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Abstract

Transcription factors (TFs) are an important class of regulatory molecules. Despite their

importance, only a small number of genes encoding TFs have been characterized in Oryza

sativa (rice), often because gene duplication and functional redundancy complicate their

analysis. To address this challenge, we developed a web-based tool called the Rice

Transcription Factor Phylogenomics Database (RTFDB) and demonstrate its application

for predicting TF function. The RTFDB hosts transcriptome and co-expression analyses.

Sources include high-throughput data from oligonucleotide microarray (Affymetrix and

Agilent) as well as RNA-Seq-based expression profiles. We used the RTFDB to identify

tissue-specific and stress-related gene expression. Subsequently, 273 genes preferen-

tially expressed in specific tissues or organs, 455 genes showing a differential expression

pattern in response to 4 abiotic stresses, 179 genes responsive to infection of various

pathogens and 512 genes showing differential accumulation in response to various

hormone treatments were identified through the meta-expression analysis. Pairwise

Pearson correlation coefficient analysis between paralogous genes in a phylogenetic

tree was used to assess their expression collinearity and thereby provides a hint on

their genetic redundancy. Integrating transcriptome with the gene evolutionary infor-

mation reveals the possible functional redundancy or dominance played by paralog

genes in a highly duplicated genome such as rice. With this method, we estimated a

http://creativecommons.org/licenses/by/4.0/
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predominant role for 83.3% (65/78) of the TF or transcriptional regulator genes that had

been characterized via loss-of-function studies. In this regard, the proposed method

is applicable for functional studies of other plant species with annotated genome.

Database URL: http://ricephylogenomics-khu.org/tf/home.php

Introduction

The Poaceae family contains agronomically important
species, including three cereals, rice (Oryza sativa), wheat
(Triticum aestivum) and maize (corn; Zea mays), that
provide more than half of the total calories consumed by
humans. Rice has emerged as an excellent genetic model
system for studies of other crops in the family. The genome
sequence of many rice species, subspecies and varieties
has been completed (1–4). These advances have catalyzed
the development of new strategies for characterizing the
functions of agronomically important genes. For example,
the availability of genome sequence and gene-indexed
mutant collections have facilitated both reverse and
forward genetics strategies to validate gene functions (e.g.
T-DNA insertions, Ds/dSpm tagging, Tos17 tagging and
chemical/irradiation mutagenesis) (5–8). Together, these
populations carry mutations in ∼80% of the predicted rice
loci (9–11). The establishment of these mutant resources
has paved the way for the application of high-throughput
techniques. Genome-wide expression profiles have become
an integral part of genome annotation programs. However,
despite these advancements, to date, <8% of rice genes
have been characterized in detail (12).

Ancient genome duplications indicate that ∼50% of
all genes related to non-transposable elements in rice are
functionally redundant (13). Due to this frequency of redun-
dancy, a mutation in a single gene often results in no or only
a subtle change in phenotype. The absence of an altered
phenotype in either of the single-gene mutants for a paralog
pair suggests that they function in a redundant manner.
In this case, generation of a mutant with both paralogs
(or more, if multiple paralogs exist) knocked out may
reveal phenotypes (14). For example, individual knockouts
of rice MADS-box (an acronym of the mini-chromosome
maintenance 1 of yeast, agamous of Arabidopsis, deficiens
of snapdragon and serum response factor of humans) genes,
OsMADS62 and OsMADS63, do not reveal altered phe-
notypes. However, rice plants with both genes knocked
out display defects in pollen maturation and germination,
revealing their redundant roles in regulating pollen develop-
ment (15). Although the creation of such multiple mutations
can reveal gene function, the labor and expense associated
with creating such multiple mutations in rice have hindered
rice genetic analysis. The development of CRISPR-Cas9
approaches to mutate several predicted paralogs in a single

construct has helped address this problem (16). Here, we
present a complementary approach to prioritize candidate
genes for functional analysis.

For this study, we focused on rice transcription factors
(TFs) and transcriptional regulators (TRs). TFs regulate
target gene expression by binding to cis-elements in pro-
moter regions, whereas TRs play a regulatory function
indirectly through interaction with a basal transcription
apparatus or by modulating the accessibility of DNA to
TFs via chromatin remodeling (17). TFs and TRs serve
key roles in plant development and responses to diverse
environmental challenges (18, 19). For example, MADS-
box family proteins regulate floral organ formation, iden-
tity and flowering time (20–23). The APETALA2/ethylene-
responsive element binding protein and NAC (an acronym
of no apical meristem, Arabidopsis transcription activa-
tion factors and cup-shaped cotyledon 2) genes modulate
responses to abiotic and biotic stresses (24–30). Members of
the homeobox family function in developmental processes
such as the organization and maintenance of the shoot api-
cal meristem (SAM) and leaf initiation (31–33) (Figure 1;
Supplementary Table S1).

Approximately 2048 of rice genes are predicted to serve
as TFs and 328 as TRs (34). Among the predicted TFs,
the functions of only 233 TF genes from different families
have been elucidated. This characterization relied on diverse
genetic approaches, including gene knockdowns, overex-
pression, mutation and natural variation (35). However, the
roles of the remaining TFs are still to be elucidated.

Researchers have constructed several databases to
decipher the functions of TFs. For example, the Plant
Transcription Factor Database (PlnTFDB; http://plntfdb.
bio.uni-potsdam.de/v3.0/) is an integrated catalog that
summarizes putatively complete sets of TFs and TRs in
plant species (34). The classification of TFs and TRs is
based on rules that consider the presence of protein domains
and their combinations. These domains are identified by
the Pfam protein family database or by hidden Markov
model profiles. The Database of Rice Transcription Factors
includes TFs and TRs of O. sativa L. ssp. indica and O.
sativa L. ssp. japonica (36). The Rice Stress-Responsive
Transcription Factor Database (http://www.nipgr.res.in/
RiceSRTFDB.html) provides expression profiles of TFs and
TRs in response to abiotic stress at various developmental
stages (37). Despite the usefulness of these databases for the

http://ricephylogenomics-khu.org/tf/home.php
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Figure 1. Summary of rice TFs and transcription regulators that have been previously characterized in genetic studies. The genes are classified as

those that function in morphological traits, physiological traits, resistance or tolerance and other functions. This list is based on the information

available from the OGRO database.

characterization of single genes, the capability of predicting
evolutionary relatedness of individual members is lacking.
In addition, the information in these databases is limited to
sequence and expression data in limited tissues or treatment
experiments.

To address these shortcomings and to facilitate func-
tional genomics studies of large gene families, a phy-
logenomics approach has been proposed (38). In a
similar concept, GreenPhylDB provides plant genome-scale
phylogenomics analysis to assist ortholog detection (39).
Phylogenomics is used to predict functional redundancy
or dominance among family members and infer unique
functions (13). In this report, we describe generation
of a rice TF phylogenomics database, called the Rice
Transcription Factor Phylogenomics Database (RTFDB), to
analyze rice TF families. RTFDB systematically organizes
the functional information of 2048 putative rice TFs and
328 TRs.

Omics data from multiple platforms are integrated into
RTFDB. We have also included a co-expression module to
assess the co-regulation of TF and TR genes under normal
or stress conditions. Meta-expression analysis of anatomi-
cal tissues, abiotic/biotic stresses and hormone treatments
are also incorporated into the database to help predict
the functions of individual family members. For 83.3%
(65/78) of the TF or TR genes that had been character-
ized via loss-of-function studies, we estimated the predom-
inant roles in each family, and our database will facili-

tate functional genomic studies of TF or TR genes show-
ing featured expression patterns through meta-expression
analysis. More detailed data analysis and discussion is
presented.

Results

Overview of the RTFDB

The web-based tool, RTFDB, is publicly available at http://
ricephylogenomics-khu.org/tf/home.php. RFTDB provides
a Treeview option where all TF and TR families are listed
(Figure 2A). The selection of a family displays the phyloge-
netic tree if it comprises three or more members.

Gene annotations, information about orthologs, gene-
indexed mutants from 14 repositories, topology and
interactome data can be overlaid on the selected family
(Figure 2B). Transcriptomic data mined and processed from
various platforms in the NCBI gene expression omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) (40) can be
integrated into the gene family (Figure 2C). These selected
data sets can be downloaded under the transcriptome data
section for the selected TF family.

The transcriptome analysis in RTFDB has been divided
according to platforms used for generating the data. These
include microarray data generated using Affymetrix and
Agilent platforms. In addition, RNA-Seq data sets for
anatomical stages of development samples and abiotic

http://ricephylogenomics-khu.org/tf/home.php
http://ricephylogenomics-khu.org/tf/home.php
https://www.ncbi.nlm.nih.gov/geo/
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Figure 2. Features of the rice TF phylogenomics database are shown. (A) Treeview option enables a phylogenomic analysis of 58 TFs and

22 transcription regulators. (B) Selected family can be analyzed by their sequence features, orthologs, topology and available mutants. (C)

Transcriptomic data, mined and processed from Affymetrix, Agilent or RNA-seq platforms, are integrated into the phylogenetic tree.

stress treatments are included. To facilitate more robust and
comprehensive data analysis, the expression data generated
in several different experiments using the same platform
were combined and unified under anatomic, abiotic, biotic
and hormone categories.

The duplication map displays the genome-wide distri-
bution of all TFs and TRs on rice chromosomes. The
duplicated genes lying in segmentally duplicated regions of
rice chromosomes are connected through straight lines. The
database search option enables users to input gene locus IDs
or sequence to retrieve relevant information. Each locus ID
is linked to the Rice Genome Annotation Project database
(RGAP MSU) (41). The download option can be used to
extract gene, protein and cDNA sequences of TFs and
TRs.

Integration of co-expression analysis with

functional classification and tissue specificity

provides useful information for the further

molecular understanding of a TF of interest

The co-expression analysis tool provides the co-expression
module for a TF or TR gene of interest (Figure 3). RTFDB
enables an integrated co-expression analysis to predict bio-
logically relevant interactions for a given rice gene under
a developmental process or stress treatment by Pearson
correlation coefficient (PCC) estimation. Upon querying a
TF or TR, the most co-expressed genes are identified, and
functional classification using MapMan terms is assigned
to the genes in the network (42). Functional assignment to
all co-expressed genes reveals the genes that share similar
metabolic pathways or biological processes. Co-expressed
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Figure 3. Co-expression analysis of the TFs and transcription regulators revealed candidates that function in seed development. (A) Co-expression

network for a seed-preferred gene, LOC Os02g12310, is constructed. (B) Integration of MapMan terms, tissue-preferred expression pattern and

previous literature information on to the network revealed several candidates with proven roles in seed development and other potential candidates

for further functional studies related to seed development.

genes that are assigned unique functional terms with iden-
tical tissue expression would be primary targets for further
study.

To illustrate an example of candidate screening,
we constructed a co-regulated network of a rice seed-
specific NAC TF gene, LOC Os02g12310, which was
identified via meta-expression analysis of anatomical
tissues (Figure 3A). To construct the initial network, we
identified 50 co-expressed genes with more than 0.75
PCC value. MapMan terms were then mapped to the
interactors and the queried element resulting in seven
MapMan terms. Among the results, the term development
was over-represented. In addition, it was revealed that co-
expressed genes of LOC Os02g12310 are related to DNA
synthesis, RNA transcriptional regulation, carbohydrate
metabolism, protein degradation and stress responses.
Consistent with our analysis, it was previously reported
that three NAC TF genes in the network physically
interact and determine seed size. Specifically, ONAC026
(LOC Os01g29840), ONAC023 (LOC Os02g12310)
and ONAC020 (LOC Os01g01470) play independent
as well as overlapping roles in seed size determination
(Figure 3B) (43).

PCC analysis predicts functional redundancy

among paralogous TFs

The PCC between paralogous TF genes indicate levels of
similarity in their expression patterns in the analyzed stages
of development. This knowledge can be used to predict

the redundancy among paralogous genes. To assess the
ability of PCC scores to estimate functional redundancy,
we performed a PCC analysis with paralogous TF or TR
gene pairs that have been previously characterized by loss-
of-function studies using knockdown, antisense or RNAi
approaches and have expression data available for both the
paralogous genes (Supplementary Table S2).

Paralogous genes originate from single gene duplication
events and have very high sequence similarity. The func-
tional dominance of a paralogous gene is attributed to the
predominance in its expression compared to its duplicated
counterpart. We hypothesized that if a gene leads to a
defective phenotype on loss of function, it might be a
functionally dominant member between the paralogs. Here,
we defined a predominant expression pattern as having an
estimated PCC of less than 0.5 with the other gene of the
paralogous pair.

Out of 233 characterized rice TFs summarized in the
Overview of functionally characterized Genes in Rice
Online (OGRO) database (35), we selected 92 gene pairs for
pairwise correlation analysis whose loss of function resulted
in a morphological or physiological change, thereby
indicating their dominant contribution in the function.
Among these, 39 genes had no close paralogs and, therefore,
were not expected to exhibit functional redundancy. For
another set of 14 genes, unique probes were not available
on the chip, and, therefore, their expression patterns could
not be analyzed.

For the remaining 39 characterized TF or TR gene
pairs, we performed PCC analysis using anatomical

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
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meta-expression profiles generated from Affymetrix-based
microarray data (Supplementary Table S3). In the case
where multiple probes were available for a gene, a probe
with the highest expression value was selected for analysis.
The distribution of PCC values revealed 4 gene pairs with
a correlation between −0.25 and 0.00, 11 pairs with
a PCC value of 0.00–0.25, 11 pairs with a PCC value
of 0.26–0.50 and 10 pairs with a PCC value of 0.51–
0.75. Whereas, only 3 pairs exhibited correlation in the
range of 0.75–1.00 (Figure 4). This analysis demonstrated
the predominant expression of 26 genes that share little
correlation with their paralogs (PCC < 0.5; green box in
Figure 4). Therefore, in line with our hypothesis, including
39 genes belonging to a clade consisting of a single member,
a predominant role was suggested for 83.3% (65/78)
of the TF or TR genes that had been characterized via
loss-of-function studies through integrated phylogenomics
and pairwise PCC analysis. To illustrate the utilization
of phylogenomics and pairwise PCC analysis to predict
redundancy or predominance in gene functions, we have
chosen 3 previously characterized TFs and their paralogs
from each of the 3 PCC ranges, i.e. −0.25–0.00, 0.00–
0.25 and > 0.75. These include early heading date 3 (ehd3),
which shares no correlation (PCC value, −0.09) with its
closest paralog LOC Os01g66070; acetyltransferase 1
(gna1) (LOC Os09g31310) with a distinct expression
pattern compared to its paralog LOC Os02g48650
(PCC value, 0.24); and paralogous genes OsMADS8 and
OsMADS7, which shows very similar expression patterns
(PCC value, 0.92) (Figure 5). As expected, the functional
dominance of Ehd3 and Gna1 was well supported by the
phylogenomic analysis.

Meta-expression analysis of TFs to identify

candidates for diverse applications

We retrieved sequence information for putative rice TF
and TR genes that are summarized in PlnTFDB and
conducted a meta-expression analysis. Our in-house meta-
expression databases included Affy anatomy, Affy abiotic
and Affy biotic data sets, which were generated from
Affymetrix array-based data to analyze gene expression
under anatomy, abiotic and biotic stress treatments,
respectively. The response of TF- or TR-encoding genes
to hormones was analyzed using Agilent array-based
expression data sets (44). Affymetrix-based data comprises
expression profiles for 35 421 genes while 25 044 genes are
represented in the Agilent-based hormone data. We were
able to analyze expression profiles of 2139 and 1822 TF
and TR genes using the Affymetrix and Agilent data sets,
respectively.

Meta-expression analysis revealed that 273 genes are
preferentially expressed in specific tissues or organs.
Among them, 27 genes are preferentially expressed in
above-ground vegetative parts, 59 in the root, 48 in
SAMs and panicles, 29 in anthers and pollen, 46 in seeds
and 64 genes are ubiquitously expressed in all analyzed
tissues (Figure 6A; Supplementary Table S4). To suggest
the potential candidates for genetic studies that solely
function in monocots or rice, we identified monocot and
rice-divergent genes (Supplementary Table S5). Similar to
groups having different anatomical expression patterns,
455 genes showed a differential expression pattern in
response to 4 abiotic stresses. These include 83 genes
induced by drought stress, 46 by salinity stress, 214 by
cold stress and 112 by submergence stress (Figure 6B;
Supplementary Table S6). In addition, 179 genes were
responsive to infection of various pathogens. Among
them, 14 genes were responsive to Magnaporthe grisea,
29 to Magnaporthe oryzae, 41 to rice stripe virus, 31 to
Xanthomonas oryzae pv. oryzae and 64 genes to brown
planthopper (Figure 6C; Supplementary Table S7). Finally,
512 genes showed differential accumulation in response to
at least one of the six hormone treatments (i.e. abscisic acid,
jasmonic acid, indole acetic acid, trans-Zeatin, gibberellin
and brassinolide) (Figure 6D; Supplementary Table S8).
A detailed description of genes in each meta-group is
summarized in the notes of Supplementary Tables S4–S8.

Materials and methods

Identification of rice TFs and TRs

Information regarding genome-wide TFs and TRs in rice
was retrieved from PlnTFDB (34). Sequences of these puta-
tive TFs and TRs were downloaded from RGAP MSU v7.
The alternative splicing products of a locus were addressed
with representative loci with transcript evidence (41). Obso-
lete RGAP MSU loci were eliminated from the list.

Classification of tissue-preferential or

stress-responsive featured groups

Microarray data sets for meta-expression analysis were
downloaded from NCBI GEO Affymetrix collections.
Expression profiles in anatomical samples were retrieved
from the Rice Oligonucleotide Array Database (45). In
addition, 145 abiotic stress transcriptomes and 103 biotic
stress transcriptomes were downloaded and integrated into
the resource. For the hormone transcriptomes, Agilent
microarray samples under accession GSE39429 described
in RicExpro (44) were used. Affymetrix data sets were
normalized with the R package affy using the MAS5

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
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Figure 4. PCC distribution of rice genes that are previously characterized for their role in morphological or physiological traits using loss-of-function

studies and their closest paralog genes in the family. PCC score distribution is shown on the X -axis; Y -axis indicates the number of pairs with given

PCC value (red box). The green box indicates pairs that correspond to a smaller PCC range (>0.5). ‘a’ indicates the total number of characterized TF

genes that are related to morphological or physiological traits via loss-of-function studies; ‘b’, the total number of characterized TFs and their paralog

pairs lacking an Affymetrix probe for at least one paralog or without unique probes; ‘c’, the total number of TF genes with no closest paralog in a

subclade of the phylogenetic tree.

method. For anatomical samples, normalized intensity
values were log2-transformed, and log2 fold-changes were
estimated for stress transcriptomes. All probe IDs were
mapped to the RGAP MSU loci based on the sequence
similarity. For genes with two or more probes in the array,
the probe with the highest mean expression across all
samples was selected.

Raw data preprocessing and expression

quantification for RNA-Seq anatomy data sets

We downloaded 25 raw single-end data sets that con-
sist of 9 tissue types from DNA Data Bank of Japan
(DDBJ) (Supplementary Table S9). After read preprocessing
with Trimmomatic (46), quality filtered reads were mapped
to rice reference genome IRGSP-1.0. Mapped reads to
genomic regions were estimated using featureCounts (47).
The raw counts from the featureCounts were fed to DESeq2
package for count normalization (48) and integrated into
the database.

Co-expression analysis

Using the microarray data sets, we identified the most co-
expressed candidates of an input gene by the PCC method.
To integrate probable protein interaction information
from previous studies to the co-expressed genes, we
obtained rice protein–protein interaction (PPI) information
from the IntAct molecular interaction database (49) and
also retrieved Arabidopsis PPI from The Arabidopsis
Information Resource (50).

Statistical analysis

Tissue-specific or tissue-preferential genes were estimated
with the Tau method, which was previously shown to be
superior to other methods (51). A Tau score closer to zero
indicates broad gene expression. Therefore, we used a cut-
off of Tau <0.15 to define ubiquitously expressed genes.
Because some tissue types are related, e.g. leaf and flag leaf
or seed and endosperm, we chose a less stringent cut-off

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz061#supplementary-data
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Figure 5. Illustration of phylogenomics analysis utility using characterized genes and their closest paralog for (A) Plant homeodomain family, (B)

GCN5-related N-acetyltransferases family and (C) the MADS-box family. Red box indicates paralog pairs and their expression pattern. Red arrow

indicates characterized gene(s) of that pair.
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Figure 6. Heatmaps of featured gene expression groups that are derived from meta-expression analysis of (A) anatomical samples, (B) abiotic stress

samples, (C) biotic stress samples and (D) hormone-treated samples. The number of genes per group is shown in parentheses after the group name.

For stress and hormone-treated featured groups, a statistical cut-off of >2 log2 fold-change at P < 0.05 was used.

of Tau >0.6 for preliminary screening of tissue-preferential
genes. From this initial gene set, we applied K-means clus-
tering by applying a Euclidean distance method and further

refined the screened group. As an alternative, we also used
Sprent’s parametric method (52), which effectively detects
specific genes from two or three correlated tissue types.
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For stress-responsive genes, fold-change values for similar
profiles were combined, and a one-sample, one-tailed t-test
was conducted to determine significant gene expression, i.e.
>2-fold at P < 0.05 for abiotic, biotic stress and hormone
treatments. Gene clustering analysis was performed with
MeV software (http://mev.tm4.org/#/welcome), and the R
program was used for statistical analysis.

Data source

Sequence information on TFs and TRs were retrieved from
RGAP MSU v7. Orthologs were identified with InParanoid
v4.1 (53) and the OMA browser (54). These data sets
were used to define monocot- and rice-divergent genes.
In addition, TMHMM v2 (55), the plant-specific myris-
toylation predictor (56), SignalP v3 (57) and ngLOC (58)
were used to predict transmembrane domains, N-terminal
myristoylation sites, N-terminal signal peptides and protein
subcellular localization, respectively. Gene-indexed mutant
information was collected from the literature (59) and
from the latest publications on the generation of 1504
mutants in ‘Kitaake’ rice (11). To construct phylogenetic
trees, we aligned the protein sequences from representative
RGAP MSU models via ClustalW v2 (60). Trees were gen-
erated by using the PhyML maximum likelihood method
with the JTT model (61). A gene expression heatmap was
generated with the JpGraph PHP library (http://jpgraph.
net/).

Database architecture

The database was constructed with PHP server-side pro-
gramming language (http://php.net/), and the various data
sets, including transcriptome data, were stored in a MySQL
relational database (http://www.mysql.com/). This resource
is hosted on the Apache HTTP Server (https://httpd.apache.
org/). Interactive websites were created with HTML5, CSS
and JavaScript. All these utilities are based on the Linux
operating system.

Supplementary data

Supplementary data are available at Database Online.
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