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Purpose: To develop a clinical CEST MR fingerprinting (CEST-MRF) method
for brain tumor quantification using EPI acquisition and deep learning recon-
struction.
Methods: A CEST-MRF pulse sequence originally designed for animal imaging
was modified to conform to hardware limits on clinical scanners while keeping
scan time under 2 min. Quantitative MRF reconstruction was performed using a
deep reconstruction network (DRONE) to yield the water relaxation and chem-
ical exchange parameters. The feasibility of the six parameter DRONE recon-
struction was tested in simulations using a digital brain phantom. A healthy
subject was scanned with the CEST-MRF sequence, conventional MRF and
CEST sequences for comparison. Reproducibility was assessed via test–retest
experiments and the concordance correlation coefficient calculated for white
matter and gray matter. The clinical utility of CEST-MRF was demonstrated on
four patients with brain metastases in comparison to standard clinical imaging
sequences. Tumors were segmented into edema, solid core, and necrotic core
regions and the CEST-MRF values compared to the contra-lateral side.
Results: DRONE reconstruction of the digital phantom yielded a normalized
RMS error of ≤7% for all parameters. The CEST-MRF parameters were in good
agreement with those from conventional MRF and CEST sequences and previ-
ous studies. The mean concordance correlation coefficient for all six parameters
was 0.98± 0.01 in white matter and 0.98± 0.02 in gray matter. The CEST-MRF
values in nearly all tumor regions were significantly different (P = 0.05) from
each other and the contra-lateral side.
Conclusion: Combination of EPI readout and deep learning reconstruction
enabled fast, accurate and reproducible CEST-MRF in brain tumors.
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1 INTRODUCTION

CEST MRI uses frequency selective radiofrequency pulses
to saturate the magnetization of labile protons on proteins
and metabolites.1 The saturated protons exchange with
the unsaturated water protons and lead to a measurable
reduction in the water MRI signal. The CEST contrast is
attractive since it is sensitive to metabolite concentrations
with higher spatial resolution (∼1 mm) and shorter scan
times (∼5 min) than MRS.2 Moreover, the measured CEST
signal depends, inter alia, on the chemical exchange rate,
which is pH sensitive. Because many pathologies, includ-
ing cancer, are characterized by tissue hypoxia leading to
an acidic microenvironment, pH is a potentially valuable
metabolic biomarker.3–6 In cancer imaging, CEST contrast
has been used to distinguish pseudoprogression and radi-
ation necrosis from true progression in brain tumors,7–9

quantify tumor extracellular pH,3,10 evaluate the grading
and cellularity of gliomas,11 and monitor early effects of
radiation therapy.12

Although preclinical and early clinical CEST studies
have demonstrated the potential utility of CEST methods
for assessing disease pathologies, disease progression, and
therapeutic response, they have not been widely adopted
for clinical use due to several challenges encountered
in clinical translation. Specifically, the semi-quantitative
nature of the CEST contrast, the relatively long image
acquisition times, and the complicated data processing
have all hindered clinical translation. To overcome these
challenges, MR fingerprinting (MRF)-based CEST was
recently introduced13,14 and demonstrated in vivo for rat
brain experiments on a preclinical 4.7T scanner.15 The
CEST-MRF sequence has the following advantages over
conventional CEST: tissue maps are fully quantitative; the
acquisition time is short (less than 2 min) and the data
analysis is greatly simplified because only a single reso-
nance frequency offset is excited with saturation pulses
of varying powers (instead of the full Z-spectrum) which
also reduces the sensitivity to B0 variations due to the
use of a normalized signal. Accuracy of the tissue param-
eter maps was validated in phantoms and compared to
reference methods from the literature.16–19

The diagnostic potential of CEST-MRF for patholo-
gies is considerable since the resulting parametric maps
reflect different biophysical processes, and their combina-
tion provides a comprehensive picture of complex patholo-
gies, like brain tumors, where multiple parameters change
simultaneously. However, to realize the clinical potential
of CEST-MRF, the pulse sequence must be adapted to clin-
ical scanners. This is challenging because preclinical scan-
ners have significantly different RF and gradient amplifier
capabilities and limitations compared to clinical scanners.
For example, patient imaging is bound by strict limits

on specific absorption rate and peripheral nerve stimu-
lation. These hardware and software differences require
careful consideration when adapting a sequence for clin-
ical use. An additional challenge inherent to CEST-MRF
is the large number of tissue parameters quantified by the
sequence. In conventional MRF, tissue quantification is
achieved by pattern-matching the measured signal to a
pre-computed database of signal magnetizations.20 How-
ever, the exponential growth in dictionary size for mul-
tiple tissue parameters renders this approach impractical
for CEST-MRF. Some groups have reported the use of a
MRF framework with a two-pool model in healthy sub-
jects to quantify the water and semi-solid parameters but
not the pH-sensitive amide exchange.21,22 Others have pro-
posed to sequentially quantify the semi-solid and CEST
parameters using dictionary matching (DM) reconstruc-
tion necessitating two separate scans and a potentially
lengthy reconstruction process.23

The aim of this work is to develop CEST-MRF acqui-
sition and quantification methods suitable for clinical
scanners to image patients with brain metastases. Specif-
ically, a combination of MRF with EPI readout and deep
learning-based quantification is proposed. The proposed
method is tested in simulations and a healthy volunteer
and validated in vivo against conventional CEST imag-
ing. The clinical utility is demonstrated in patients with
metastatic brain cancer.

2 METHODS

2.1 Pulse sequence

Figure 1A shows the proposed pulse sequence for one
temporal point of the acquisition schedule. Subsequent
temporal points of the acquisition schedule use the same
pulse sequence but with different CEST saturation encod-
ing (Figure 1B). The initial pulse train saturates the
solute protons and is composed of 160 non-selective,
Gaussian-shaped, 16 ms sub-pulses applied with a 100%
duty cycle for a total pulse train duration (Tsat) of
2560 ms. The saturation pulse train power (B1sat) was var-
ied according to a pre-determined schedule as described
in Section 2.1.1. The resonance frequency of the RF
pulses was set to the chemical shift of the amide pro-
tons (3.5 ppm) in this study but protons of other moieties
(amine, hydroxyl, etc.) are easily probed by setting the res-
onance frequency to the appropriate chemical shift. The
saturated protons chemically exchange with the unsatu-
rated bulk water protons which leads to a reduction in the
water signal which can be measured by excitation with
an on-resonance RF pulse with flip angle (FA) set accord-
ing to the MRF acquisition schedule. The magnetization
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F I G U R E 1 (A) Clinical CEST-MRF pulse sequence shown for one schedule point. The magnetization is saturated with a
Gaussian-shaped pulse train and exchanges with the water. The water signal is then excited and read out with an EPI k-space sampling. The
saturation pulse train power (B1sat) and duration (Tsat) and the excitation pulse FA are varied according to the MRF acquisition schedule. For
simplicity, only the saturation power was varied in this study. (B) Schedule of B1sat powers. (C) Sample CEST-MRF signals for GM, WM and
CSF. (D) DRONE network used in quantification of the CEST-MRF data. The network is trained with simulated three-pool data and outputs
the water relaxation (T1w, T2w), amide (ksw, fs), and semi-solid (kssw, fss) parameters

is then sampled with an EPI readout and the acquisition
repeated, following a repetition delay (TR), for each point
in the acquisition schedule.

2.1.1 MRF acquisition schedule

To ensure a differential signal evolution for different
tissues and facilitate their quantification, the acquisi-
tion parameters must be varied for each schedule point.
Although simultaneous variation of multiple acquisition
parameters can improve discrimination and reduce acqui-
sition times,24 the choice of an appropriate schedule is a
challenging problem,25 and will be explored in future stud-
ies. For simplicity, in this work B1sat was randomly varied
for 30 schedule points with powers in the range 0-4μT
(Figure 1B), which was found to yield accurate parame-
ters in previouspreclinical in vivo studies.15 The variable
saturation gives rise to a differential tissue evolution for
different tissue types (Figure 1C). All other acquisition
parameters (FA, TR, Tsat) were kept constant with FA set
to 90◦, TR set to 3500 ms, and Tsat set to 2560 ms.

2.2 Deep learning-based tissue
parameter quantification

In conventional MRF, tissue parameters are quantified
by matching the measured signal to a pre-computed

dictionary of signal magnetizations. Because of the large
number of tissue parameters (dictionary dimensions) and
the exponential growth of the dictionary, this approach
is infeasible for CEST-MRF. We have previously demon-
strated the use of a model-trained neural network named
DRONE26–30 to perform a functional mapping between the
measured data and the underlying tissue parameters. In
this work, we extended the DRONE approach to enable
reconstruction of the high-dimensional CEST-MRF sig-
nals in a clinical setting. The benefits of DRONE include
nearly instantaneous reconstruction time and the use of
signal simulation to train the network which removes the
need of patient data for training. The neural network used
in this work was also trained on simulated data, as in the
original DRONE method, but in this case training data
were generated by solving the Bloch-McConnell equations
for a three pool (water, solute, semi-solid) model.

2.2.1 Training dataset generation

The neural network was implemented in PyTorch31 and
consisted of a 30-node input layer (corresponding to the
30-point magnitude images acquired with the CEST-MRF
sequence), two fully connected hidden layers with 300
nodes per layer, and a six-node output layer (Figure 1D).
The output layer corresponded to the six parameters
measured by the CEST-MRF sequence consisting of
water T1 relaxation (T1w), water T2 relaxation (T2w),
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amide exchange rate (ksw), amide volume fraction (fs),
semi-solid exchange rate (kssw), and semi-solid volume
fraction (fss). A training dataset was generated by sam-
pling the tissue parameter ranges using latin hypercube
sampling32 and simulating a CEST-MRF acquisition by
solving the Bloch-McConnell equations. All signals were
normalized to have a l2-norm of 1. The transmit field inho-
mogeneity (B1) was included in the training dictionary,
but not in the loss calculation, to induce the network to
minimize the error in the other parameters instead. To
accelerate the training set generation, the CEST-MRF sim-
ulation was implemented on a Nvidia RTX2080 Ti graphics
processing unit (Nvidia Corp. Santa Clara, CA) with 11 GB
of memory, which enabled parallel processing of the train-
ing set entries. A fraction (20%) of the dataset was used as a
validation set to assess the quality of network training with
the remainder (80%) used for training. The network was
trained for 4000 epochs with the Adam optimizer33 using
an l1-norm loss with a batch size of 1000 and an adaptive
learning rate with weight decay of 10−4. Zero-mean Gaus-
sian noise with 1% SD was added to the training dictionary
to promote robust learning.

2.3 Numerical simulations

Sensitivity to parameter values
The sensitivity of CEST-MRF to different parameter val-
ues was tested by synthesizing CEST spectra for WM and
GM with the CEST-MRF derived parameters. Baseline val-
ues were defined for the tissue parameters and spectra
were synthesized using twice and half the baseline val-
ues. The difference between the baseline spectrum and
those synthesized with the other parameter values was cal-
culated along with the Pearson correlation and the RMS
error (RMSE). The same experiment was then repeated
but with synthesized CEST-MRF fingerprints for the base-
line and modified parameter values. Simulations were per-
formed numerically stepwise under the assumption of a
Lorentzian MT lineshape.

DRONE analysis
The feasibility of DRONE reconstruction for six parameter
maps was assessed in a custom modified Brainweb-based34

digital phantom. The segmented gray matter (GM), white
matter (WM), and CSF phantom maps were used to
assign quantitative values, representative of the healthy
brain, for each tissue type and parameter (Supporting
Information Table S1, which is available online). The
digital phantom was used to simulate a CEST-MRF
acquisition with the sequence and acquisition sched-
ule described in Section 2.1. The simulated data were
reconstructed using a DRONE network trained with a

training set of 60 000 entries sampled from the ranges
shown in Supporting Information Table S2 as well as
using DM. The error between the reconstructed tissue
parameter and the reference values was calculated as
Error = 100× |Reference – Reconstructed|/Reference.

White Gaussian noise was added to the simulated data
to study the effect of noise on the reconstruction for vary-
ing levels of SNR. The SNR was defined as 20⋅log10(S/N),
where S was the average WM signal intensity for the
acquisition and N was the noise SD. The SNR was varied
from 20 to 80 dB in intervals of 5 dB,35 and the data recon-
structed with the same network for each SNR level. The
normalized RMS error (NRMSE), defined as NRMSE =

100 ×
√{∑

i
(

Estimatedi − Referencei
)2
}

∕Reference

where Reference is the mean of ‘Reference’, was used to
calculate the error between the estimated and reference
values for the different SNR levels.

We tested the stability of the DRONE reconstruction
by creating a numerical phantom with 128× 128 points.
Each point had a constant ksw and fs (40 Hz and 0.5%
respectively). The other parameters (T1w, T2w, kssw, fss,
and B1) were randomly varied by selection from the ranges
shown in Supporting Information Table S2. The phan-
tom was used to simulate a CEST-MRF acquisition, and
the resulting fingerprints reconstructed by the DRONE
network to obtain the estimated tissue parameters. The
RMSE, mean± SD, and reconstruction error, calculated as
above, were computed for the ksw and fs parameters. The
contribution of the other parameters to the reconstructed
ksw and fs values was quantified by multiple regression.

To test the self-consistency of the DRONE reconstruc-
tion, measured in vivo data was reconstructed with a
trained DRONE network (as described in Section 2.4) or
DM. The tissue parameter maps were converted to a digital
phantom and used to generate fingerprints in a simu-
lated CEST-MRF acquisition. The simulated data was then
reconstructed with the same DRONE network or DM and
the error between the initial and iterated reconstruction
calculated. This was repeated for 40 iterations.

The DRONE network nonlinearly maps the input sig-
nal to the underlying tissue parameters. To quantify the
impact of the input on the resulting tissue parameters, we
calculated an ‘attribution score’ for sample WM and GM
fingerprints using the Integrated Gradients method.36,37

2.4 In vivo studies

All experiments were conducted on a 3T GE Signa Premier
(GE Healthcare, Waukesha, WI) with the built-in trans-
mit body coil and a head coil array with 48 elements for
reception.
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2.4.1 Healthy volunteer subject

A healthy 34-y-old female volunteer was recruited for
this study and provided informed consent in accordance
with our institution’s Institutional Review Board pro-
tocol. The subject was scanned with the CEST-MRF
sequence described in Section 2.1 with the following image
acquisition parameters: FOV = 280× 280 mm2, matrix
size = 256× 256, in-plane resolution = 1.1× 1.1 mm2, slice
thickness = 5 mm, TE = 24 ms, partial Fourier, num-
ber of averages (NEX) = 1, TR = 3500 ms, FA =90◦,
Tsat = 2560 ms, bandwidth = 250 kHz. The total scan time
was 105 s. The measured data was reconstructed with the
same network defined in Section 2.3. The SNR for the in
vivo acquisition, calculated as described in Section 2.3, was
approximately 53 dB.

Sensitivity to B0 inhomogeneity
A B0 map was acquired using a dual-echo gradient echo
sequence to assess the impact of B0 inhomogeneities
on the CEST-MRF parameters. Seven regions-of-interest
(ROI) were selected corresponding to areas with B0 val-
ues in a 50 Hz range. The correlation between the tissue
parameter values and the B0 values in the ROIs was calcu-
lated for each parameter.

In vivo reproducibility
The in vivo reproducibility of the CEST-MRF sequence
was assessed by test–retest scanning. The healthy volun-
teer was sequentially scanned twice with the CEST-MRF
sequence and then removed from the scanner. Follow-
ing a 5-min delay, the subject was again placed in the
scanner, re-localized and scanned two more times with
the CEST-MRF sequence. Data from each scan were
reconstructed with the trained DRONE network and
GM and WM ROIs defined. The ROIs were then used
to determine the GM and WM values for all parame-
ter maps. The Lin’s concordance correlation coefficient
(CCC)38 was calculated in the GM and WM of each tis-
sue parameter as a measure of the reproducibility of each
parameter.

Comparison with conventional MRF derived T1 and T2
maps
The water T1 and T2 relaxation maps obtained with
CEST-MRF were compared to an optimized conventional
MRF-EPI sequence.26,35 The imaging parameters were
kept the same as the CEST-MRF acquisition with the
exception of the initial adiabatic inversion pulse with
inversion time of 50 ms which preceded the data acqui-
sition.20 The acquired data were processed by a separate
DRONE network and the total acquisition time for the
optimized 50-point schedule was approximately 6 s per

slice. The GM/WM ROIs defined in Section 2.4.1.2 were
used to calculate the reference mean± SD T1 and T2
values.

Comparison with conventional CEST imaging
Validation of the CEST-MRF parameters is difficult
because no reference method is available. Instead, CEST
spectra were synthesized from the CEST-MRF parame-
ters and compared to experimentally measured spectra
in the same subject. The subject was scanned with a
CEST sequence with 57 resonance frequency offsets in
the −7.2 to 7.2 ppm range. The FA, B1sat, TR, and Tsat
were set to 90◦, 2 μT, 8, and 3.04 s respectively. Unlike
CEST-MRF, T1 effects are not accounted for in conven-
tional CEST so a long TR was chosen to ensure com-
plete signal recovery and avoid possible T1 contamination
between measurements. Similarly to other studies,39 both
the synthetic and measured spectra were normalized to
the magnetization at a saturation offset of 7.2 ppm to
ensure a fair comparison and eliminate the need for cor-
recting motion-induced misregistration between the M0
image and the spectra. The total scan length for the CEST
acquisition was 7.6 min. The same acquisition parameters
were used along with the CEST-MRF derived parameters
as inputs to a Bloch-McConnell equation simulator to gen-
erate the synthetic spectra and the Pearson correlation
between the two curves calculated.

To isolate the CEST signal from the significantly
larger water and magnetization transfer (MT) signals,
the measured Z-spectrum (ZMeasured) was compared to a
synthetic reference spectrum calculated using the water
and MT parameters alone (ZSynthRef). The RMSE of the
difference ZMeasured – ZSynthetic was calculated for WM
and GM.

Comparison with dictionary fitting
The performance of the DRONE network for the in vivo
data was compared to standard dot-product pattern match-
ing with a dictionary composed of 4 million entries gen-
erated using the parameter ranges listed in Supporting
Information Table S2.

2.4.2 Patients with brain metastases

Four patients with brain metastases were recruited
for this study and gave informed Institutional Review
Board consent. The patients were scanned per the
consensus standardized brain tumor imaging proto-
col40 and institutional standard-of-care that included
T1-weighted sequences pre- and post-gadolinium (Gd)
contrast injection, FLAIR, diffusion, and perfusion acqui-
sitions. All patients were previously treated with radiation
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therapy and/or chemotherapy. The proposed CEST-MRF
was acquired prior to Gd injection using the same imag-
ing parameters and tissue quantification as for the healthy
volunteer scans (Section 2.4.1) other than the resolution
which was set to 1× 1× 3 mm3 to enable visualization of
small lesions. The tumor was contoured into ROIs com-
prising a necrotic core, solid core, and edema as well
as a contra-lateral healthy region by one of the authors
(K.R.T.), a trained radiation oncologist. Statistical signifi-
cance of differences in the reconstructed tissue map values
for each ROI in a representative patient (patient 1) was
evaluated using a multi-comparison analysis of variance
test with Tukey honest significant difference41 with a sig-
nificance level set at P = 0.05.

3 RESULTS

3.1 Computation time

Deep learning quantification using DRONE significantly
reduced the quantification time compared to conventional
DM. Conventional dictionary generation and matching
required approximately 4 h on a desktop server with
256 GB of memory. Network training required approxi-
mately 30 min on a graphics processing unit, whereas
quantification of the six parameter maps with the trained
network required only ∼100 ms for an image with
256× 256 voxels.

3.2 Numerical simulations

The DRONE reconstruction of the six tissue parame-
ter maps in the simulated digital phantom is shown in
Figure 2 for a high SNR simulation (80 dB) to isolate the
intrinsic error in the DRONE reconstruction for the highly
under-determined CEST-MRF data. DM results are shown
in Supporting Information Figure S1. The impact of SNR
on the quantitative accuracy for each parameter is shown
in Figure 3A on a log–log scale. Despite the high dimen-
sionality of the data and the small training dictionary, the
DRONE reconstruction accurately quantified the tissue
maps yielding a NRMSE of less than 7% for all the param-
eters. As expected, increasing SNR reduced the NRMSE
for all tissue parameters although the rate of improvement
varied for each parameter which is reflective of the intrin-
sic sensitivity of the sequence to the different parameters.
As an example, the NRMSE at 55 dB was approximately
8% for fss but 3% and 6% for T1w and T2w. The attribu-
tion score for each schedule point is shown in Figure 3B.
The first and last schedule points were found to have
the highest impact on the resulting maps. The sensitivity
of the CEST-MRF parameters is illustrated in Supporting
Information Figures S2 and S3.

The DRONE stability experiments yielded for ksw a
RMSE of 6.1 Hz, Mean± SD of −1.0 ± 6.0 Hz, and error
of 12.4%. The overall regression was statistically signifi-
cant with R2 = 0.762 and F(16 384,16 377) = 8740. For fs
the results were: RMSE = 0.11%, Mean± SD = 0.06± 0.09

F I G U R E 2 DRONE reconstruction of six parameters in a digital phantom in comparison to the reference values. Regions associated
with the background, skull, and scalp were set to zero. The error, calculated as 100× |Reference – DRONE|/Reference, is shown for each
tissue. Note the effect of the B1 inhomogeneity visible in the error maps
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F I G U R E 3 (A) NRMSE, on a log scale, of the DRONE reconstructed CEST-MRF maps in a digital brain phantom using a random
schedule for varying levels of added white gaussian noise. Changes in SNR non-linearly affected the NRMSE of the different parameters
illustrating the sensitivity of the sequence and schedule to each tissue parameter. (B) Attribution score calculated using Integrated
Gradients36,37 for sample WM and GM fingerprints. Note that the first and last point in the acquisition schedule had the greatest impact on
the output

and error of 18.6%. The regression was statistically signif-
icant with R2 = 0.704 and F(16 384,16 377) = 6479. The
fitted regression model coefficients for ksw and fs are
shown in Supporting Information Table S3. The effect of
the MT parameters was an order of magnitude smaller
than that of other factors illustrating the independence of
the CEST parameters. Although not trained for recursive
reconstruction, the DRONE reconstruction was neverthe-
less self-consistent with the error for repeated iterations
converging to ∼0%, unlike DM, which converged to ∼12%
error (Supporting Information Figure S4).

3.3 Healthy human volunteer

The quantitative CEST-MRF tissue parameter maps for
the healthy human subject are shown in Figure 4A. The
mean and SD of the GM and WM values for each tissue
parameter are listed in Table 1 along with the reference
water T1 and T2 values obtained with the conventional
MRF sequence which are shown in Figure 4B. The mean
B0 value across the slice was approximately 4 Hz but var-
ied significantly (approximately Δ0.5 ppm range) near the
frontal sinuses and temporal regions, as expected. The tis-
sue parameter changes for varying B0 values are shown in
Figure 5A–F. All parameters were essentially uncorrelated
with B0 (R2

< 0.08) except for T2w which was only poorly
correlated (R2 = 0.33). This is also evident in the tissue
maps of Figure 4 where the susceptibility differences near
the sinuses and the EPI readout used gave rise to geometri-
cal distortions apparent in that region but little variations
in the CEST-MRF parameters. The dictionary fitted data
(Supporting Information Figure S5) yielded tissue maps
that were heavily discretized (due to the fixed increment
used) and noisier compared to the DRONE output.

3.3.1 In vivo reproducibility

The mean tissue parameter values for each of the four
repeated scans are shown for GM and WM in Figure 6
and the corresponding CCC values are tabulated in
Table 1. The repeated scans showed strong reproducibil-
ity (CCC>0.93) for all parameters despite uncorrected
registration errors induced by patient motion between
scans.

3.3.2 Comparison with conventional CEST

The synthesized CEST curves for representative GM and
WM points are shown overlaid on the measured CEST
curves in Figure 7A,B. There was overall good agree-
ment between the measured and synthesized curves with
a Pearson correlation of 0.98 for both GM and WM. Dif-
ferences in the curves in the negative offset regions were
due to nuclear Overhauser (NOE) effects that were not
included in the CEST-MRF model. The RMSE of the mea-
sured and synthetic curve (ZMeasured-ZSynthetic), calculated
for the positive offsets (excluding the unaccounted NOE
effects) was 0.023 for WM and 0.045 for GM. The mea-
sured and synthetic Z-spectra are shown in Figure 7C–F
for WM and GM with the difference curves showing
a notable increase in the amide +3.5 ppm resonance
offset.

3.4 Patients with brain metastases

The CEST-MRF parameter maps for a representative
patient are shown in Figure 8A along with the T1-weighted
(pre-, post-Gd), FLAIR, diffusion, and perfusion scans
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F I G U R E 4 (A) Reconstructed
tissue parameter maps obtained from a
healthy volunteer with the CEST-MRF
method. Note the elevated semi-solid
volume fraction in the WM reflective of
the higher myelin content. (B)
Reference T1 and T2 maps obtained
with the optimized MRF-EPI sequence

from the standard brain protocol for comparison.
The correspondence between the measured fingerprints in
the different ROIs and those synthesized from the DRONE
reconstructed tissue parameters are shown in Figure 8B.
Box and whiskers plots of the CEST-MRF tissue map val-
ues for each ROI in the same patient are shown in Figure
8C. The differences between the parameter values in the
different ROIs for all tissue parameters were statistically
significant (P = 0.05) except as shown in Figure 8D. A box
and whiskers plot for all patients is shown in Figure 9.
There were notable trends in the parameter maps. The
T1w and T2w in the tumor were both elevated in compari-
son to the contra-lateral tissue, particularly in the necrotic
region. The amide exchange rate in the necrotic region
was lower which is suggestive of a lower pH environ-
ment. The amide volume fraction was also reduced in the
necrotic and edema regions.

4 DISCUSSION

4.1 Effect of schedule on quantitative
parameters

The CEST-MRF signal depends on multiple acquisition
parameters including the shape of the saturation pulses,
duration and frequency, the excitation FA, saturation
power, and others. The dependence on multiple param-
eters can be beneficial in improving the discrimination
between signals from different tissues. The semi-solid pool
can particularly benefit from inclusion of additional res-
onance frequency offsets in the schedule given the very
broad linewidth of the MT pool which would improve
kssw discrimination. For simplicity, in this work only the
saturation power was varied using a random schedule
that is unlikely to be optimal. The numerical phantom
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T A B L E 1 Estimated CEST-MRF parameter values and CCC for GM and WM in a healthy volunteer

This study Conventional MRF Literature

Mean± SD 95% CI CCC 95% CI Mean± SD Mean± SD Reference

T1w (ms) WM 864± 166 [847, 881] 0.9717 [0.9713, 0.972] 821± 35 956±217a Bojorquez et al.43

GM 1403± 203 [1383, 1423] 0.98399 [0.98378, 0.984] 1527± 429 1482±150a

T2w (ms) WM 74.0± 5.31 [73.4, 74.5] 0.99501 [0.99494, 0.9951] 77.8± 7.20 75±3b Lu et al.44

GM 80.6± 8.69 [79.8, 81.5] 0.99403 [0.99394, 0.99411] 91.7± 28.1 83±4b

ksw (Hz) WM 48.4± 5.09 [47.9, 48.9] 0.99214 [0.99203, 0.9923] 42.3± 2.9 Perlman et al.42

GM 50.0± 3.84 [49.6, 50.4] 0.99168 [0.99157, 0.99179] 34.6± 9.5

kssw (Hz) WM 23.6± 5.92 [23.0, 24.2] 0.9645 [0.96397, 0.96502] 23± 4 Stansiz et al.45

GM 14.3± 4.66 [13.8, 14.7] 0.96127 [0.96069, 0.96183] 40.0± 1

fs (%) WM 0.504± 0.098 [0.491, 0.513] 0.96436 [0.96386, 0.96486] 0.31± 0.02 Perlman et al.42

GM 0.601± 0.057 [0.595, 0.607] 0.98506 [0.98484, 0.98528] 0.32± 0.07

fss (%) WM 9.83± 0.943 [9.74, 9.93] 0.98786 [0.98768, 0.98804] 8.9± 0.3 Stansiz et al.45

GM 6.19± 1.78 [6.01, 6.36] 0.93658 [0.93572, 0.93744] 4.4± 0.4
a Mean of all reported values.
b Mean of reported occipital and frontal GM.

F I G U R E 5 Variation in the tissue parameter maps as a function of the B0 inhomogeneity. Shown are the water relaxation parameters:
T1w (A) and T2w (B); amide parameters: ksw (C) and fs (E ); and semi-solid parameters: kssw (D) and fss (F). Note the poor correlation
between the B0 values and the different parameters illustrative of the robustness of the sequence to B0 variations

results (Figure 3) exemplify this since increasing the SNR
reduced the NRMSE for all tissue parameters, as expected,
but the rate of improvement varied by parameter. This
reflects the intrinsic sensitivity of the sequence to each

parameter which can be optimized by modifying the acqui-
sition schedule. Indeed, work by our group and others has
shown that simultaneously varying multiple acquisition
parameters and optimizing the acquisition schedule can
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F I G U R E 6 In vivo GM and WM tissue parameter values for the four CEST-MRF scans in the healthy volunteer. Scans 1 and 2 were
acquired in the first session and scans 3 and 4 in the second session. Blue entries correspond to the left y-axis and red entries to the right
y-axis with error bars omitted for clarity. (A) T1w and T2w. (B) ksw and kssw. (C) fs and fss. The locations of the WM and GM regions used are
shown inset in (A). Note the good repeatability between scans. The concordance correlation coefficient for each parameter and tissue type is
listed in Table 1

markedly improve tissue discrimination, reduce the sen-
sitivity to noise and shorten the total scan time.25,35,46–48

However, the optimization of CEST-MRF schedules is
challenging because of the large number of parame-
ters (high dimensionality) of the optimization problem.
To overcome this difficulty, we have previously intro-
duced a deep learning schedule optimization approach for
CEST-MRF optimization and demonstrated it on a preclin-
ical scanner.24,49 This method can be readily adapted for
the clinical CEST-MRF sequence described in this work
and is expected to significantly improve the sensitivity to
noise and the accuracy of the tissue map quantification.
Future work will explore this idea.

4.2 Neural network reconstruction
of high dimensional signals

While the original DRONE was only applied for T1 and
T2 mapping,26 the method is capable of simultaneous

estimation of a much larger set of parameters.28–30,42 Nev-
ertheless, there are important challenges associated with
reconstruction of high dimensional signals. First, for the
network to correctly estimate the underlying tissue param-
eters, the training set must adequately cover the parameter
space. Unfortunately, due to the “curse of dimensionality,”
this requires large training datasets and consequently long
processing time. To overcome this problem, we used a reg-
ular sampling of the parameter space and implemented
the training dataset generation on a graphics processing
unit to parallelize the processing. This enabled the use of a
small (60 000 entries) seven-dimensional dictionary com-
prising of the six tissue parameters and the instrumental
parameter B1. Although the B1 was included in the train-
ing dictionary, to avoid the risk of the network converging
to spurious solutions given the high dimensionality of
the problem, B1 was excluded from the network output
and the training error calculation. The network training
therefore minimized errors in the tissue parameters alone
while still accounting for the inevitable B1 variations in
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F I G U R E 7 Comparison between a measured CEST spectrum and one synthesized from the CEST-MRF parameters for WM (A) and
GM (B). Nuclear Overhauser effects, not included in the CEST-MRF model, led to the discrepancy between the curves in the negative offsets’
region. The measured and synthetic curves were nevertheless highly correlated (r = 0.98) with an RMSE of 0.023 for WM and 0.045 for GM. A
comparison between the measured CEST spectrum and one synthesized from the MT and water parameters alone is shown for WM (C) and
GM (D). A comparison between a synthetic CEST spectrum and one including only MT and water parameters is shown for in (E) for WM and
in (D) for GM
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F I G U R E 8 (A) In vivo CEST-MRF maps from a patient with brain metastasis and the corresponding images from a standard clinical
protocol for comparison. Green arrows indicate the location of the lesion. The segmented tumor regions are denoted by the colored outlines
on the T1w map and include the edema (black), solid core (blue), necrotic core (red), and contra-lateral (green) regions. The T1-pre and
T1-post denote the T1-weighted acquisition before and after contrast injection whereas Ktrans and Vp refer to the perfusion and plasma
volume maps. The marked differences in the tissue map values between the lesion and healthy tissues are notable. (B) Measured and
synthetic fingerprints for different tumor regions. The synthesized fingerprints were calculated from the DRONE reconstructed tissue
parameters. Note the agreement between the curves. (C) Box and whiskers plots of the reconstructed tissue maps values for the different
ROIs. The distribution of the parameter values along with the median and the first and third quartile ranges are shown. (D) Graphical
illustration of the statistical significance of the differences between the various tumor ROI pairs. All regions denoted in green were
statistically significantly (P = 0.05) as determined by a multi-comparison analysis of variance test with Tukey honest significant difference

vivo. Since T1 estimation is biased by B1, the inclusion
of B1 mitigates the T1 underestimation described in prior
CEST-MRF studies.15 Although B0 was not included in the
network training, there was only poor correlation between
the B0 values and the tissue parameters and little variation
in the tissue parameter values across the measured slice
(Figure 4), despite significant susceptibility differences
near the sinuses. This illustrates the intrinsic robustness
to B0 inhomogeneity of the CEST-MRF pulse sequence
combined with the DRONE reconstruction. The insensi-
tivity of the CEST-MRF method to B0 shifts results from
the use of a fixed saturation frequency offset and the nor-
malization of the trajectory by the trajectory norm. If the
saturation pulse is spectrally localized within the relatively
broad amide proton resonance, shifts in the irradiation
position caused by B0 field inhomogeneity will only result
in a different scaling of the signal trajectory for a given
voxel, which will be normalized out when taking the norm
of the trajectory. However, more severe B0 inhomogeneity
that may be encountered in future 3D whole brain studies
may need to be addressed by including B0 in the training
dictionary as was done for B1.

4.3 In vivo studies

There was generally good agreement between the tissue
parameter values obtained with the CEST-MRF sequence
and alternative methods. While there is a wide range of
reported values in the literature, the mean WM and GM
T1w/T2w measured in this study (Table 1) agreed with both
the reference conventional MRF values as well as literature
values from multiple studies using a variety of different
quantification techniques.43 Optimizing the schedule to
improve the T1 discrimination (by additionally varying FA
and TR, for instance) and refining the network’s B1 esti-
mation may address this issue but further study is needed
to confirm this. The mean amide exchange rates measured
in this study (WM/GM = 48.4± 5.09/50.0± 3.84 Hz) were
similar to that measured in vivo with CEST-MRF in pre-
clinical15,42 and clinical23 models and with spectroscopic
methods.19 Slight differences were observed between the
WM/GM parameters measured in this study and those
of Perlman et al.42 These may be due to the two-step
acquisition they used where an initial MT-tailored sched-
ule isolated the MT parameters that were then used to
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F I G U R E 9 Box and whiskers plots for CEST-MRF-derived T1, T2, ksw, kssw, fs, and fss as well as conventional sequence values from
T1 post Gd contrast, ADC, and FLAIR images. Patient #1: 61-y-old male, non-small cell lung cancer adenocarcinoma, Patient #2: 65-y-old
female, melanoma, Patient #3: 48-y-old female non-small cell lung cancer adenocarcinoma/small cell, Patient #4: 40-y-old male, melanoma
(L: left side with two tumors and surrounding region. R: right side with two tumors and surrounding regions)

obtain the CEST parameters. In our method, a single
acquisition is performed to obtain all parameters. Fur-
ther study would be required to compare both approaches.
Some studies have found higher amide exchange rates
in healthy subjects in vivo (WM/GM = ∼162/∼365 Hz).13

Given that pH is similar in WM and GM in the healthy
brain50 and since the amide proton pool is from mobile
proteins whose chemical environment is water, WM and
GM should also have the same amide base catalyzed
exchange rate constant. The stark differences between
WM/GM were explained by the authors as arising from
the spread of in vivo amide exchange rates13 although a
lack of discrimination in the acquisition schedule or lim-
its in the nonlinear fitting used may have contributed as

well. There was a clear delineation between GM and WM
in the fss map which is expected given the high WM myelin
content and the sensitivity of the semi-solid volume frac-
tion to lipid content. In general, validating the CEST-MRF
parameters is difficult because no gold-standard exists for
all parameters. As an alternative, a CEST spectrum syn-
thesized from the CEST-MRF parameters was compared
to a measured CEST spectrum in vivo. The agreement
between the two spectra (r= 0.98) is indicative of the accu-
racy of the reconstructed CEST-MRF maps though there
were some differences between the measured and syn-
thetic spectra in the negative offset region of the spectrum.
This is understandable given that NOE effects, arising
from aliphatic protons with chemical shifts between −2
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and−5 ppm, were not included in the CEST-MRF model
but are present in the experimentally measured CEST
spectrum. The test–retest experiments (Figure 6, Table 1)
demonstrate the strong reproducibility of the CEST-MRF
tissue maps, despite potential uncorrected subject motion.
Further work is necessary to confirm the reproducibil-
ity, which is a critical feature for longitudinal studies
or treatment response monitoring applications for this
technology.

4.4 Brain tumor studies

The significantly different values between the drawn
tumor ROIs (Figure 8C, Figure 9) can improve tumor
segmentation and may provide more specific tumor
characterization. While previous studies51,52 have shown
hyper-intense CEST signals in tumors, which seemingly
differ from the ksw and fs values obtained in this study, this
discrepancy can be attributed to multiple confounding fac-
tors present in conventional CEST, as described in a recent
review.53 Specifically, in many tumors, changes to the tis-
sue parameters occur simultaneously hyperintense CEST
signals can be caused by the changing tumor water relax-
ation which are typically unaccounted for.54 Correcting for
this effect can eliminate the hyperintensity.55 In contrast,
the combination of the CEST-MRF maps allows separa-
tion of different contributors to the signal thus improving
tumor characterization. Tumors can also exhibit hyper-
or hypo-intense CEST signals depending on the presence
of hemorrhage, large vessels, or liquefactive or coagula-
tive necrosis56 so histopathology is needed for a definitive
determination. It should be noted that the lesion shown
in Figure 8 is one that was previously irradiated which
is sure to affect the CEST-MRF maps. This is also evi-
dent in the perfusion (Ktrans, vp) maps (Figure 8A) which
are suggestive of a treated tumor. This may explain the
similarity between the edema and solid core regions on
the kssw and fss maps although partial volume effects
due to an imperfect segmentation between these neighbor-
ing regions could have contributed as well. Some features
in the CEST-MRF maps, like the reduced amide volume
fraction (fs) in the necrotic and edema regions, can be
understood as resulting from disrupted protein synthesis
in necrotic cells and diluted protein concentrations due
to edema. Similarly, the decreased amide exchange rate
in the necrotic core is consistent with a decreased pH
as expected for apoptotic and necrotic tumor regions.57–59

Finally, the reduced semi-solid volume fraction (fss) in
the lesion can be a result of demyelination in that region
or post-treatment effects. At present, the biological effects
of radiation on the CEST-MRF tissue maps are not
well understood and represent an additional confounding

factor. Furthermore, as demonstrated by the results from
multiple patients (Figure 9), brain metastases arising
from different primary tumor histologies showed varying
parameter values. Because of the intrinsic biological vari-
ability in tumors, prospective large-scale studies will be
required to draw meaningful conclusions about relation-
ships between the CEST-MRF maps and the associated
tumor characteristics.

4.5 Limitations and future work

In the current version of the acquisition sequence, cov-
erage is limited to a single slice which may be inade-
quate for tumors with large spatial extent. Incorporat-
ing simultaneous multi-slice and/or slice interleaving can
resolve this issue without increasing acquisition time,
as recently demonstrated.60 Indeed, an optimized order-
ing of the slice interleaving can also improve tissue dis-
crimination as previously shown.61 The availability of a
rapid and non-invasive method for imaging endogenous
amide exchange rates and pH makes possible many dif-
ferent studies. One example is the imaging of the tumor’s
response to oncolytic virotherapy, as recently demon-
strated in a preclinical model.42 Such studies will facili-
tate development of personalized therapies and can help
improve treatment outcomes.

5 CONCLUSION

This is the first study to demonstrate the feasibility and
utility of CEST-MRF in clinical cancer imaging using
a combination of fast EPI acquisition and deep learn-
ing parameter quantification. The proposed CEST-MRF
presented good reproducibility and quantitative results
that are consistent with conventional qualitative MRI.
CEST-MRF can be particularly beneficial in complex
pathologies such as brain tumors.
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Supporting Information Table S1: Tissue parameter
values of the digital phantom used
Supporting Information Table S2: Tissue parameter
ranges used in the training dataset and dictionary gen-
eration. Dictionary parameters bounds are formatted as
lower:interval:upper
Supporting Information Figure S1: DM reconstruc-
tion of 6 parameters in a digital phantom in comparison
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to the reference values. The ranges used to gener-
ate the 4 million dictionary entries are shown in
Table S2. Regions associated with the background, skull
and scalp were set to zero. The error, calculated as
100× |Reference – DM|/Reference, is shown for each tis-
sue. The DM reconstruction resulted in a larger error due
to the relatively sparse coverage of the tissue parameter
space provided by the dictionary
Supporting Information Figure S2: Synthesized Z spec-
tra generated from the CEST-MRF tissue parameters for
a baseline set of values and 2× and 0.5× multiples of the
parameters. The differences between the baseline and the
other spectra are shown by the dashed curves along with
the corresponding Pearson correlation and RMSE. (A-B)
WM and GM spectra for the CEST (i.e. ksw, fs) parame-
ters. (C-D) WM and GM spectra for the MT (i.e. kssw, fss)
parameters
Supporting Information Figure S3: (A) Compari-
son between the measured and DRONE synthesized
CEST-MRF fingerprints for a WM voxel. (B) Compari-
son between the measured and synthesized fingerprints
for a GM voxel. (C-F) Synthesized CEST-MRF fingerprints
for a baseline set of values and 2× and 0.5× multiples
of the CEST or MT parameters for WM or GM. The dif-
ferences between the baseline and the other spectra are
shown by the dashed curves along with the correspond-
ing Pearson correlation and RMSE. Each of the synthetic
fingerprints were generated for a change of one parame-
ter at a time with all others held constant. The measured
fingerprints include changes in all parameters simultane-
ously and may include contributions from partial volume,
slice profile effects, flow/motion, receiver sensitivity etc.
not modeled here. Note that because it is trained on syn-
thetic fingerprints, the DRONE network is nevertheless
able to ‘see-through’ these confounding factors to yield the
correct maps
Supporting Information Table S3: Regression model
coefficients used to measure the impact of the other tissue

parameters on the CEST parameters ksw and fs. Note that
for both ksw and fs the effect of the MT parameters (kssw,
fss) is an order of magnitude smaller than that of other fac-
tors illustrating the independence of the CEST parameters
from MT
Supporting Information Figure S4: The mean absolute
error in each tissue parameter for repeated applications
of the DRONE reconstruction in comparison to repeated
applications of DM. An initial set of tissue parameters
reconstructed from a healthy subject was used to syn-
thesize a numerical phantom and simulate a CEST-MRF
acquisition. The synthetic fingerprints were reconstructed
with DM or the DRONE network and the process repeated
40 times (index starts at 0) to test the self-consistency of
each method. For sufficiently large iterations, the error in
all parameters converged to ∼0% for the DRONE network
but not for DM. The DRONE network’s initial reconstruc-
tion error was also notably smaller for all parameters
Supporting Information Figure S5: (A) Dictionary
matched reconstruction of the in vivo healthy subject
data. The ranges used to generate the 4 million dictio-
nary entries are shown in Table S2. While large, the dic-
tionary size used (4 million entries), is insufficient to
cover the 7-dimensional space of tissue parameters lead-
ing to the heavily discretized and noisy appearance of
the maps, unlike the equivalent DRONE reconstruction
shown in Figure 4. (B) Dictionary reconstruction of the
tumor patient, showing similarly discretized and noisy
appearance

How to cite this article: Cohen O, Yu VY,
Tringale KR, et al. CEST MR fingerprinting
(CEST-MRF) for brain tumor quantification using
EPI readout and deep learning reconstruction.
Magn Reson Med. 2023;89:233-249. doi:
10.1002/mrm.29448


	CEST MR fingerprinting (CEST-MRF) for brain tumor quantification using EPI readout and deep learning reconstruction 
	1 INTRODUCTION
	2 METHODS
	2.1 Pulse sequence
	2.1.1 MRF acquisition schedule

	2.2 Deep learning-based tissue parameter quantification
	2.2.1 Training dataset generation

	2.3 Numerical simulations
	Sensitivity to parameter values
	DRONE analysis
	2.4 In vivo studies
	2.4.1 Healthy volunteer subject
	Sensitivity to B0 inhomogeneity
	In vivo reproducibility
	Comparison with conventional MRF derived T1 and T2 maps
	Comparison with conventional CEST imaging
	Comparison with dictionary fitting
	2.4.2 Patients with brain metastases


	3 RESULTS
	3.1 Computation time
	3.2 Numerical simulations
	3.3 Healthy human volunteer
	3.3.1 In vivo reproducibility
	3.3.2 Comparison with conventional CEST

	3.4 Patients with brain metastases

	4 DISCUSSION
	4.1 Effect of schedule on quantitative parameters
	4.2 Neural network reconstruction of high dimensional signals
	4.3 In vivo studies
	4.4 Brain tumor studies
	4.5 Limitations and future work

	5 CONCLUSION

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	Supporting Information

