plausible that selective activation
of these processes assures the most effective neutrophil response
to an insult. One possible control mechanism is ALX/FPR2, as
genetic deletion of Fpr2 (the equivalent of human ALX/FPR2) in
mice is associated with excess NET production and more severe
lung injury following bacterial infection (164).

NETs are eventually degraded by macrophages and dendritic
cells through DNase 1 that cleaves chromatin within NETs (165)
or the cytosolic exonuclease TREX1 (DNase III) following
endocytosis (166, 167). The antibacterial protein LL-37
facilitates NET uptake by macrophages, while protecting NETs
against degradation by bacterial nucleases (167). A recent study
reported that the thirteen-series (or T-series) resolvins, present
in resolution exudates, enhance NET uptake by macrophages
through the cAMP-PKA-MAPK pathway (168). The receptor for
T-series resolvins remains to be identified.

NETs effectively capture a large range of microbes, exert
direct antimicrobial activities and demarcate the infected locus
(169, 170). However, since the effects of NET components are
not restricted to invading pathogens, excessive or uncontrolled
NET formation can inflict damage to the surrounding tissue,
maintaining a pro-inflammatory and pro-thrombotic
environment that underlies various pathologies. For example,
extracellular histone components through TLR-mediated
generation of thrombin can evoke microaggregation, and
endothelial and tissue injury (169, 171, 172), whereas
neutrophil granule constituents expressed on NETs, such as
proteinase 3 or myeloperoxidase can trigger autoimmunity
when NET degradation is impaired (165, 173). Clinical studies
have also reported an association between NET generation and
disease severity in sepsis-induced (164, 174) or COVID-19-
associated acute respiratory distress syndrome (175–177).
March 2022 | Volume 13 | Article 866747
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Albeit wide-ranging differences in intrapulmonary neutrophils
were reported in COVID-19 autopsies (178), intense
neutrophilic inflammation and NET release contribute to
progression of the disease and higher mortality (175, 179–181).
NETs infiltrate the airways, pulmonary interstitial space and
vasculature in severe COVID-19 (182), leading to tissue damage
and formation of microthrombi in pulmonary capillaries (175,
177, 179–181). Activated neutrophils secrete ROS and proteases,
which in turn, enhance NETosis and inactivate plasma
antiproteases that protect against neutrophil proteases (183).
These create a vicious cycle to propagate tissue destruction.
Enhancing NET degradation by DNase I or partial genetic
deletion of peptidyl arginine deiminase 4 (PAD4+/-) reduced
the severity of bacterial lung injury in mice (164). Complete
PAD4 deficiency markedly suppressed NET formation and lung
injury, but increased bacterial burden, indicating a shift in the
balance between the protective and deleterious actions of NETs
during bacterial infections.

Accumulating evidence indicates dual role for NETs in cancer
(184). NETs were found to inhibit proliferation of colon
carcinoma cells (185) and exert cytotoxic activity on malignant
melanoma cells (186). Accumulation of NET producing
CD16high CD62Ldim neutrophils in tumor sites was reported to
predict improved survival in patients with head and neck
squamous cell carcinoma (187). In contrast, tumor cells can
prime neutrophils to release NETs (188), forming an amplifying
loop that links NET formation to tumor progression. As an
example, NET-associated neutrophil elastase and matrix
metallopeptidase 9 (MMP9) could awaken dormant cancer
cells, thereby promoting invasion and metastases (189, 190).
NETs may shield tumor cells against NK cells and cytotoxic T
cells (191), exert pro-angiogenic activities that support tumor
growth (192), and contribute to tumor-associated thrombosis
(193, 194) and hypercoagulability (195). Furthermore, NETs can
also capture tumor cells and carry them in the circulation, thus
favoring tumor dissemination (196). NET-DNA was also shown
to act as a chemotactic factor to attract tumor cells through
binding to the transmembrane protein CCDC25 expressed on
primary cancer cells, thereby promoting metastasis (197).

Necrosis and Necroptosis
At sites of inflammation, neutrophils can undergo necrotic cell
death, which occurs in a disorderly manner following cell injury,
or necroptosis, a programmed form of necrosis (198). Necrotic
cell death is associated with the release of DAMPs and cell debris,
which are potent inducers of inflammation (198). TNFa or
ligation of the adhesion receptors Mac-1, CD18, CD15 or
CD44 in GM-CSF-primed neutrophils activates the receptor-
interacting protein kinase 1 (RIPK1)-RIPK3- mixed lineage
kinase domain-like protein (MLKL) signaling pathway (199,
200), leading to translocation of MLKL1 to the inner leaflet of
plasma membrane and membrane permeabilization (201). X-
linked IAP (XIAP) ubiquitinylates RIPK1 (202) and thus
functions as a switch to direct neutrophils to either necroptosis
or apoptosis (201). NADPH oxidase-mediated generation of
ROS is essential for necroptosis (199, 200). Consistently,
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neutrophils from patients with chronic granulomatous disease
(caused by a genetic defect in NADPH oxidase) do not undergo
necroptosis (200). Some studies reported association of
necroptosis with NET formation in a mouse model of gouty
arthritis (203), though NET release occurred independently of
RIPK3 and MLKL signaling (204). Phagocytosis of methicillin-
resistant Staphylococcus aureus redirects neutrophils from
phagocytosis-induced apoptosis to necroptosis, which may
allow the escape of viable bacteria from dead neutrophils,
thereby persisting infection (205, 206). This requires RIPK3,
but not RIPK1 and MLKL, and is associated with RIPK3- and
protease-mediated production of IL-1b (205, 207). Neutrophil
necroptosis, evidenced by the activation of RIPK3 and MLKL,
was detected in tissue samples from patients with neutrophilic
diseases (200). The pathological significance of these
observations remains elusive.

Dying cells release DAMPs, including mitochondrial formyl
peptides, purines, LTB4, cytokines and chemokines, and triggers
generation of C3a and C5a, which collectively function as
“find-me” signals for phagocytes (208–210). Similar to
apoptotic cells, necrotic cells also express “eat-me” signals,
such as externalization of phosphatidylserine and LTB4, which
facilitate their clearance by macrophages (209). “Eat-me” cues
unique to necrotic cells include deposition of complement C1q
on the cell membrane (211) and cell surface externalization of
annexin A1 (212). The importance of removing necrotic
neutrophils is illustrated by the role of the neutrophil granule
constituent proteinase 3 in autoimmune vasculitis (65, 66) and
chronic obstructive pulmonary disease (213).
THERAPEUTIC OPPORTUNITIES

Given the central role of neutrophils in inflammation, it is
paramount to seek novel therapeutic approaches controlling
neutrophil-mediated collateral tissue damage and/or facilitating
clearance of neutrophils from the inflamed site upon fulfillment
of their immediate mission. Indeed, a variety of strategies have
been developed to prevent the detrimental effects of neutrophils,
with some approaches entering clinical trials (Figure 2).

Beta-2 Integrin-Targeted Therapeutic
Approaches
Mac-1 conformations and broad ligand recognition specificity
shape neutrophil responses and contribute to neutrophil
functional heterogeneity (30, 214). Hence, b2 integrins have
attracted considerable interest as potential therapeutic targets.
Indeed, currently available monoclonal antibodies and small
molecule inhibitors that block the ligand-binding site and a
broad repertoire of b2 integrin functionality efficiently reduced
neutrophil-driven inflammation in numerous experimental
models (7, 18, 214). However, global b2 integrin blockade lacks
functional selectivity, and can impair phagocytosis and
antibacterial defense (215). Conventional b2 integrin blockade
may also increase the risk of development of LAD-like
symptoms. Alternative approaches include targeting Mac-1
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conformation or ligand-specific signaling mechanisms without
compromising host defense. Selective inhibition of Mac-1
binding of its ligand CD40L with the M7 monoclonal antibody
reduced inflammation without affecting protective immunity
(19, 216). Allosteric inhibitors that stabilize b2 integrins in the
high affinity bent conformation efficiently blocked neutrophil
adherence (217) and restricted neutrophil accumulation in
murine models (218, 219). Selective targeting of discrete glycan
motifs present on Mac-1 with plant lectins was reported to
reduce neutrophil adhesion and trans-epithelial migration,
while enhancing phagocytosis and neutrophil apoptosis (220).
Other studies have reported that activation of Mac-1 with the
small molecule agonists leukadherins reduced neutrophil
trafficking into the kidney, while augmented leukocyte
adherence to the endothelium in murine models (221). These
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resulted in attenuation of arterial narrowing and improved renal
function. Leukadherin-1 was reported to activate microRNA
Let7a and induce polarization of M0 macrophages toward the
pro-inflammatory M1 phenotype that drives anti-tumor
immunity (222). Thus, leukadherins likely exert context-
dependent actions. Hence, additional studies are required to
explore their effects on macrophage polarization and the
resolution of inflammation.

Among the mechanisms by which specialized pro-resolving
mediators (SPMs) facilitate resolution of inflammation is
inhibition of neutrophil trafficking into the inflamed site by
decreasing their adhesion and transmigration. SPMs signal
through stereospecific binding to cellular receptors (223) to
prevent upregulation of Mac-1 expression on neutrophils and
to reduce Mac-1-mediated neutrophil adhesion and
FIGURE 2 | Emerging neutrophil-targeted therapeutic approaches to promote the resolution of inflammation. The strategies include blocking, restoring or activating
neutrophil functions. Thus, blocking function of Mac-1 or upregulation of Mac-1expression dampens neutrophil accumulation, a critical component of terminating the
inflammatory response. LXA4, RvE3 and protectin D1 serve as stop signals for swarming. Inhibition of degranulation or the activity of secreted enzymes, such as MPO
and NE, could reduce tissue injury and alter composition of NETs. Enhancing NET degradation by DNase I or promoting NET uptake by T-series resolvins or metformin
may prevent the deleterious actions of excessive NET formation. RvD5 and RvE1 facilitates phagocytosis, whereas 15-epi-LXA4 and 17-epi-RvD1 restore impaired
phagocytosis, facilitate clearance of bacteria and phagocytosis-induced apoptotic cell death. By countering survival cues, many molecules, including CDK inhibitors,
annexin A1, IFN-b and lipid SPMs, can redirect neutrophils to apoptosis and promote their uptake by macrophages through efferocytosis. This leads to reprogramming
and polarization of macrophages toward a pro-resolution, regenerative phenotype that promotes further removal of neutrophils. Annexin A1, RvE1, RvD1 and IFN-b play
pivotal roles in mediating feedforward resolution programs. Of note, although most of these data are from experimental models, some strategies (e.g. LXA4 mimetics, NE
inhibitors or DNase I) are currently being investigated in clinical trials. C5aR, complement C5a receptor; CDK, cyclin-dependent kinase; EC, endothelial cell; IFN-b,
interferon-b; LXA4, lipoxin A4; 15-epi-LXA4, 15-epi-lipoxin A4; MPO, myeloperoxidase; NE, neutrophil elastase; NET, neutrophil extracellular traps; PAD4, peptidyl arginine
deiminase 4; 17-epi-RvD1, 17-epi-resolvin D1; RvE1, resolvin E1; RvE3, resolvin E3; RvD5, resolvin D5; SNARE, soluble N-ethylmaleimide-sensitive-factor attachment
protein receptor; SPMs, specialized pro-resolving mediators; TRAIL, TNF-related apoptosis-inducing ligand.
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transendothelial migration, consequently limiting their tissue
accumulation (15, 21). Thus, annexin A1, lipoxin A4 and
resolvin D1 interact with ALX/FPR2, resolvin E1 binds ERV1
and resolvin D2 binds to DRV2 to repress Mac-1 expression (20,
223). In a feedforward mechanism for resolution, SPM receptor
signaling by one mediator can trigger mobilization or synthesis
of other SPMs for other receptors, exemplified by LXA4

mobilization of annexin A1 to limit neutrophil trafficking into
the inflamed microvasculature (224), resolvin D1-triggered
LXA4 generation in periodontal wound healing (225), and
resolvin E1-ERV1-induced biosynthesis of LXA4 for ALX/
FPR2-mediated resolution of allergic lung inflammation (226).
Of note, the gaseous mediator hydrogen sulfide and mast cell-
stabilizing drug nedocronil also mobilize annexin A1 to control
leukocyte trafficking in the mouse mesenteric circulation
(224, 227).

FPR2 Agonists: Shifting the Balance
Towards Resolution
As the pleiotropic receptor ALX/FPR2 conveys ligand-specific
pro- or anti-inflammatory actions, it has been proposed to
function as a master switch to initiate the resolution of
inflammation. A unique feature of ALX/FPR2 is that ligation of
this receptor can to activate several, if not all of the processes that
are critical for inflammation resolution, including blocking
neutrophil trafficking into tissues, promoting neutrophil
apoptosis and macrophage efferocytosis (15, 20, 25, 31, 40). As
an example, annexin A1 and its mimetic peptide Ac2-26 induce
the detachment of adherent neutrophils from the endothelium
and inhibit neutrophil chemotaxis, thereby controlling neutrophil
accumulation within the inflammatory locus (228), regulate
phagocytosis of bacteria and fungi (229) and accelerate
neutrophil apoptosis (39). Annexin A1 released from apoptotic
neutrophils recruits monocytes to clear apoptotic cells (230),
promotes their polarization towards the M2 phenotype (231),
thereby protecting the surrounding healthy tissue and accelerating
muscle regeneration through AMPK activation (232). Activated
neutrophils releases annexin A1-containing microparticles and
exosomes, which mediate its anti-inflammatory activity (233) and
orchestrate epithelial wound repair through ALX/FPR2 and FPR1
(234). Neutrophil-derived microvesicles can enter cartilage and
protect the joint in inflammatory arthritis (235). These findings
raise the possibility of harnessing annexin A1-loaded
microvesicles as a therapeutic strategy for reducing neutrophil
infiltration and protection against tissue damage.

Ligation of ALX/FPR2 with LXA4, resolvin D1 and aspirin-
triggered 15-epi-LXA4 and 17-epi-RvD1 activatesmechanisms that
partially overlap those stimulated by annexin A1, but also distinct
patterns of activation for intracellular pathways, includingERKand
NF-kB phosphorylation (15, 31). In addition toALX/FPR2, to date,
three other surface receptors, ERV1, DRV1 and DRV2 have been
identified mediate cell-specific actions of SPMs (15, 223). A
common feature of ligation of these receptors is attenuation of
neutrophil activation and trafficking into inflamed tissues (15, 20,
223). SPM binding to ALX/FPR2 decreases NF-kB activity and
cytokine production (31, 236), disrupts the myeloperoxidase-
centered feedforward loop and redirects neutrophils to apoptosis
Frontiers in Immunology | www.frontiersin.org 9
(40), and restores TLR9-impaired phagocytosis of bacteria and
promotes phagocytosis-induced neutrophil death (25).
Consistently, 15-lipoxin A4 was found to accelerate the resolution
of inflammation in a variety of experimental models, including
asthma (237), peritonitis (238, 239), cystic fibrosis (240), ischemia-
reperfusion (139), and myeloperoxidase and E. coli-induced acute
lung injury in mice (25, 40). By reducing bacterial burden, ALX/
FPR2 agonists may also be used to lower reduce antibiotic
requirements or used in conjunction with antibiotics to
strengthen host defense against infections (241, 242). Most SPMs
are metabolically inactivated within the inflammatory site, some
SPMs reach circulation (242, 243). To circumvent rapid
inactivation, several metabolically stable analogs, such as benzo-
RvD1, were synthesized (15) and nanomedicines were designed to
deliver SPMs and their analogs to promote wound healing (244).
Furthermore, the lipoxin A4 analog BLXA4-ME is currently in trial
for periodontal inflammation (245), whereas othermolecules are in
clinical development program (15). Nanomedicine delivery of
SPMs to correct resolution deficits represents a fascinating novel
avenue for preventing the progression of chronic diseases, as
exemplified by the decreases in tissue SPMs immediately before
plaque rupture (23, 24).

The intriguing biology of the ALX/FPR2 receptor has
initiated numerous medicinal chemistry programs to develop
small-molecule agonists to activate resolution programs (15,
246). Relevant examples here are the beneficial actions of
synthetic lipoxin mimetics and the prototype peptide agonist
WKYMVM in various preclinical models (247, 248). Phase I
clinical trials reported promising tissue protective actions with
other small-molecule ALX/FPR2 agonists, such as compound
ACT-389949 (Actelion) (249), and compound BMS986235
(Bristol –Myers Squibb) (250) in heart failure. However, since
ALX/FPR2 expression is not restricted to myeloid cells, further
studies are required to identify the cellular targets (e.g.
endothelium, smooth muscle cells or fibroblasts) mediating the
beneficial actions of these compounds.

Targeting Neutrophil Lifespan
and Apoptosis
Several preclinical studies indicate the therapeutic potential of
targeting neutrophil apoptosis for facilitating the resolution of
inflammation. Thus, pharmacologic blockade of cyclin-
dependent kinases (CDKs), which principally inhibit CDK9-
mediated transcription of Mcl-1 (150, 251) has been shown to
exert potent anti-inflammatory effects in experimental models of
neutrophil-dominated inflammation and enhance resolution of
severe lung injury models (133, 251, 252). Interestingly, the CDK
inhibitor drug R-roscovitine also increased bacterial clearance
(251) through a yet unidentified mechanism. Ex vivo studies
showed that the CDK inhibitor AT7519 efficiently overrides the
delayed neutrophil apoptosis in patients with sepsis-associated
ARDS concurrent with reduced expression of Mcl-1 (253).
Studies in preclinical models indicate that several SPMs,
including 15-epi-lipoxin A4 and resolvin E1, signaling through
ALX/FPR2 and the LTB4 receptor BLT1, respectively, can also
override pro-survival cues and redirect neutrophils to apoptosis
in part by reducing Mcl-1 expression (31, 40). In line with these
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observations, the annexin A1 mimetic peptide Ac2-26 induces
neutrophil apoptosis (254, 255). Furthermore, IFN-b, produced
by resolution phase macrophages, drives neutrophil apoptosis
through the IFNaR1-STAT3 signaling pathway and acceleration
of Mcl-1 degradation (134). These findings identify Mcl-1as a
promising target for resolution therapy.

Another potential mechanism to accelerate neutrophil apoptosis
is restoring impaired phagocytosis. Indeed, bacterial and
mitochondrial DNA were shown to reduce phagocytosis and
consequently bacterial clearance as well as phagocytosis-induced
death by inducing the cleavage of complement C5a receptor, which
acts in concert with Mac-1 to mediate phagocytosis (10, 256). By
preventing cleavage of C5a receptor, aspirin-triggered 15-epi-
lipoxin A4 and 17-epi-resolvin D1 restore impaired phagocytosis,
enhances bacterial clearance, drive phagocytosis-induced death and
consequently attenuate E. coli-evoked lung injury in mice (25).

Other strategies to modulate neutrophil apoptosis include
activating the extrinsic pathway of apoptosis by TNF-related
apoptosis-inducing ligand (TRAIL) and the use of peptides
derived from the cyclin-dependent kinase inhibitor p21. While
TRAIL appears to have no role in constitutive neutrophil apoptosis,
treatment with recombinant TRAIL was shown to enhance
neutrophil apoptosis and limit the inflammatory response to LPS
in mice (257). The p21 peptide binds and sequesters proliferating
cell nuclear antigen (PCNA), which acts as a cytoplasmic platform
to control the lifespan of human neutrophils (258). Consistently, a
p21-derived peptide was shown to induce apoptosis in neutrophils
isolated from patients with Pseudomonas aeruginosa infection
(259), highlighting PCNA as a novel target to modulate
pathological inflammation. Apoptotic neutrophils and T cells
sequester chemokines, such as CCL3 and CCL5, through
modulation of CCR5 expression, thereby reducing the availability
of proinflammatory cytokines for other neutrophils and preventing
further neutrophil recruitment (260). An interesting approach
emerged from these observations is that administration of
apoptotic cells markedly reduced the cytokine/chemokine storm
and protected against acute lung and kidney injury in a mouse
model of severe sepsis (261).

Macrophagesplay a crucial role in the clearanceof apoptotic and
necrotic cells, including neutrophils (140, 209, 262). Various
pathologies, including ARDS is associated with impaired
macrophage phagocytic function (263, 264). Thus, restoring
macrophage function represents another avenue of potential
therapy. As an example, IFN-b, produced by resolution phase
macrophages, mediates a feedforward loop to promote neutrophil
apoptosis and efferocytosis, which contributes to macrophage
reprogramming and production of additional IFN-b (134).
Several clinical trials reported favorable response to early IFN-b
use to mitigate SARS-CoV2 infection-associated severe ARDS and
other studies are underway testing the clinical efficacies of type I
interferons (265).

Modulation of Degranulation, NET
Release and Clearance
As excessive or aberrant NET formation has been implicated in
the pathogenesis of many pathologies, inhibiting NET release or
Frontiers in Immunology | www.frontiersin.org 10
enhancing NET clearance open promising avenues for therapy.
Preclinical studies showed that ROS scavengers, such as N-acetyl
cysteine (266), myeloperoxidase inhibitors (267) and PAD4
inhibitors (268–270) could inhibit NET release and dampen
t issue injury in exper imenta l models of ar thr i t i s ,
arteriosclerosis and autoimmune diseases. Likewise, the
reversible PAD4 inhibitor GSK484 was shown to inhibit
suicidal NETosis (271) and to prevent cancer-associated
neutrophil-mediated renal injury in mice (272). Studies in
PAD4-knockout mice suggest that bacterial infections may
shift the balance of the protective and deleterious effects of
NETs in host defense (273, 274). Select lipid SPMs, such as
resolvin D4 (275) and T-series resolvins (168) also limit NET
formation, though the underlying molecular mechanisms are
incompletely understood.

Another potential therapeutic approach is blocking
neutrophil degranulation or the effects of granule enzymes.
Neutrophil-specific exocytosis inhibitors, termed Nexinhibs,
and SNARE domain-derived peptide aptamers have been
developed. Nexinhibs selectively inhibit release of azurophil
granule contents by interrupting the Rab27a-JFC1 interaction
without affecting phagocytosis (276, 277), and reduce neutrophil
accumulation in the kidney and liver in a mouse model of
systemic inflammation (277). Intrapulmonary delivery of
Nexinhib20-loaded nanoparticles, which release Nexinhib20
upon cleavage by neutrophil elastase, was shown to dampen
neutrophil recruitment and degranulation within the lower
airways (278). SNARE mimicking peptide aptamers exhibit
varying selectivity towards neutrophil granule subsets (276). As
an example, TAT-SNAP-23 (a fusion protein containing the N-
terminal SNAP-23 SNARE domain fused with the cell
penetrating HIV peptide TAT) was reported to attenuate lung
injury evoked by pulmonary immune complex deposition (279)
or sepsis (280). However, since SNARE expression is not
restricted to neutrophils, further studies are needed to
distinguish their actions of neutrophils and other cell types in
vivo. Several SPMs, including lipoxin A4, resolvin D1 and
aspirin-triggered 15-epi-LXA4 and 17-epi-RvD1, acting
through ALX/FPR2, also block myeloperoxidase- or TLR9
activation evoked release of myeloperoxidase, neutrophil
elastase and proteinase 3 and consequently accelerate
resolution of sterile (40) and E. coli-induced lung injury in
mice (25). Several synthetic inhibitors and natural compounds
became available over the past years, in particular compounds
that target neutrophil elastase (281). Neutrophil elastase
inhibition was reported to prevent progression of lung injury
in various experimental models (282). However, the synthetic
selective neutrophil elastase inhibitor, sivelastat failed to improve
28-day mortality in patients with ARDS (283). It remains to be
investigated whether this was due to its toxic or off-target effects.

Promoting NET degradation by treatment with DNase I
attenuated tissue injury and increased survival in mouse
models of severe bacterial pneumonia/acute lung injury (164,
174), transplantation-associated lung injury (284), tumor (285)
and lupus (286). Furthermore, an ongoing phase III clinical trial
is investigating the effectiveness of inhaled dornase-a
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(recombinant human DNase I) in reducing the incidence of
ARDS in severe trauma patients (287). Other bioengineered
DNases, such as actin-resistant DNase (alidornase-a) (288,
289) or DNase 1-like 3 (290) have been developed and some
are currently being tested in phase I and II trials (288, 289).
Macrophages from ARDS patients exhibit reduced capacity to
clear NETs as well as apoptotic cells (263). Treatment of
bronchoalveolar lavage fluid macrophages from ARDS patients
ex vivo with the AMPK activator metformin (264) enhanced
NET clearance and efferocytosis (263). In addition to blocking
suicidal NET formation, T-series resolvins, and RvT2 in
particular, were shown to facilitate NET uptake by monocyte-
derived M0 macrophages in vitro as well as by peritoneal
macrophages in mice (168), indicating the therapeutic
potential of RvT2 in the in vivo setting.
CONCLUDING REMARKS

Timely removal of neutrophils from the inflamed area is of outmost
importance to efficient resolution of inflammation and return to
homeostasis. Failure to clear neutrophils may lead to perpetuation
of the inflammatory response and persisting tissue damage. Thus,
exploring the fate of emigratedneutrophils and their contribution to
mechanisms that distinguish self-limiting or protective
inflammation from aggravated and chronic inflammation is
critical to improve current therapies. The phenotypic
heterogeneity and functional versatility of neutrophils and their
diverse roles in innate and adaptive immune responses provide
important cues for development of neutrophil-targeting therapies.
However, whether the neutrophil`s actions are mediated by
different polarization states of mature neutrophils or distinct
Frontiers in Immunology | www.frontiersin.org 11
neutrophil subsets remains unclear. A simple “one size fit all”
anti-neutrophil approach is perhaps naïve and outdated (282).
Indeed, over the past years numerous strategies have been
developed, which show promising results in preclinical models to
prevent the detrimental effects of neutrophils. These include
molecules that can inhibit, restore or enhance specific neutrophil
functions. Use of pro-resolving agonists, such as lipoxins, resolvins
and annexin A1, which activate endogenous resolution programs
and would serve as immunoresolvants rather than
immunosuppressant (15), represent a conceptual change for the
treatment of inflammatory pathologies as well as the emergence of
“resolution pharmacology” (291). Although large-scale clinical
studies with these compounds seem distant, some strategies, e.g.
topical application of a LXA4 mimetic and degrading NETs within
the lungwith inhaled dornase-a, are currently being investigated in
clinical trials. This ongoing research highlights the importance of
targeting neutrophils, and distinct neutrophil subsets in particular,
and will likely spur further advances in neutrophil-targeted
therapies to dampen inflammation to favor reparative processes
without comprising antimicrobial host defense.
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