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ABSTRACT
Objective: To investigate the role of cigarette smoking in disease-development through 
altering the composition of the oral microbial community. Periodontitis and oral cancer are 
highly prevalent in Hungary; therefore, the salivary microbiome of smoker and non-smoker 
Hungarian adults was characterized.
Methods: Shotgun metagenome sequencing of salivary DNA samples from 22 individuals (11 
non-smokers and 11 current smokers) was performed using the Ion Torrent PGMTM platform. 
Quality-filtered reads were analysed by both alignment-based sequence similarity searches 
and genome-centric binning.
Results: Prevotella, Veillonella and Streptococcus were the predominant genera in the saliva of 
both groups. Although the overall composition and diversity of the microbiota were similar, 
Prevotella was significantly more abundant in salivary samples of current smokers compared 
to non-smokers. Members of the genus Prevotella were implicated in the development of 
inflammatory diseases and oral cancer. The abundance of the genus Megasphaera also 
increased in current smokers, whereas the genera Neisseria, Oribacterium, Capnocytophaga 
and Porphyromonas were significantly reduced. The data generated by read-based taxonomic 
classification and genome-centric binning mutually validated the two distinct metagenomic 
approaches.
Conclusion: Smoking-associated dysbiosis of the salivary microbiome in current cigarette 
smokers, especially increased abundance of Prevotella and Megasphaera genera, may facilitate 
disease development.
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Introduction

The oral cavity of healthy humans harbors a diverse 
microbial community called the “normal flora”, which 
is composed of more than 700 bacterial species that 
regularly attach to and form biofilms on the surfaces of 
soft and hard tissues within the mouth [1–3]. 
Members of the oral biofilms are regularly shed into 
the saliva, which is bathing the oral mucosa [4]. Saliva 
is a complex biological fluid whose composition is 
affected both by local conditions in the oral cavity 
and systemic diseases [5–7]. Since saliva can be col
lected in a painless, non-invasive manner, substantial 
efforts have been made to identify disease-related sali
vary biomarkers, recently [8]. In addition to the bio
molecules accumulating in saliva during pathological 
processes, the oral microbiome may also be regarded 
as a new biomarker reservoir [9]. Thus, the changes of 
the salivary microbial community can also be exploited 
for the diagnosis and monitoring of oral and systemic 
diseases [10–18]. Smoking is an important risk factor 
for oral diseases, such as periodontitis and oral cancer, 

and it is also associated with a wide variety of systemic 
diseases [19–21]. Although tobacco use, especially 
cigarette smoking, decreased in the last decades in 
Western countries, regular smoking is still a common 
habit in Central- and Eastern European countries 
[22,23], Asia, China, and North Africa (https://www. 
who.int/gho/tobacco/use/en/). Tobacco smoke may 
contain more than 5,000 chemicals, among them 
toxic, mutagenic and carcinogenic substances [24]. 
These chemicals may initiate pathogenic alterations 
by interacting directly with various host cells and 
extracellular matrix components [25]. Nicotine, 
a major, highly addictive constituent of cigarette 
smoke modulates the immune responses [25,26]. 
Toxic compounds in tobacco smoke may cause cellular 
injury and cell death whereas carcinogens, including 
N-nitrosamines and polycyclic aromatic hydrocarbons 
may initiate tumorigenesis by forming DNA adducts 
and blocking DNA repair [27–31]. Chemicals in cigar
ette smoke may also contribute to disease development 
indirectly by changing the composition of the human 
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oral microbiome [32]. Alteration of the oral micro
biome in cigarette smokers may favour disease devel
opment by increasing the local density of bacterial 
pathogens or decreasing the prevalence of their com
petitors [12,33,34].

Cigarette smoking is one of the most important 
aspects in the development of oral diseases, including 
periodontitis and oral cancer, which are particularly 
prevalent in Hungary [35–37]. Smoking may influence 
disease progress by altering the microbial communities 
of the oral cavity; therefore,e in this cross-sectional 
study, we characterized the salivary microbiome of 
smoker and non-smoker Hungarian adults. We applied 
a metagenomic approach and used both alignment- 
based sequence similarity searches and genome- 
centric binning for the analysis of shotgun sequences 
generated by the Ion Torrent PGMTM platform [38–41].

Study design and recruitment of participants

The study protocol was approved by the Institutional 
Review Board of the University of Szeged, Szeged, 
Hungary. Signed informed consent was obtained 
from each healthy adult participant enrolled into the 
study at the Department of Operative and Esthetic 
Dentistry, Faculty of Dentistry, University of Szeged, 
Hungary. Study participants were divided into two 
groups, non-smokers and current smokers, based on 
the data they provided regarding tobacco consump
tion (cigarette smoking). The smoking exposure of 
current smokers was calculated in pack-years. One 
pack contained 20 cigarettes.

Characteristics of study participants

A total of 11 healthy adult non-smokers (4 males and 
7 females; mean age: 40 years; range: 26–46 years), 
including 8 never smokers and 11 healthy adult cur
rent smokers (8 males and 3 females; mean age: 
41.5 years; range: 34–61 years) participated in this 
cross-sectional study. Three of the participants in 
the non-smoker group quit smoking 5.5, 5 and 
1.5 years before the study, respectively. None of the 
participants suffered from known chronic illness and 
none were treated with antibiotics at least 6 months 
prior to sampling. In order to record the oral para
meters, all patients received a full mouth cariological 
and periodontal examination, performed by an 
experienced practitioner. The number of missing 
teeth (excluding third molars), Plaque Index (PI; 
also known as the Silness-Löe Index), bleeding on 
probing (BOP; the presence or absence of bleeding 
within 15 sec after probing), probing depth (PD; in 
millimeters), and clinical attachment level (CAL; to 
describe the position of the soft tissue in relation to 
the cemento-enamel junction) were recorded. To 
describe the periodontal status of the patients, 

a classification was used [42], which was proven to 
be reliable in our earlier works [43,44]. All patients 
with moderate or severe peridontitis were excluded 
from the study.

Methods

Measurement of exhaled carbon monoxide in 
healthy smokers and non-smokers

The level of exhaled carbon monoxide (CO) is 
a suitable indicator of smoking status [45,46]. We 
used a calibrated, portable CO monitor (piCO + 
Smokerlyzer, Breath CO monitor, Bedfont Scientific 
Ltd., Kent, UK) to assess the exhaled CO levels in the 
study groups of non-smokers and current smokers.

Participants were asked to exhale completely, 
inhale fully, and then hold their breath for as long 
as possible. Right after this, the participants were 
instructed to exhale slowly into the unit and exhale 
fully. This procedure was repeated three times and 
the mean value was calculated.

Saliva collection and DNA isolation from saliva

Unstimulated whole saliva samples were collected from 
the participants by the simple drooling method, ali
quoted and stored at −80 C°. After thawing, saliva 
samples (3 ml, each) were centrifuged at 13 000 rpm 
for 5 min. DNA extractions were carried out by using 
the Macherey-Nagel NucleoSpin Soil DNA kit 
(Macherey-Nagel: 740,780.250). The lysis mixture con
tained 700 µL SL1 and 150 µL Enhancer SX lysis solu
tions. After lysis (bead beating), the kit protocol was 
followed. The quantity of DNA was determined in 
a NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, USA) and a Qubit 2.0 
Fluorometer (Life Technologies, Carlsbad, USA). 
DNA purity was tested by agarose gel electrophoresis 
and on an Agilent 2200 TapeStation instrument 
(Agilent Technologies, Santa Clara, USA).

Next-generationn sequencing and bioinformatics 
analysis

The recommendations of the Ion Torrent PGM™ 
sequencing platform were closely followed (Life 
Technologies, Thermo Fisher Scientific, USA). The 
sample libraries were prepared by Ion Xpress Plus 
Fragment Library Kit (Cat. No. 4471269; Thermo 
Fisher Scientific, USA) and quantified by Ion Library 
TaqMan® Quantitation Kit (Cat. No. 4468802; Thermo 
Fisher Scientific, USA) with the help of StepOne Real- 
Time PCR System (Applied Biosystems). Emulsion 
PCR was performed with OneTouch 2 and Ion 
OneTouch ES devices by using the Ion PGM 
Template OT2 200 kit (Cat. No. 4,480,974; Thermo 
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Fisher Scientific, USA). Barcoding was made by Ion 
Xpress Barcode Adapters 1–16 Kit (Cat. No. 
4,471,250¸Thermo Fisher Scientific, USA). Sequencing 
was performed with Ion PGM 200 Sequencing kit (Cat. 
No. 4,474,004¸ Thermo Fisher Scientific, USA) on Ion 
Torrent PGM 316 chip. The raw data have been made 
publicly available at SRA accession: PRJNA553326 
(Release date: 2019–07-09). The workflow of the sub
sequent data analysis is summarized in Figure 1.

Raw sequence filtering

Galaxy Europe server was employed to pre-process 
the raw sequences (www.usegalaxy.eu). Low-quality 
reads were filtered by Prinseq (min. length: 150 bp; 
min. score: 15; quality score threshold to trim posi
tions: 20; sliding window used to calculate quality 
score: 1) [47]. Quality of raw and filtered sequences 
were checked with FastQC program.

Read-based metagenomics

Filtered high or moderate quality sequences were 
further analyzed by Diamond software, applying the 
LCA (Lowest Common Ancestor) algorithm [48]. 
Diamond parameters were set as follows: Blast 
Mode: BlastX, Reference database: NCBI nr database. 
MEGAN6 was used to add taxon names to Diamond 
sequence classifications (Min Score: 80, Min 
support percent: 80, Min support: 15, Min complexity 
filter: 0.3, LCA algorithm: weighted) [49].

Statistical analysis of read – based metagenomics 
data

MEGAN6 was used to investigate microbial commu
nities and export data for statistic calculations. 

UPGMA (Unweighted Pair-Group Method with 
Arithmetic Mean) with Bray–Curtis method was 
employed to cluster the samples (Figure 4(b)). 
Rarefaction estimation was performed by MEGAN6 
[49] (Supplementary figure 1). Krona program was 
used to visualize the average composition of micro
bial taxa [50] (Figure 2). The distribution of top 10 
most abundant microbes between the two sets of 
samples was presented with Circos [51] (Figure 3).

For microbial core and diversity calculation 
MetaCoMET (Metagenomics Core Microbiome 
Exploration Tool), an interactive web tool, was used. 
Shannon statistical method was performed to calcu
late alpha diversity (Figure 4(c)). Emperor program 
(integrated into MetaCoMET) carried out the princi
pal component analysis (Figure 4(a)). For core calcu
lation default parameter sets were fixed with the 
persistence Venn diagram type [52].

Statistical Analysis of Metagenomic Profiles 
(STAMP) was used to compute the abundance differ
ences in the case of whole microbiome. Dissimilar taxa 
were identified with two-sided t-test at 0.95 confidence 
intervals and the results with q-value (corrected 
p-value) of <0.05 were retained. In STAMP minimum 
difference between proportions was set to 0.3 and 
Storey FDR (False Discovery Rate) filtered out false 
positive significant differences [53,54] (Figure 5).

Genome-based evaluation of the sequencing data

Filtered sequences produced by Prinseq were co- 
assembled with Megahit (Minimum contig length: 
1000 bp, Minimum k-mer size: 21, Maximum k-mer 
size 141) [55]. After simplifying the header of contig 
FASTA file using the Anvi’o script, Bowtie2 was 
employed to map back the original sequences to the 
contigs [56]. Then, we used Anvi’o V5 to follow the 

Figure 1. Summary of the data analysis workflow and the employed software packages. The main steps of the initial data 
filtering and bioinformatics steps to extract the read-based and genome-based metagenome data are boxed separately.
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Figure 2. Overall composition of the salivary microbiome of study participants including the metagenomes of both smokers and 
non-smokers. Due to space limitations, only the most relevant bacterial genera, families, orders and phyla are indicated; the 
bacterial classes are not shown.

Figure 3. Relative abundance of the 10 most abundant bacterial genera in non-smokers and current smokers. Circos plot 
illustrating the most abundant bacterial genera listed in inset from 1 to 10. The widths of the bands are proportional to the 
abundance of the particular taxon in the two study groups.
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‘metagenomics’ workflow [57]. Briefly, contig data
base was generated in the first step, where open read
ing frames were identified by Prodigal and contig 
k-mer frequencies were computed. Then, Hidden 
Markov Modell (HMM) of single-copy genes was 
aligned by HMMER [58–61]. We used InterProScan 
v5.31–70 and the metagenome classifier Kaiju to 
functional and taxonomic annotation of contigs 
[62–65]. The outputs were imported into the contig 
database. BAM files, made by Bowtie2, were used for 
profiling the contig database, this way we generated 
sample-specific information about the contigs (i.e. 
mean coverage). These were merged together. Three 
automated binning programs, i.e. CONCOCT, 
METABAT2 and MAXBIN2, were employed to 
reconstruct microbial genomes from the contigs 
(Minimum length: 2,000 bp) [66–68]. We also used 
the Anvi’o human-guided binning and ‘anvi-refine’ 
options [57]. The binning results were incorporated 
to the contig database. Anvi’o interactive interface 
was employed to visualize and summarize the data 
in Figure 6.

Results

Lifetime tobacco exposure in current smokers

Lifetime tobacco exposure of current smokers was 
calculated in pack-years by multiplying the average 

number of packs of cigarettes smoked per day by the 
number of years the person had smoked. The mean 
smoking (tobacco) exposure of current smokers 
(N = 11) was 11.5 ± 8.2 pack-years (range: 0.6–23 
pack-years) (Supplementary table 1).

The distribution of early periodontal lesions (mild 
gingivitis) was equal in both groups. The number of 
decayed teeth was higher in the group of smokers 
(4.18 SD: 0.78) compared to the group of non- 
smokers (2.45 SD: 0.85) but the difference between 
the group was not significant (P < 0.1499 Student’s 
test).

Exhaled carbon monoxide in healthy smokers and 
non-smokers

Data regarding exhaled CO levels were available for 
all non-smokers (N = 11; mean exhaled CO level: 
1.7 ± 0.9 ppm) and for 6 of the 11 current smokers 
(mean exhaled CO level: 12.3 ± 12 ppm). The differ
ence between the exhaled CO level of non-smokers 
and current smokers was statistically significant 
(Studen’s t-test; P˂0.0001). The values found in our 
study were comparable to the data recorded for 
healthy adult non-smokers (1.5 ± 0.6 ppm) and 
healthy adult smokers (9.7 ± 5.7 ppm) in a recent 
independent study using the same type of CO moni
tor [69].

Figure 4. Diversity of the salivary microbiome in non-smokers and current smokers.
(a) Principal component analysis of salivary microbiomes of non-smokers and current smokers. Symbols: blue squares = non-smokers; red 
diamonds = current smokers (b) Hierarchical clustering analysis of salivary microbiomes of non-smokers and current smokers by UPGMA 
(unweighted pair group method with arithmetic mean). The two metagenome clusters characterizing the two very distinct study groups are 
boxed. Comparison of Shannon diversity indices. The alpha diversities are clearly distinct although statistically not rigorously different. 

Figure 5. Bacterial genera which differ significantly in relative abundance between the salivary samples of non-smokers and 
current smokers. The statistical analysis was performed and visualized using the STAMP package. Mean abundance (mean 
proportion) and difference in mean proportion for genera showing significant difference in abundance are shown. The 95% 
confidence intervals and statistical significance (corrected q value) are indicated as well.
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Read-based characterization of the salivary 
microbiome in non-smokers and current smokers

Shotgun metagenome sequencing of salivary DNA 
samples from 22 individuals (11 non-smokers and 
11 current smokers) resulted in 256,567 quality- 
filtered reads; mean reads per sample: 11,662.1 (SD: 
2,261.95). To monitor the efficiency of sequencing, 
rarefaction curves were computed (Supplementary 
figure 1). The rarefaction curves reached their asymp
totes around 5,000 reads, indicating that the sequen
cing depth was sufficient to cover almost all genera in 
the bacterial communities analyzed.

Based on the alignment of the quality-filtered 
reads with sequences in the NCBI nr database, 66 
bacterial genera could be identified. The overall com
position of the oral microbiome of study participants 
(both non-smokers and current smokers) is shown in 
Figure 2. It is apparent that three genera, i.e. 
Prevotella, Veilonella and Streptococcus, predomi
nated in the saliva of the Hungarian study 

participants, although the mean relative abundance 
of 11 additional genera reached or exceeded 1% 
(Supplementary table 2).

Comparison of the salivary microbiome of non- 
smokers and current smokers revealed that 48 bacter
ial genera were present in at least one specimen of 
both groups (Supplementary table 2). All of the 14 
abundant genera (relative abundance 1% or higher) 
were shared by both microbiota. In addition, 34 rare 
genera (relative abundance ˂1%) were also shared by 
non-smokers and current smokers. In total, 8 rare 
genera were unique to non-smokers whereas 10 rare 
genera manifested themselves in current smokers 
only (Supplementary table 2).

The relative distribution of the 10 most abundant 
genera is presented in Figure 3. It is noteworthy that 
the genera Prevotella, Veillonella and Streptococcus 
predominated in the saliva samples of current smo
kers, comprising about 90% of the total reads. In the 
non-smoker group, about 70% of all reads mapped to 

Figure 6. Analysis of shotgun sequences by genome-centric binning. Distribution of contigs built from filtered sequences of 
salivary bacterial communities. The grouping of contigs based on sequence-assignments of automated binning programs 
METABAT2, MAXBIN2 and CONCOCT as well as manually defined bins were visualised by the Anvi’o platform. SCG: single-copyy 
genes; GC: guanine-cytosine (GC) content.
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these 3 genera. In accordance with PCA (principal 
component analysis) (Figure 4(a)), hierarchical clus
tering analysis by UPGMA (unweighted pair group 
method with arithmetic mean) (Figure 4(b)) also 
showed that the microbiomes of non-smokers and 
current smokers did not form two rigorously sepa
rated clusters although the tendencies with a few out
liers are clearly recognizable. We also noticed that 
a group of non-smokerss (K19, K5, K1, K18) and 
a group of current smokers (K3, D22, F26, K20, 
K11) were clearly located on two separate branches 
of the UPGMA tree (boxed in Figure 4(b)). This 
might be a sign of distinction albeit statistically non- 
significant. The Shannon index, which reflects both 
richness and evenness of microbial communities, was 
higher in case of the salivary microbiome of non- 
smokers, compared to that of the current smokers 
(Figure 4(c)). The difference, however, was again not 
statistically significant.

In spite of thee similarities in the composition and 
diversity of salivary microbial communities, the relative 
abundance of distinct genera differed significantly 
between non-smokers and current smokers. Two gen
era displayed pronounced changes. Prevotella (order 
Bacteroidales), the predominant genus in both groups, 
was more abundant in the saliva of current smokers 
(mean relative abundance: 36.8 ± 9.8%), compared to 
non-smokers (mean relative abundance: 26.0 ± 9.9%); 
the difference between the groups was statistically sig
nificant (p = 0.044; Figure 5). In addition to Prevotella, 
the genus Megasphaera, a member of the order 
Negativicutes, belonging in the phylum Firmicutes, was 
also enriched in the saliva samples of current smokers 
(Figure 5). Although Megasphaera was a rare, low- 
abundance genus in the salivary bacterial communities 
of non-smokers, it reached a relative abundance above 
1% in the salivary samples of current smokers. In con
trast, the salivary microbiome of non-smokers was 

significantly enriched in the genera Neisseria (phylum: 
Proteobacteria; order: Neisseriales), Oribacterium (phy
lum: Firmicutes; order: Clostridiales), Capnocytophaga 
(phylum: Bacteriodetes; order: Flavobacteriales) and 
Porphyromonas (phylum: Bacteriodetes; order: Bacter- 
iodales) (Figure 5).

Analysis of shotgun sequences by genome-centric 
binning

In addition to read-based taxonomic classification, the 
filtered sequences generated in our study were sepa
rately assembled in contigs, which were clustered into 
bins based on their inherent sequence features (gen
ome-centric binning). The workflow of both read-based 
classification and metagenomics binning is presented in 
Figure 1. A total of 12 bins were constructed, using the 
human-guided automated binning programs that rely 
on co-abundance of sequences as well as compositional 
information such as GC content, tetranucleotide fre
quencies and identification of single-copy genes (Figure 
6). The putative genomes of the genera Prevotella and 
Veillonella each were represented by 4 and 2 separate 
bins, respectively, whereas the genera Rothia, 
Haemophilus, Neisseria, Streptococcus and Atopobium, 
as well as the family Porphyromonadaceae each occu
pied a single distinct bin. Based on genome-centric 
binning, Prevotella (bin 3) showed a significantly higher 
relative abundance in the salivary microbiome of cur
rent smokers, whereas the family Porphyromonadaceae 
(bin 6) and the genus Neisseria (bin 8) was significantly 
more abundant in the salivary microbiome of non- 
smokers (Figure 7). These data are compatible with 
the results of read-based taxonomic classification of 
salivary microbiomes from non-smokers and current 
smokers (see Figures 3 and 5) and therefore the two 
distinct metagenomic approaches mutually validate 
each other.

Figure 7. Relative abundance of bacterial genera identified by genome-centric binning. Prevotella (bin 3) showed a significantly 
higher relative abundance in the salivary microbiome of current smokers, whereas the family Porphyromonadaceae (bin 6) and 
the genus Neisseria (bin 8) were significantly more abundant in the salivary microbiome of non-smokers.
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Discussion

Toxic and mutagenic chemicals as well as particulate 
matter in cigarette smoke may initiate oral diseases 
either via direct interactions with human cells in the 
oral cavity, or indirectly, by affecting the environ
ment of these cells such as the extracellular matrix 
and/or the oral microbiome [12,25,32,70,71]. 
Mutagens may cause genetic damage both in human 
cells and in bacterial cells inhabiting the oral cavity 
[31,70]. In addition, smoking may damage oral 
microcirculation and create an acidic, relatively 
hypoxic milieu in the oral cavity that may favour 
the growth of distinct members of the oral microbial 
community [72,73]. Establishment of a similar micro
environment may select for the local growth of dis
tinct anaerobic bacteria within neoplastic tissues, too 
[74,75].

Saliva is a complex biological fluid bathing the 
various anatomical structures of the oral cavity cov
ered by biofilm-forming microbial communities. 
From mature biofilms located at intraoral surfaces, 
bacteria – including potential pathogens – are regu
larly shed into the saliva. In such a planktonic state, 
oral bacteria may be transmitted to new ecological 
niches [13,76].

Oral diseases and tobacco smoke exposure induce 
anatomical and physiological changes in the oral cav
ity, consequently the composition of surface-attached 
bacterial supragingival and subgingival biofilms and 
the structure of the salivary microbial community 
may be altered [17,77–81]. Smoking cessation may 
revert, however, the changes in the composition of 
oral microbiome [18,82]. Our study groups of current 
smokers and non-smokers comprised middle-aged 
d female and male healthy Hungarian citizens, having 
a cigarette smoking habit of various degrees. The 
tobacco consumption and the duration and extent 
of tobacco smoke exposure varied considerably 
(Supplementary table 1). The justification for select
ing such a diverse group of individuals was that we 
attempted to dissect a broad sample covering diverse 
individual variability in the environmental and life
style parameters of our subjects in order to track the 
general features of oral microbiome alterations 
caused by cigarette smoking. As expected, the price 
for this heterogenous sampling approach was sub
stantial individual deviation in microbial commu
nities within the two study groups. In spite of the 
dissimilarities in their individual case histories, the 
“current smokers” and “non-smokers” demonstrated 
clear difference in their exhaled CO levels, a good 
indication of the substantial physiological influence 
caused by deleterious cigarette smoking regardless of 
other variables. The diversity of individual microbes 
affected by environmental and lifestyle conditions 
other than smoking habits masked several aspects of 

oral microbiome rearrangements as being statistically 
not significant although indicating noticeable trends 
(Figure 4(a,b)). Accordingly, the difference was not 
rigorously significant, we found that the Shannon 
index which reflects both richness and evenness of 
microbial communities, was higher for the salivary 
microbiome of non-smokers compared to current 
smokers (Figure 4(c)). This may be related to 
a decreased evenness in the microbial community of 
current smokers which is characterized by an 
increased abundance of Prevotella (Figures 3 and 5). 
Similarly, the microbiomes of non-smokers and cur
rent smokers did not form well separated clusters by 
principal component analysis (PCA) and hierarchical 
clustering (UPGMA). Nevertheless, location of 
a group of samples from non-smokers and another 
from current smokers on two separate branches of 
the UPGMA tree might be a sign of distinction 
between the two microbiomes (Figure 4(a,b)).

In the thorough shotgun full metagenomic study 
we found that all of the 14 abundant genera (relative 
abundance 1% or higher) and 34 rare genera (relative 
abundance ˂1%) were shared by the salivary micro
biomes of non-smokers and current smokers, 
whereas 8 rare genera were unique to non-smokers 
and 10 rare genera were unique to current smokers 
(Supplementary table 2). Remarkably, the read-based 
metagenomics data were supported by metagenomic 
binning sufficiently (Figures 6 and 7).

Both microbial communities were predominated by 
3 genera, i.e. Prevotella, Veillonella and Streptococcus 
(Figure 3). Analysis of the complexity of salivary 
microbial communities in non-smokers and smokers 
gave variable results in previous studies. In most cases, 
analysis of oral wash samples or oral swabs did not 
reveal significant differences between the microbiomes 
of smokers and non-smokers [83–85]. To the contrary, 
a large study of oral wash samples revealed 
a significant difference in overall oral microbiome 
composition between current and non-current (former 
and never) smokers [18]. Further studies may resolve 
these apparent discrepancies.

We observed that although the overall composi
tion of the oral microbiome did not differ substan
tially between non-smokers and current smokers 
(Figures 3 and 4) the relative abundance of two dis
tinct genera, Prevotella and Megasphaera, was higher 
in salivary samples of current smokers (Figure 5). 
Prevotella species are Gram-negative, anaerobic bac
teria which belong in the phylum Bacteriodetes. 
Although in healthy humans the Prevotella genus is 
one of the dominant genera of the salivary micro
biome, distinct members of the genus Prevotella are 
associated with inflammatory diseases and may facil
itate carcinogenesis as well [86-88, reviewed by 
89,90]. There are, however, contradicting observa
tions regarding the role of Prevotella in the 
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development of oral cancer [14,74,79,91–94]. Thus, it 
remains to be established whether members of the 
genus Prevotella are opportunistic inhabitants of 
malignant tumors or play a causative role in oral or 
colorectal carcinogenesis [95,96].

Megasphaera, the other genus of increased abun
dance in the saliva of current smokers belongs in the 
phylum Firmicutes. Megasphaera are Gram-negative 
anaerobic cocci, which reside in the upper digestive 
tract of adults, contributing to the microbial commu
nity of tongue dorsum, tonsils and saliva [86]. In line 
with our results, an increase in relative abundance of 
Megasphaera was observed in oropharyngeal samples 
and esophageal samples of smokers relative to non- 
smokers [97,98]. Perhaps the smoky environment 
may confer a growth advantage for Megasphaera 
[98]. Dysbiotic diseases, including periodontitis and 
bacterial vaginosis were also associated with higher 
relative abundance of Megasphaera species [99,100]. 
Moreover, the genus Megasphaera was associated 
with human papillomavirus (HPV) positive head 
and neck squamous carcinoma and lung cancer 
[101,102].

Our finding of an increased abundance of 
Prevotella and Megasphaera in the saliva of current 
smokers may facilitate the initiation and progression 
of various pathogenic processes within the oral cavity 
and may affect the composition of microbial commu
nities along the route of swallowed saliva as well, i.e. 
on the surface of tonsils and throat, and possibly even 
the esophageal mucosa [86,98].

We observed that the salivary microbiome of cur
rent smokers was significantly depleted relative to 
non-smokers in the genera Neisseria (phylum: 
Proteobacteria; order: Neisseriales), Oribacterium (phy
lum: Firmicutes; order: Clostridiales), Capnocytophaga 
(phylum: Bacteriodetes; order: Flavobacteriales) and 
Porphyromonas (phylum: Bacteriodetes; order: 
Bacteriodales) (Figure 5). The decreased abundance of 
Neisseria in the saliva of current smokers could possi
bly be attributed to the selective toxicity of cigarette 
smoke for Neisseria species [103,104]. Compared to 
non-smokers, the abundance of Neisseria decreased in 
the oropharynx of smokers [97].

Increased abundance of Oribacterium parvum and 
other distinct bacterial species in prediagnostic oral 
wash samples was associated with a decreased risk for 
esophageal adenocarcinoma development [15]. An 
increased level of Oribacterium was also detected in 
oral rinse samples of patients with oral cavity carci
noma and oropharyngeal carcinoma [14,101]. 
Therefore, it is not easy to predict how the decreased 
salivary level of Oribacterium, observed in our cur
rent smoker study group, may affect pathological 
processes in the gastrointestinal tract.

Analysis of relative abundance of Capnocytophaga 
species in the oral cavity of smokers and non-smokers 

also yielded apparently conflicting results in various 
laboratories. Thomas et al. observed an increased level 
of Capnocytophaga in oral swab samples of smokers, 
whereas Wu et al. found a decreased level in oral wash 
samples of smokers [18,84]. Our finding, based on 
saliva samples collected by the simple drooling 
method, is in accordance with the data of Wu et al. 
[18]. One may assume that using oral swab samples 
may permit a more efficient collection of bacteria 
deeply embedded in biofilms at various surfaces com
pared to taking unstimulated saliva samples or oral 
wash samples.

Nicotine, an important component of cigarette 
smoke, inhibited the growth of Porphyromonas gingi
valis [105]. This observation may explain the 
decreased level of Porphyromonas species in saliva 
samples of current smokers, compared to non- 
smokers, as demonstrated in our current study, in 
accordance with previous findings [18,83].

In summary, we conclude that probably several 
environmental, personal health history and life style 
factors affect the alterations in the oral microbiota in 
smoker and non-smoker individuals. Our study did 
not address most of these potential factors, which 
may blur somewhat the picture. Nevertheless, the 
clear message of this study is that tobacco smoking 
brings about dysbiotic, deleterious changes in the oral 
microbiota and this may lead to severe oral and 
general unwanted health consequences for the smok
ing people. We also identified a few genera for diag
nostic purposes of the warning molecular taxonomy 
signs of the dangerous consequences for smokers.
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