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Abstract

Background

Cardiac dysrhythmias (CD) affect millions of Americans in the United States (US), and are

associated with considerable morbidity and mortality. New strategies to combat this growing

problem are urgently needed.

Objectives

Predicting CD using electronic health record (EHR) data would allow for earlier diagnosis

and treatment of the condition, thus improving overall cardiovascular outcomes. The Guide-

line Advantage (TGA) is an American Heart Association ambulatory quality clinical data reg-

istry of EHR data representing 70 clinics distributed throughout the US, and has been used

to monitor outpatient prevention and disease management outcome measures across pop-

ulations and for longitudinal research on the impact of preventative care.

Methods

For this study, we represented all time-series cardiovascular health (CVH) measures and

the corresponding data collection time points for each patient by numerical embedding vec-

tors. We then employed a deep learning technique–long-short term memory (LSTM)

model–to predict CD from the vector of time-series CVH measures by 5-fold cross validation

and compared the performance of this model to the results of deep neural networks, logistic

regression, random forest, and Naïve Bayes models.

Results

We demonstrated that the LSTM model outperformed other traditional machine learning

models and achieved the best prediction performance as measured by the average area

under the receiver operator curve (AUROC): 0.76 for LSTM, 0.71 for deep neural networks,
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0.66 for logistic regression, 0.67 for random forest, and 0.59 for Naïve Bayes. The most

influential feature from the LSTM model were blood pressure.

Conclusions

These findings may be used to prevent CD in the outpatient setting by encouraging appro-

priate surveillance and management of CVH.

Introduction

Cardiac dysrhythmia (CD) is a problem in which the heart has an irregular rhythm [1]. It

affects millions of Americans in the United States (US) and approximately 25% of Americans

older than 40 years develop a CD [2]. Six million people die annually due to sudden cardiac

death caused by ventricular tachyarrhythmias (one type of CD) globally [3]. Risk factors which

increase the chance of developing a CD include high blood pressure, diabetes and obesity. CD

can be managed in the outpatient setting with medications or behavior change (i.e., diet or

physical activity) or in the inpatient setting with cardiac procedures such as an ablation or car-

dioversion which can restore the rhythm back to normal. If diagnosed and managed appropri-

ately, it can effectively reduce the risk of future blood clots (thrombus formation), heart failure

and stroke (thromboembolic events) [4].

Electronic health records (EHR) contain longitudinal healthcare information of patients,

including diagnoses, procedures, medications, lab tests and imaging data [5], which could be

used for discovering the relationships and predicting patterns from data. For example, a study

reported that CD was negatively associated with type II diabetes [6]. Atrial fibrillation (AF) is

the most common CD, impacting over 6 million Americans, and multiple factors including

clinical, genetic and environmental factors were found to have associations with AF [7–9]. For

example, a risk model using data from outpatient clinics (Vanderbilt University Medical Cen-

ter) predicted AF with demographic information, blood pressure, and smoking status [10]. In

this analysis, traditional machine learning algorithms such as Naïve Bayes (NB), support vector

machines (SVM) and random forest (RF) [11] along with newly developed algorithms [12]

were applied to identify AF using EHR data. In the case of ventricular arrhythmias, informa-

tive clinical variables such as blood pressure, treadmill exercise time, and body mass index

(BMI) predicted among hypertrophic cardiomyopathy patients using some traditional

machine learning algorithms, including RF and logistic regression (LR) [13].

Recently, deep learning algorithms have grown in popularity for data-driven prediction

models. Such models can effectively learn from experience by capturing features and depen-

dencies in longitudinal data and have achieved great success in bioinformatics and healthcare

fields [14–17]. For example, scalable deep learning methods were developed to accurately pre-

dict medical events from two academic medical centers’ EHR data and achieved high accuracy

in prediction tasks [18]. In this paper, we applied a long-short term memory (LSTM) model

[19] on time-series EHR data to explore the contribution of modifiable cardiovascular risk fac-

tors to the development of CD in the outpatient setting. Central to our analysis was the charac-

terization of cardiovascular health (CVH) and CD outcomes using EHR data from clinics

across the US. We evaluated the association between time-series CVH and CD diagnoses, and

hypothesized that CD could be predicted using data commonly recorded in the EHR. To our

best knowledge, it is also the first time that deep learning algorithms have been applied to pre-

dict CD using time-series EHR data.
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Methods

Ethics statement

All the data were fully anonymized before we accessed them. Our study was approved by the

Institutional Review Board at the Washington University School of Medicine in St. Louis. We

obtained a written acknowledgement of proprietary rights and non-disclosure and data use

agreement from the American Heart Association (The Washington University_NDA_DUA_-

CONTRACTID 158065_2019.04.26_K).

Established in 2011, The Guideline Advantage (TGA) was a clinical data registry jointly

operated by the American Cancer Society, the American Diabetes Association, and the Ameri-

can Heart Association [20]. The program collects EHR data to track and monitor outpatient

prevention and disease management. Briefly, the data collected through TGA from over 70

clinics provide a unique platform for longitudinal research on the impact of preventative care.

The program’s research strategy is focused on identifying patient-, provider-, and practice-

level factors associated with guideline adherence and assessing the effectiveness of quality

improvement interventions in increasing guideline adherence. Here we used TGA data to pre-

dict the diagnosis of CD among 362,533 unique patients in the data set.

Our data set represented patients seen in the outpatient setting over a 10-year period (2007

to 2016). We defined our study outcome by classifying 19,597 unique ICD-9 and ICD-10

codes to a smaller number of clinically meaningful categories using Clinical Classifications

Software (CCS) [21]. After the codes were converted to the appropriate CCS category, we iden-

tified 34,511 patients with a diagnosis of CD (single level CCS code = 106). Among them, the

majority (55%) were female patients, and 66% of patients were white. If a patient had multiple

CD diagnoses in the data set, only the earliest one was considered.

Next, we extracted all measurements of CVH prior to the diagnosis of CD. We utilized mea-

sures of CVH as follows: smoking status, body mass index (BMI), blood pressure, hemoglobin

A1c, and cholesterol, which were defined and classified by the AHA into three categories:

ideal, intermediate, or poor according to Table 1. To classify patients as intermediate health or

treated-to-goal for selected CVH submetrics (Table 1), we converted the drug names to their

drug classes by comparing the drug names in our dataset with the Multum drug database [22].

One string match technique–Levenshtein distance algorithm [23]–was applied and we consid-

ered the distance between the two matched strings as less than five to be matched and included

these in subsequent analyses.

Table 1. Measures of CVH which are available in the EHR (adapted from: Lloyd-Jones, 2011) [24].

Poor Health Intermediate Health Ideal Health

Health Behaviors

Smoking status Yes Former� 12 months Never or quit > 12

months

Body mass index � 30 kg/m2 25–29.9 kg/m2 < 25 kg/m2

Health Factors

Total cholesterol � 240 mg/dL 200–239 mg/dL or treated to goal < 200 mg/dL

Blood pressure Systolic� 140 mm Hg or Diastolic� 90 mm

Hg

Systolic 120–139 mm Hg or Diastolic 80–89 mm Hg or treated to

goal

Systolic < 120 mm Hg

Diastolic < 80 mm Hg

Fasting plasma

glucose

� 126 mg/dL 100–125 mg/dL or treated to goal < 100 mg/dL

https://doi.org/10.1371/journal.pone.0239007.t001
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We studied patients with CD who had four or more outpatient CVH measures in the data

set (n = 5,271). Using the same criteria, we randomly selected 5,784 patients from the dataset

who did not have a diagnosis of CD. In sensitivity analyses, we tested the robustness of our

strategy by changing the number of outpatient CVH measures from zero to three, respectively.

Ultimately, our data set comprised 11,055 patients who had four or more encounters over the

10-year study period.

Statistical analysis

To prepare the CVH measures for analysis, we combined the submetric with its classification

according to Table 1. For example, if a patient had a measurement of “ideal” cholesterol, then

we combined the submetric and its value as cholesterolideal. The resulting features were

mapped to a 32-dimensional vector by word embeddings [25] in our model. The Genism

Word2Vec model was configured the hyperparameters as following: size (embedding dimen-

sion) as 32, window (the maximum distance between a target word and all words around it) as

5, min_count (the minimum number of words counted when training the model) as 1, sg (the

training algorithm) as CBOW (The continues bag of words). The input of Word2Vec model

was all above combined measurements of all 11,055 patients. We also added time information

for all measurements as time steps. Each feature was associated with a time point which was

calculated by the difference in days between the corresponding visit time and the latest mea-

surement time. For example, if the most recent visit date was February 11, 2019, and measure-

ment was conducted on January 11, 2019, then the time point value is: 31. Thus, each

individual patient had its own vector to represent their measurements of CVH.

The embedded vectors of patients were the inputs for our long short-term memory (LSTM)

model. We applied an LSTM algorithm to investigate the association between time-series

CVH measurements and the outcome of CD. We also investigated other machine learning and

deep learning algorithms such as DNN [26], LR [27], RF [28] and NB [29] to study the same

association between CVH and CD. All of the CVH measurements for each patient were sorted

in chronological order. We padded the patients with virtual events as the same length (311) in

the form of [01, . . . 0k, event_1, event_(311-k)] if they had less events than the maximum num-

ber of measures (311), where k was the difference of 311 and number of records that patients

had.

To investigate the effects by continuous vectors obtained from Word2Vec algorithm, we

conducted the same predictions by using categorical variables. These categorical variables

were sorted in a time order, and each categorical event concatenated with the same time points

(e.g., difference in days between the corresponding visit time and the latest measurement

time) were the inputs of the models of LSTM, DNN, RF, LR, and NB. We did the same pad-

ding approach as above for patients had less events than 311.

For each model of predictions, we utilized 5-fold cross validation by dividing dataset into 5

folds with each fold serving as a testing dataset and the remaining 4 folds as a training dataset.

Criteria of the area under the receiver operator curve (AUROC) and other metrics, i.e., accu-

racy, sensitivity, precision, f1 score, and specificity were calculated to evaluate the performance

of the models.

LSTM unit

A common LSTM unit is composed of a cell and three gates: input gate, output gate and forget

gate. The cell remembers information at each time step and these gates control the flow of

information pass on to and forget/discard to the next time step [30]. We illustrated the basic

structure of an LSTM unit as in Fig 1.

PLOS ONE Predict cardiac dysrhythmias by deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0239007 September 13, 2021 4 / 13

https://doi.org/10.1371/journal.pone.0239007


Mathematically, the equations for forward pass to update an LSTM unit with a forget gate

at a time t are:

Forget gate f t ¼ sðW fht� 1 þ U fXt þ bf Þ

Input gate it ¼ sðW iht� 1 þ U iXt þ biÞ

Ct ¼ f t � Ct� 1 þ it � ðtanh ðWcht� 1 þ U cXt þ bCÞ

Output gate ot ¼ sðWoht� 1 þ UoXt þ boÞ

ht ¼ sðot � tanhðCtÞÞ

Where � denotes the element-wise product and Xt is the input vector (i.e., embedding vec-

tor in our case) at time t. The weight matrices Wf, Wi, Wc, Wo for hidden state ht, Uf, Ui, Uc, Uo

matrices for input Xt, and bias vector parameters bf, bi, bc, bo are learned during the training

stage and ht is the hidden layer output vector. Activation function σ is the sigmoid function

and tanh is the hyperbolic tangent function.

Our LSTM model comprised an input layer, one hidden layer (100 dimensions) and a scalar

output layer. A binary cross-entropy loss function was employed as the output layer and a sig-

moid function was used as the activation function for the hidden layer. Adam optimizer [31]

was used to optimize the model with a mini-batch size of 64 samples. The DNN was comprised

of an input layer, 5 hidden layer (with 256, 256, 128, 64 and 32 dimensions respectively). and a

scalar output layer. We used the Sigmoid function [32] at the output layer and ReLu function

at each hidden layer. Binary cross-entropy was used as loss function and Adam optimizer was

used to optimize the models with a mini-batch size of 64 samples. The LR, RF and NB models

were configured by default options in the package of Scikit-learn in Python 3.

We then investigated which features were the most important in CD prediction. To obtain

this goal, we iterated the model 15 times by setting constant value for one feature each time.

For each feature, we first manually set it as a constant (not informative for the predictive mod-

els), then tested the prediction performance of trained models using the manually changed fea-

tures to evaluate the discriminative importance of the given feature. The resulting

performance then was compared its prediction accuracy and AUROC with the full model. If

there was a large change between these two values, it indicated that this feature was important

Fig 1. Graph illustration of LSTM unit.

https://doi.org/10.1371/journal.pone.0239007.g001
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and discriminative to the prediction. Analyses were conducted by using the libraries of Scikit-

learn, Scipy, Matplotlib with Python, version 3.6.5 in 2019.

Results

Our study population was 58% female and 53% white (Table 2). Approximately 58% of

women had been diagnosed with CD and around 60% of CD patients were white. Since

patients had multiple encounters, there were multiple measures of CVH. The average number

of measures for each patient was 24 and the median was 17.

Fig 2 displays all the measures and results of two patient examples in which one was diag-

nosed as CD and the other was not.

Table 3 lists the numbers of ideal, intermediate and poor measurements for each submetric.

As seen in Table 3, patients without CD (39%) had a higher prevalence of ideal BMI compared

to those with CD diagnoses (23%), and ideal blood pressure measurements followed the same

pattern.

Word embeddings produced a vector representation of words which were the features of

patients. Fig 3 shows the embeddings visualization of all of the features projected to the first

two components in the t-Distributed Stochastic Neighbor Embedding analysis (tSNE) [33].

Table 2. Characteristics [mean, (SD) or n (%)] of the study population.

Gender [n (%)]

Female 6379 (57.7)

Male 4673 (42.3)

Other/Unknown 3 (0.0)

Gender with CD

Female 3054 (57.9)

Male 2216 (42.0)

Other/Unknown 1 (0.0)

Race

White 5876 (53.2)

Non-white 5188 (46.9)

Unknown 21 (0.2)

Race with CD

White 3144 (59.6)

Non-white 2129 (40.3)

Unknown 14 (0.0)

BMI (kg/m2) 29.6 (9.3)

Systolic blood pressure (SBP, mmHg) 124.6 (19.4)

Diastolic blood pressure (DBP, mmHg) 74.4 (14.9)

Hemoglobin A1c (%) 7.11 (1.79)

Total cholesterol (mg/dL) 105.2 (35.9)

Current smoking 2453 (22.2)

Number of measures

Total measures 269475

Maximum measures per patient 311

Minimum measures per patient 5

Average measures per patient 24

Median measures per patient 17

Cardiac dysrhythmias (CD) 5271 (47.7)

https://doi.org/10.1371/journal.pone.0239007.t002
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TSNE is a machine learning technique for visualization by embedding high-dimensional data

into a low-dimensional space (here is 2-dimensional space). The features closest to one another

in the visualization can be thought of as being more highly correlated with one another.

The LSTM model outperformed other machine learning models in the two cases: inputs

with vectors from Word2Vec and inputs with categorical variables (i.e., without Word2Vec).

Fig 2. Examples of CVH time series data. (A) Patient was diagnosed with CD; (B) Patient not diagnosed with CD.

https://doi.org/10.1371/journal.pone.0239007.g002

Table 3. Characteristics [mean, (SD) or n (%)] of the converted dataset.

CD = Yes ideal intermediate poor

Total unique patients 5271

Total rows 128160 59315 31743 37102

Total A1C tests 6947 1073 (15.4) 2398 (34.5) 3476 (50.0)

Total LDL tests 11732 9310 (79.4) 1617 (13.8) 805 (6.9)

Total BMI tests 24532 5509 (22.5) 6870 (28.0) 12153 (49.5)

Total BP tests 48118 15193 (31.6) 20798 (43.2) 12127 (25.2)

Total Smoking status 36831 28230 (76.6) 60 (0.2) 8541 (23.2)

CD = No ideal intermediate poor

Total unique patients 5784

Total rows 141315 72013 32046 37256

Total A1C tests 6065 900 (14.8) 1669 (27.5) 3496 (57.6)

Total LDL tests 9211 6917 (75.1) 1483 (16.1) 811 (8.8)

Total BMI tests 31898 12358 (38.7) 6793 (21.3) 12747 (40.0)

Total BP tests 56532 23654 (41.8) 21745 (38.5) 11133 (19.7)

Total Smoking status 37609 28184 (74.9) 356 (0.9) 9069 (24.1)

https://doi.org/10.1371/journal.pone.0239007.t003
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The AUC of LSTM was 076 (std 0.01) while DNN was 0.71 (std 0.03), LR was 0.67 (std 0.01),

RF was 0.66 (std 0.01) and NB was 0.59 (std 0.02) for the case with Word2Vec. For the case

without Word2Vec, the AUC of LSTM was 0.69 (std 0.01) while DNN was 0.64 (std 0.02), LR

was 0.65 (std 0.01), RF was 0.66 (std 0.01) and NB was 0.60 (std 0.01) (Fig 4). The accuracy of

each model was 69% for LSTM compared to 66% for DNN, 64% for LR, 61% for RF, and 52%

for NB for the case with Word2Vec (Table 4). For the case without Word2Vec, the accuracy

was 64% for LSTM, 61% for DNN, 62% for RF, 61% for LR, and 52% for NB.

The calculation of metrics was based on the following formulas.

Accuracy ¼ ðTP þ TNÞ=ðTP þ TN þ FPþ FNÞ

Sensitivity ¼ TP=ðTP þ FNÞ

Specificity ¼ TN=ðTN þ FPÞ

Precision ¼ TP=ðTP þ FPÞ

F1� score ¼ 2TP=ð2TP þ FP þ FNÞ

Where TP is true positive, TN is true negative, FP is false positive and FN is false negative.

Fig 3. Embedding visualization of the combination of measure submetric and measure values. X and y-axes are the first two components in

the t-Distributed Stochastic Neighbor Embedding (tSNE).

https://doi.org/10.1371/journal.pone.0239007.g003
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We have also compared the statistical significance for metrics from different models by

one-tailed t-test. For example, there were 5 values of accuracy from the 5-fold cross validation

for LSTM model and DNN model. We performed a one-tailed t-test on these values of accu-

racy to determine the statistical significance. The p-values in the Table 5 show that almost all

of the LSTM model performance metrics were significantly higher than other models.

We examined the importance of each feature by evaluating the AUC after removal of the

feature from the LSTM model (Fig 5). We demonstrated that removing bloodpressureideal

and bloodpressureintermediate, the AUC values decreased largely, which indicated that blood

pressure contributed to CD prediction largely for LSTM to discriminate CD patients from the

healthy group.

Discussion

In this study, we utilized data from clinics across the US to examine the association between

CVH measures and CD diagnoses over a 10-year period by employing traditional machine

Fig 4. CD prediction performance by area under the curve (AUC) for LSTM, DNN, RF, LR, and NB models. LSTM–long short-term memory; RF–

random forest; NB–naïve Bayes.

https://doi.org/10.1371/journal.pone.0239007.g004

Table 4. Model performance by metrics of 5-fold cross-validation mean (std).

Cases Models Accuracy Precision Recall f1 Specificity

Case: Inputs with vectors by Word2Vec LSTM 0.69 (0.01) 0.68 (0.02) 0.66 (0.03) 0.67 (0.02) 0.72 (0.03)

DNN 0.66 (0.03) 0.63 (0.01) 0.69 (0.03) 0.66 (0.01) 0.63 (0.03)

RF 0.61 (0.01) 0.59 (0.01) 0.61 (0.04) 0.6 (0.02) 0.61 (0.02)

LR 0.64 (0.01) 0.61 (0.01) 0.64 (0.01) 0.63 (0.01) 0.63 (0.02)

NB 0.52 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 1.0 (0.0)

Case: Inputs without Word2Vec LSTM 0.64 (0.01) 0.62 (0.02) 0.65 (0.05) 0.63 (0.02) 0.64 (0.04)

DNN 0.61 (0.01) 0.59 (0.02) 0.58 (0.08) 0.58 (0.04) 0.63 (0.08)

RF 0.62 (0.01) 0.6 (0.01) 0.61 (0.01) 0.61 (0.01) 0.63 (0.02)

LR 0.61 (0.01) 0.58 (0.02) 0.62 (0.01) 0.6 (0.01) 0.6 (0.02)

NB 0.52 (0.0) 0.6 (0.49) 0.0 (0.0) 0.0 (0.01) 1.0 (0.0)

https://doi.org/10.1371/journal.pone.0239007.t004
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learning models and deep learning techniques. Our results indicated that the deep learning

algorithm–LSTM–outperformed other traditional machine learning algorithms and achieved

the best accuracy performance. Our results in which we dropped one feature at a time by set-

ting it as constant from our analyses indicated that patients with ideal CVH especially blood

pressure was associated with diagnosis with CD, which was consistent with results that high

blood pressure and obesity might increase the chances of developing a CD. Additional risk

factors that were associated with a higher prevalence of CD included female gender and

white race. Our study is the first to utilize the LSTM to investigate the relationship between

Table 5. Statistical significance of model comparison metrics.

Cases Metrics (LSTM, DNN) (LSTM, RF) (LSTM, LR) (LSTM, NB)

Case: Inputs with vectors by Word2Vec AUC 2.2�10−4 3.3�10−6 4.8�10−6 8.0�10−8

Accuracy 5.9�10−4 2.9�10−5 2.3�10−5 2.6�10−9

Precision 8.8�10−4 3.5�10−5 1.3�10−4 1.4�10−12

Recall 0.09 0.04 0.2 3.5�10−11

F1-score 0.1 5.6�10−4 1.0�10−3 3.3�10−13

Specificity 0.003 1.5�10−4 3.5�10−4 5.3�10−8

Case: Inputs without Word2Vec AUC 8.0�10−4 2.3�10−4 1.7�10−4 5.7�10−8

Accuracy 0.04 0.02 0.04 6.3�10−8

Precision 0.04 0.08 0.006 0.46

Recall 0.1 0.08 0.1 2.0�10−9

F1-score 0.02 0.01 0.06 1.6�10−12

Specificity 0.42 0.44 0.09 1.0�10−7

https://doi.org/10.1371/journal.pone.0239007.t005

Fig 5. Feature discriminative importance evaluated using the LSTM model.

https://doi.org/10.1371/journal.pone.0239007.g005
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time-series CVH measurements and CD diagnoses. Not surprisingly, the LSTM deep learning

model achieved the best performance compared with the traditional machine learning algo-

rithms used in previous EHR data studies [34]. An advantage of our study is that the results

represent associations seen in over 70 clinics in the US. In addition, we will investigate more

about the time-aware LSTM models [35, 36] to better capture the underlying patterns in the

irregular time intervals in the longitudinal EHR data.

Limitations

We encountered some limitations to using EHR data for these analyses. First, patients had dif-

ferent times for visits of CVH measurements as some patients visited more frequently and had

high numbers of visits and some just had a few visits. To address this, we created virtual events

for patients with fewer visits in order to conduct our analyses. Second, the prediction accuracy

might be further improved with additional demographic and clinical factors in addition to the

regular medical visits and measurements used in this study (e.g., health data collected from

wearable devices). Our findings would be much more generalizable if we had greater represen-

tation from more clinics across the U.S.

Conclusions

Deep learning models can effectively predict incident CD from time-series CVH measure-

ments compared with traditional machine learning algorithms. Ideal CVH scores, especially

BMI and blood pressure, could be associated with lower chance of developing CD. This study

determined the extent to which ideal CVH is important to attain and maintain for more favor-

able outcomes. These findings may be used to prevent CD in the outpatient setting by encour-

aging appropriate management of CVH.
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