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Abstract

Multiple Myeloma (MM) is a B-cell malignancy that is characterized by osteolytic bone lesions. It has been postulated that
positive feedback loops in the interactions between MM cells and the bone microenvironment form reinforcing ‘vicious
cycles’, resulting in more bone resorption and MM cell population growth in the bone microenvironment. Despite many
identified MM-bone interactions, the combined effect of these interactions and their relative importance are unknown. In
this paper, we develop a computational model of MM-bone interactions and clarify whether the intercellular signaling
mechanisms implemented in this model appropriately drive MM disease progression. This new computational model is
based on the previous bone remodeling model of Pivonka et al. [1], and explicitly considers IL-6 and MM-BMSC (bone
marrow stromal cell) adhesion related pathways, leading to formation of two positive feedback cycles in this model. The
progression of MM disease is simulated numerically, from normal bone physiology to a well established MM disease state.
Our simulations are consistent with known behaviors and data reported for both normal bone physiology and for MM
disease. The model results suggest that the two positive feedback cycles identified for this model are sufficient to jointly
drive the MM disease progression. Furthermore, quantitative analysis performed on the two positive feedback cycles
clarifies the relative importance of the two positive feedback cycles, and identifies the dominant processes that govern the
behavior of the two positive feedback cycles. Using our proposed quantitative criteria, we identify which of the positive
feedback cycles in this model may be considered to be ‘vicious cycles’. Finally, key points at which to block the positive
feedback cycles in MM-bone interactions are identified, suggesting potential drug targets.
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Introduction

Multiple Myeloma (MM) is a B-cell malignancy associated with

high morbidity and short survival duration post-diagnosis. 60–

70% of MM patients have bone involvement at the time of

diagnosis (60% of them with bone pain and 25% of them with

bone fracture), and 90% of MM patients will develop bone lesions

during the course of the disease [2–5]. MM can be associated with

a systematic thinning of bone or with the formation of focal

osteolytic lesions [6]. The bone lesions result in osteopenia and

pathologic fractures (i.e., compression fractures of the spine),

which significantly impact on patient morbidity, performance

status (including immobility, loss of independence and loss of

dignity) and survival duration [3].

Bone is a dynamic tissue that undergoes remodeling in adults,

periodically being resorbed by osteoclasts followed by new bone

formation by osteoblasts. Coordinated coupling between osteoclast

and osteoblast activity is necessary to maintain the balance be-

tween bone resorption and bone formation in adults [7,8]. How-

ever, coordination between osteoclasts and osteoblasts is dysreg-

ulated in several disease, such as osteoporosis [9] and Paget’s

disease [10], resulting in an imbalance between bone resorption

and bone formation.

In patients with MM, the imbalance between bone resorption

and formation occurs through increased osteoclast activity and

a lesser increase in osteoblast activity, leading to net bone

destruction [5]. The bone loss is often focal and significant, and

may lead to the collapse of vertebrae or the breakage of long

bones. MM cells cause bone loss through simultaneously

promoting osteoclast activity and inhibiting osteoblast activity by

secreting various soluble growth factors and cytokines, and by

modifying cell-cell adhesion. In addition, growth factors released

by bone resorption together with altered cell-cell adhesion

facilitate the proliferation of MM cells [5,11]. It has been

postulated that positive feedback loops in the interactions between

MM cells and the bone microenvironment form reinforcing

‘vicious cycle(s)’ [12,13], resulting in elevated bone resorption,

which in turn, is then coupled with enhanced MM cell population

growth in the bone marrow cavity.

Within the past two decades, a number of prospective

components and interactions involved in MM-bone positive

feedback cycles have been identified through experiments. Based

on these experimental observations, much effort has been made by

biologists to integrate the known components and interactions,

leading to a few candidate conceptual models of MM-bone positive

feedback cycles [5,14–16]. Despite advances in a systematic
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representation of MM-bone interactions, the dynamics of these

interactions and their relative importance are unknown. The issues

can be addressed by computational modeling, as it can provide

systematic and quantitative insights into MM-bone feedback loops

and the way these cycles may interact to cause bone destruction.

The computational modeling of MM-bone interactions involves

trade-offs. While a more complete model may be more accurate,

waiting until everything is known about the system is not practical.

On the other hand, including everything that is currently known

may lead to a computational model that is impractical because

many unmeasured parameters would have to be estimated.

Further, the additional model complexity may result in little gain

in understanding. A balance is required between model simplicity

and complexity to develop a realistic model that can help address

significant questions as to the origin and management of MM-

induced osteolysis. Here a key question arises: can the most

important mechanisms identified by biologists appropriately drive

and explain the MM disease evolution? In terms of a new and

tentative computational model of MM-induced osteolysis, it is

clearly desirable to include only the most important mechanisms in

MM-induced osteolysis.

In comparison to the growing numbers of components and

interactions identified by biologists to date, there has been very little

investigation of the dynamics of the interplays of these interactions

by mathematical/computational modelers. To our knowledge,

Ayati et al. [17] recently developed the only mathematical model

investigating the dynamics of the MM-bone vicious cycle. In the

case of untreated MM, the mathematical model appears to capture

some qualitative features of MM disease progress (i.e., an increase in

MM-cell density and a decrease in bone volume) in basic multi-

cellular units (BMUs) of trabecular bone. However, molecular based

cell-cell signaling pathways have not been explicitly modeled, but

rather are abstracted into three phenomenological pathways (MM

cells inhibit osteoblasts, MM cells increase osteoclasts and bone

resorption stimulates tumor growth). For this reason, there is no

clear connection between model parameters and the bone

physiology (or the MM pathology).

In this paper, we develop a computational model involving

feedback cycles between MM and bone cells, and clarify whether

the most important cell-cell signaling implemented in this model

appropriately drive MM disease progression. The interactions

between MM cells and the bone microenvironment have to be

properly represented in the model, and then the dynamics of the

MM-bone interactions have to be investigated to test whether this

model captures major features of MM disease progression.

Consequently, two most important tasks are required to develop

a suitable model of MM-bone interactions: (i) selecting the most

important mechanisms driving MM disease progression; and (ii)

parameterizing these mechanisms using chemical and physical

model principles informed by biological data. At the same time

the proposed computational model is to be kept as simple as

possible.

This computational model is based on a previous computational

model of bone remodeling (in the absence of MM cells) developed

by Pivonka et al. [1,18]. While Pivonka et al. ’s model [1] already

explicitly considers several regulatory factors together with bone

cells to describe the couplings between bone resorption and bone

formation, further bone regulatory factors believed to be dysregu-

lated during MM disease progression need to be incorporated into

this bone model. By explicitly considering interleukin-6 (IL-6) and

multiple myeloma-bone marrow stromal cell (MM-BMSC) adhe-

sion related pathways, a new tentative MM-bone model is

developed, and two positive feedback cycles in MM-bone inter-

actions can then be identified in this model. The MM-bone model is

a system of ordinary differential equations (ODEs) that are solved by

numerical integration. The parameters of this model are estimated

based on reported values in the literature, and when required, from

best-fit parameter estimates from a least-square optimization

criterion. The dynamics of MM and bone cells predicted by this

model are in accord with biological and clinical observations, both

in the normal and disease states. The qualitative and quantitative

comparison of dynamic simulations with features of the MM disease

progression (i.e., increase in the density of bone cells, in the density

of MM cells, and in the concentrations of IL-6 and receptor

activator of nuclear factor-kB ligand (RANKL), together with

decrease in the concentration of osteoprotegerin (OPG), and

decrease in the bone volume) shows that the proposed computa-

tional model appropriately reflects MM disease progression. In

particular, two positive feedback cycles identified in the computa-

tional model are sufficient to jointly drive MM disease progression.

With two positive feedback cycles identified, the relative

importance of each cycle is not completely clear. While the

terminology ‘vicious cycle’ is commonly used in the biological/

cancer literature to identify positive feedback loops between the

cancer cells and their microenvironment, it is not usually given a

quantitative definition. In this paper, quantitative analysis is

performed based on comparing total changes of MM-cell density

and bone volume over time, when both positive feedback cycles

are intact and when either one or the other, or both, of the positive

feedback cycles are disabled (i.e., blocked). Using our proposed

quantitative criteria, the relative contribution of the two positive

feedback cycles is clarified and ‘vicious cycles’ identified.

Furthermore, our analysis identifies key regulation molecules that

if blocked, would inhibit the positive feedback cycles in MM-bone

interactions, thereby suggesting possible drug targets appropriate

for either the alleviation of MM-tumor burden or the improve-

ment in MM-induced bone lesions.

The paper is organized as follows. In Section Methods, the

MM-bone model structure is described. In Section Results, the

governing equations of the (MM-free) bone model and MM-bone

model are developed. The progression of MM disease is simulated

numerically from normal bone physiology in the absence of MM

cells to a well established MM disease state in the presence of MM

cells. Simulations are qualitatively and quantitatively compared

with clinical observations for normal bone physiology and for MM

disease. In Section Discussion, quantitative analysis is performed

on the positive feedback cycles that are identified and validated in

the MM-bone model.

Methods

2.1 The structure of the MM-bone model
Before positive feedback cycles in the interactions between MM

cells and the bone microenvironment can be investigated, the

bone microenvironment has to be well understood, as it is a

complex system in its own right. Two bone homeostasis models

[1,19], which incorporate parathyroid hormone (PTH), RANKL/

OPG/RANK pathway and transforming growth factor b (TGF-b)

regulatory couplings between the osteoblast lineage cells and

osteoclast lineage cells, were proposed to drive the dynamics of

bone cells through the underlying molecular mechanisms. For the

model perturbations investigated in Lemaire et al. [19] (e.g.,

adding external bone cells into the bone model), there is

qualitative agreement between experimental and clinical obser-

vations, suggesting that the molecular mechanisms included in the

model capture key couplings between the osteoblastic lineage and

the osteoclastic lineage. Because the Pivonka et al. model [1] is

derived from the Lemaire et al. model [19], the two bone models

Modelling of Multiple Myeloma-Bone Interactions
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are similar in their behavior. However, one important difference

is that while it is assumed that OPG is secreted from osteoblast

precursors and RANKL is expressed on active osteoblasts in

Lemaire et al. [19], in Pivonka et al. [1] these assumptions are

reversed (i.e., RANKL is expressed on osteoblast precursors and

OPG is secreted by active osteoblasts). There is extensive

biological evidence that supports the Pivonka et al. model [1],

and it clearly makes sense at the level of the BMU [20]. As a

result, our attempt to model MM-bone interactions is based on

the bone model of Pivonka et al. [1].

Figure 1 illustrates the structure of this bone model, and the

interactions between cells of the osteoblastic lineage and osteo-

clastic lineage are highlighted by regulation mechanisms 1, 2 and

3. As described in Table 1, PTH stimulates RANKL expression on

the surface of osteoblast precursor cells (OBp) while PTH inhibits

OPG secretion by active osteoblasts (OBa). RANKL binds to

receptor activator of nuclear factor-kB (RANK) on the surface

of osteoclast precursors (OCp) triggering the differentiation of

osteoclast precursors into active osteoclasts (OCa), which is

inhibited by OPG due to its competitive binding to RANKL.

The relative RANKL and OPG concentration controls osteoclast

differentiation and number. In addition, active osteoclasts resorb

bone leading to TGF-b being released into the bone microenvi-

ronment. The released TGF-b has various actions, including

stimulating the differentiation of uncommitted osteoblasts (OBu),

inhibiting the differentiation of osteoblast precursors and facilitat-

ing the apoptosis of active osteoclasts.

Taking the bone cell population model of Pivonka et al. [1], we

first extend this bone model by incorporating regulatory factors

that are important for MM in the context of the bone micro-

Figure 1. Schematic of the MM-bone model structure. Regulation mechanism 1: PTH stimulates RANKL expression on the surface of osteoblast
precursors while inhibiting OPG secretion by active osteoblasts. Regulation mechanism 2: RANKL binds to RANK, which promotes the differentiation
of osteoclast precursors, while OPG inhibits the RANKL-RANK binding. Regulation mechanism 3: Bone resorption released TGF-b stimulates
uncommitted-osteoblast differentiation, inhibits osteoblast-precursor differentiation and facilitates the apoptosis of active osteoclasts. Regulation
mechanism 4: MM cells adhere to BMSC, enabling IL-6 secretion by BMSC, RANKL expression on the surface of BMSC and MM-cell proliferation.
Regulation mechanism 5: IL-6 facilitates MM-cell proliferation and stimulates RANKL expression on the surface of osteoblast precursors. Regulation
mechanism 6: bone resorption released TGF-b stimulates IL-6 production by BMSC. Regulation mechanism 7: OPG is internalized and degraded by
MM cells.
doi:10.1371/journal.pone.0027494.g001
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environment (see Section 3.1.1), and further develop the extended

bone model by incorporating MM cells and the most important

intercellular interactions between MM cells and the bone micro-

environment (see Section 3.2.1). Figure 1 illustrates the proposed

structure of the MM-bone model. The interactions between MM

cells and bone cells are highlighted by regulation mechanisms 4, 5,

6 and 7. These are briefly described in Table 1. Each mechanism

and its biological justification are now discussed in turn.

Bone marrow stromal cells (BMSC) are considered as early

progenitors derived from mesenchymal stem cells (MSC) and

have potential to commit to various mesenchymal cell lineages

(including the osteoblast cell lineage) [21,22]. Accordingly, BMSCs

are modeled as uncommitted osteoblasts (OBu) rather than

osteoblast precursors (OBp) in the MM-bone model. Several

known conceptual models [14,15] indicate that MM cells adhere

to BMSCs mediated by the adhesion molecules such as very-late

antigen 4 (VLA-4) expressed on the surface of MM cells, and

vascular cell adhesion molecule 1 (VCAM-1) expressed on the

surface of BMSCs. The MM-BMSC adhesion appears to play a

number of important roles in MM-bone positive feedback cycles.

For example, MM-BMSC adhesion induces MM-cell proliferation

through activation of phosphatidylinositol 3-kinase (PI-3K),

mitogen-activated protein kinase (MAPK) and nuclear factor-kB

(NF-kB) pathways in MM cells [14,23]. Importantly, NF-kB

activation in BMSC induces increased production of IL-6 by

BMSCs [14]. Furthermore, MM-BMSC adhesion increases

production of RANKL by BMSCs [14]. All these aspects are

captured in the MM-bone model and are highlighted in the

diagram by regulation mechanism 4.

IL-6 is an ‘osteoclastogenic factor’ that in the bone microen-

vironment is only produced by cells of the osteoblastic lineage

[24,25]. TGF-b released from the bone matrix during resorption,

also stimulates IL-6 secretion by BMSCs through the activation

of NF-kB pathway [14,26]. IL-6 in turn stimulates RANKL

production by osteoblast precursors through the STAT3-depen-

dent pathway (while PTH stimulates RANKL production through

the PKA pathway) [27]. The IL-6 concentrations are usually small

in the normal bone microenvironment, and so are thought not to

exert significant effects on osteoclast activity under conditions of

normal bone physiology [28–30]. However in patients with MM,

IL-6 does become significant in the regulation of bone cells [31].

IL-6 is produced in significant quantities by BMSCs in response

to MM-BMSC adhesion and activation of the NF-kB sig-

naling pathway [14,32–34]. More specifically, both TGF-b and

MM-BMSC adhesion regulate IL-6 secretion by BMSC, and the

effect on both regulatory pathways is synergistic [35], leading to

substantially increased IL-6 concentrations in the context of MM.

IL-6 is also known to be one of the most important factors

stimulating MM-cell proliferation [23]. IL-6 stimulates (via the

triple complex IL-6/gp130/IL-6R) the activation of PI-3K,

MAPK and NF-kB signaling pathways, which allow MM cells to

proliferate and resist the induction of apoptosis by conventional

therapeutics such as dexamethasone [23]. It is noted that these

down-stream signaling pathways are also triggered by the MM-

BMSC adhesion complex [14,36,37]. The roles of IL-6 on MM-

cell proliferation and osteoclast activity, as well as production of

IL-6 in patients with MM, are highlighted in the diagram by

regulation mechanisms 5 and 6 respectively.

Osteoclast activity is directly controlled by the RANKL/OPG/

RANK pathway. Further RANKL is produced by osteoblast

precursors in response to PTH and IL-6 stimulation [27].

Additional RANKL is produced by BMSCs in response to MM-

BMSC adhesion [14]. On the other hand, OPG is internalized

and degraded by MM cells [38], tending to reduced local OPG

concentrations. The increase in RANKL and decrease in OPG

leads to an elevated RANKL/OPG ratio and so increased

osteoclast activation. This is highlighted in the diagram by

regulation mechanisms 4 and 7 respectively.

MM cells are eliminated too. For example, the apoptosis of MM

cells occurs due to the actions of T cells [39,40], but this apoptosis

may be inhibited by the action of TGF-b on T cells [41].

However, for the purpose of simplifying our model, the apoptosis

rate of MM cells is assumed constant. More detailed regulations of

anti-apoptosis of MM cells will be considered in future models.

In addition to IL-6, other soluble factors also contribute to MM-

cell population growth and increased bone resorption although

their contributions appear to be less than those of IL-6. For

example insulin-like growth factor 1 (IGF-1), which is released

from the bone matrix during bone resorption, stimulates MM-cell

proliferation and survival [23]. Vascular endothelial growth factor

(VEGF) is produced by MM cells and stimulates the growth of

blood vessels which supports MM cell growth [42], leading to a

positive autocrine feedback loop. Macrophage inflammatory

protein-1a (MIP-1a) is secreted by MM cells [43] and activates

VLA-4 on the surface of MM cells, which enhances MM-BMSC

adhesion mediated by VCAM-1 binding to VLA-4 binding

[44,45]. The enhanced MM-BMSC adhesion stimulates IL-6

and RANKL production by BMSCs, suggesting that MIP-1a

Table 1. The Description of regulation mechanisms involved in the MM-bone model.

models Mechanisms description

Bone model Regulation mechanism 1 PTH stimulates RANKL expression on the surface of osteoblast precursors, while inhibiting OPG secretion by active
osteoblasts.

Regulation mechanism 2 RANKL binds to RANK, which promotes osteoclast precursor differentiation, while OPG inhibits RANKL-RANK
binding.

Regulation mechanism 3 Bone resorption released TGF-b stimulates uncommitted-osteoblast differentiation, inhibits osteoblast-precursor
differentiation and facilitates apoptosis of active osteoclasts.

MM-bone model Regulation mechanism 4 Adhesion of MM cells to BMSC induces the proliferation of MM cells, production of IL-6 by BMSC and expression of
RANKL on the surface of BMSC.

Regulation mechanism 5 IL-6 facilitates MM-cell proliferation and RANKL expression on the surface of osteoblast precursors.

Regulation mechanism 6 Bone resorption released TGF-b stimulates IL-6 production by BMSC.

Regulation mechanism 7 OPG is internalized and degraded by MM cells.

doi:10.1371/journal.pone.0027494.t001
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increases bone resorption by RANKL-mediated pathways [5].

The enhanced MM-BMSC adhesion also induces MM cell

proliferation due to increased IL-6 concentrations, which in turn

promotes secretion of MIP-1a by MM cells and forms a positive

feedback cycle [46]. Given our goal for creating a simple

computational model by incorporating representative known factors

rather than all known factors, in this computational model all these

soluble factors (including IGF-1, VEGF and MIP-1a) are

considered to have much smaller effects on MM-cell prolifera-

tion than those triggered by IL-6. We acknowledge that this

assumption is a potential shortcoming of this computational

model.

In patients with MM, it has also been proposed that Wnt

signaling is blocked by Dickkopf-1 (DKK-1) [47] and by secreted

frizzled-related protein-2 (sFRP-2) [48], which are both secreted

by MM cells [49,50], leading to the inhibition of bone formation

in MM disease. However, the precise mechanisms by which

DKK-1 and sFRP-2 regulate the osteoblast functions remain to

be determined [6,12]. In the MM-bone model presented here we

do not incorporate these poorly understood mechanisms. We

acknowledge that this assumption might be another shortcoming

of the computational model. Mechanisms associated with

inhibition of MM cells on bone formation will be considered in

future models.

Taken together, all the regulation mechanisms in this model are

found to form two positive feedback cycles. As Figure 2 shows, IL-

6 secreted by BMSCs induces increased RANKL expression on

osteoblast precursors, leading to bone resorption. TGF-b released

during bone resorption, in turn, stimulates the secretion of IL-6 by

BMSCs. This ‘positive feedback loop’ forms a positive feedback

cycle within the bone microenvironment (identified as cycle A in

Figure 2), which is enhanced by the increased IL-6 concentrations

due to MM-BMSC adhesion stimulation. This cycle does not

normally have a significant effect on bone resorption, because

TGF-b acting alone only stimulates a small increase in IL-6

secretion by BMSCs in the context of normal bone physiology.

However, in the presence of MM cells and with the simultaneous

stimulation of TGF-b and MM-BMSC adhesion, a substantial

increase in IL-6 secretion by BMSCs occurs. The elevated IL-6

concentrations now contribute to the positive feedback cycle,

producing significant impacts on bone resorption.

On the other hand, IL-6 and MM-BMSC adhesion stimulate

MM-cell proliferation, which in turn promotes IL-6 production

by BMSC and enhances MM-BMSC adhesion. This leads to

another ‘positive feedback loop’, so forming a second cycle

between MM cells and the bone microenvironment (identified as

cycle B in Figure 2). Due to the dual roles played by IL-6 in these

positive feedback cycles (both an osteoclastogenesis factor and a

stimulatory factor of MM-cell proliferation), the first and the

second cycles interact with each other, enhancing IL-6 produc-

tion. This induces a positive feedback cycle between MM cells

and the bone microenvironment triggered by either TGF-b or

MM-BMSC adhesion. Two additional signaling pathways, MM-

BMSC adhesion stimulating RANKL expression on the surface of

BMSCs (identified as pathway C in Figure 2), and MM-cells

degrading OPG (identified as pathway D in Figure 2), also

serve to enhance the positive feedback cycles between MM cells

and the bone microenvironment by increasing the RANKL/

OPG ratio.

2.2 Cellular response to simultaneous stimulation by two
ligands

In the bone remodeling model of Pivonka et al. [1], cell-cell

regulatory communication is represented by chemical mass-action

equations, while cellular process are represented by transfer

functions, usually Hill functions of the form:

pact~
L

LzKM1
, ligand activates cell behavior ð1Þ

prep~
KM2

LzKM2
, ligand represses cell behavior ð2Þ

where pact and prep represent the ‘activator’ or ‘repressor’ func-

tion respectively; L is the ligand concentration; and KM1 and

KM2 represent the half-maximal concentrations respectively, which

are the ligand concentrations inducing a half-maximal cell

response.

In the proposed MM-bone model, three cases of cellular

processes are simultaneously controlled by two ligands (rather than

by a single ligand): (i) RANKL production by osteoblast precursors

is co-regulated by PTH and IL-6, (ii) MM-cell proliferation is co-

regulated by MM-BMSC adhesion and IL-6; and (iii) IL-6

production by BMSC is co-regulated by TGF-b and MM-BMSC

adhesion. Accordingly, equations (2) and (3) (used in the Pivonka

et al bone model [1]) need to be extended to appropriately model

the cellular process in response to stimulation by two ligands (L1

and L2).

The feature of simultaneous stimulation by two ligands is that

there may exist intracellular interactions between the two separate

ligand signaling pathways, which induce nonlinear cellular

outputs. For our current needs, the intracellular interaction may

induce an ‘enhanced’ cellular response (that is, a response that is

greater than the cellular response to one ligand stimulation alone,

but lower than the sum of cellular responses to each ligand

stimulation acting separately), or a ‘synergistic’ cellular response

(that is, a response that is greater than the sum of cellular

responses to each ligand stimulation acting separately). For the

intermediate case, the intracellular interaction may induce an

‘additive’ cellular response (that is, a response that is exactly equal

to the sum of cellular responses to each ligand stimulation acting

separately). The biological evidence indicates that RANKL

production by osteoblast precursors is ‘enhanced’ under co-

regulation by PTH and IL-6 [27], and that MM-cell proliferation

is also ‘enhanced’ under co-regulation by MM-BMSC adhesion

and IL-6 [23]; while IL-6 production by BMSC is ‘synergistic’

under co-regulation by TGF-b and MM-BMSC adhesion because

the ratio of IL-6 production by two ligands stimulation compared

to the sum of each ligand separately is between 1.45-fold and 2-

fold [35].

Given the above description of the observed behaviors,

mathematically, we define a response function f (L1,L2) which

meets the following constraints:

N There is at least a nonlinear term in the definition of the

transfer function to reflect non-linear intracellular interactions

between the two inputs.

N For the ‘enhanced’ response, the response function f is greater

than either p1 and p2 but lower than the sum of p1 and p2 (i.e. f

. p1 and f . p2 but f , p1+p2), while for the synergistic

response, the response function f . p1+ p2.

The following function meets the above constraints (and has

been successfully applied in modeling gene regulatory motifs [51]

and synergistic effects of two inhibitors respectively [52], and so is

a candidate response function to model cellular responses when

there is stimulation by two ligands:

Modelling of Multiple Myeloma-Bone Interactions
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f (L1,L2)~p1zp2zc:p1
:p2,

p1~
L1

L1zKM1
,p2~

L2

L2zKM2

{1ƒcv0, for 0enhanced0 reponse

c~0, for 0additive0 response

cw0, for 0synergistic0 response

ð3Þ

where p1 and p2 represents the ‘activator’ function for each ligand,

L1 or L2 (although we take the ‘activator’ function for example in

here it should be noted that p1 and p2 can also represent the

‘repressor’ function for each ligand L1 or L2), L1 and L2 are the

ligand concentration respectively, and KM1 and KM2 are the half-

maximal concentrations. c is a parameter that may be calibrated

to reflect the enhanced, the additive, or the synergistic effects that

are observed experimentally.

Figure 3 illustrates the functional dependence of f on L1 and L2

concentrations. To meet the functional requirements described

above, c has to be greater than or equal to -1. For c . -1, the

function f increases with increase in L1 and L2 concentration, and

the rate of change of f to an increase in ligand is more rapid with

an increasing c value. We choose c to be -1 for the enhanced two-

ligand interactions for simplicity, and c is calibrated to be about 25

for the synergistic response. As demonstrated below, simulations

using these parameter values appear to be in good agreement with

observations for IL-6 and RANKL in normal bone physiology,

and as demonstrated later, there is also good agreement at the

various stages of MM disease.

Results

3.1 Bone model in the absence of MM cells
In the absence of MM cells, several behaviors of normal bone

physiology have been shown to be captured by the bone

remodeling model of Pivonka et al. [1,18]. However, to include

the interactions between MM cells and bone cells adequately, this

bone remodeling model needs to be extended to incorporate the

mechanisms of TGF-b-stimulated IL-6 production by BMSC and

IL-6-stimulated RANKL expression on the surface of osteoblast

precursors. The newly introduced IL-6 should not significantly

change the original behaviors between osteoclast and osteoblast

functions as captured in the model of Pivonka et al. [1,18] under

Figure 2. Schematic of the positive feedback cycles in the MM-bone model. The positive feedback loop A forms the first cycle within the
bone microenvironment, which is enhanced by the increased IL-6 concentrations due to MM-BMSC adhesion. IL-6 secreted by BMSC stimulates
elevated RANKL expression on the surface of osteoblast precursors and further increased active osteoclasts, leading to bone resorption and TGF-b
released from bone resorption. Released TGF-b, in turn, stimulates more IL-6 secretion by BMSC. The positive feedback loop B forms the second cycle.
Simultaneous stimulation of MM-BMSC adhesion and TGF-b induces substantial IL-6 secretion by BMSC, which (together with MM-BMSC adhesion)
causes MM-cell proliferation and further enhanced MM-BMSC adhesion. The first and the second cycle interact with each other by enhancing IL-6
production. Two regulations, MM-BMSC adhesion stimulating RANKL expression on the surface of BMSC and MM-cell degrading OPG, enhance the
positive feedback cycles of MM-bone interactions through increasing IL-6 concentrations.
doi:10.1371/journal.pone.0027494.g002
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normal bone conditions, as this has been extensively validated.

Consequently, the IL-6 related parameters need to be carefully

estimated, allowing that IL-6 produces insignificant impacts on the

normal bone physiology, but does produce significant effects in the

MM disease state.

In this next section, we present in detail how IL-6-related

mechanisms are incorporated into the previous Pivonka et al. [1]

model and demonstrate that our extended (MM-free) bone model

correctly retains the osteoclast and osteoblast behaviors as occurs

in the original model of Pivonka et al. [1,18]. The calibration of

the new extended bone model is made to quantitatively reflect the

known minor IL-6 role(s) in normal bone physiology.

3.1.1 Formulation of governing equations. According to

the bone model of Pivonka et al. [1] the dynamic equations of

describing bone cell populations are as follows:

dOBp

dt
~DOBu

:OBu
:pTGFb

act,OBu
{DOBp

:OBp
:pTGFb

rep,OBp
ð4Þ

dOBa

dt
~DOBp

:OBp
:pTGFb

rep,OBp
{AOBa

:OBa ð5Þ

dOCa

dt
~DOCp

:OCp
:pRANKL

act,OCp
{AOCa

:OCa
:pTGFb

act,OCa
ð6Þ

where, OBu, OBp, OBa, OCp and OCa represent uncommitted

osteoblasts, osteoblast precursors, active osteoblasts, osteoclast

precursors and active osteoclasts respectively. DOBu, DOBp and DOCp

represent the differentiation of OBu, OBp and OCp respectively.

AOBa and AOCa represent the apoptosis of OBa and OCa

respectively. pTGFb
act,OBu

, pTGFb
act,OCa

and pRANKL
act,OCp

represent ‘activator’

functions while pTGFb
rep,OBp

represents a ‘repressor’ function. These

‘activator’ and ‘repressor’ functions are defined by the Eq.(1) and

(2) respectively and are the same as those in the model of Pivonka

et al. [1].

Changes over time in the active osteoblast and osteoclast

populations relative to each other, result in changes in bone

volume, which is a ‘system output’ of the bone model. The

calculation of bone volume is the same to that in Pivonka et al.

[18]:

dBV

dt
~{kres

:OCazkform
:OBa ð7Þ

where BV represents normalized bone volume, kres and kform

represents relative rate of bone resorption and bone formation

respectively with the unit of %:pM{1:day{1.

In the extended bone model IL-6 production by BMSC/OBus is

stimulated by TGF-b. The dynamic equation describing IL-6

concentration is as follows:

dIL6

dt
~PIL6,dzbIL6

:OBu
:pTGFb

act,IL6
:(1{

IL6

IL6max

){DIL6
:IL6 ð8Þ

The molecular concentration changes and molecular reactions

occur much faster than cellular changes, and as a result of this

Figure 3. Functional dependence of f on L1 and L2 concentrations (c = -2, -1, 0, and 10 respectively, KM1 = 2 and KM2 = 3).
doi:10.1371/journal.pone.0027494.g003
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separation of time scales, it is appropriate to assume that molecules

and receptors are always at equilibrium. The quasi-steady state

concentration of IL-6 is solved from Eq.(8) as follows:

IL6~
PIL6,dzbIL6

:OBu
:pTGFb

act,IL6

bIL6
:OBu

:pTGFb
act,IL6

IL6max
zDIL6

ð9Þ

pTGFb
act,IL6~

TGFb

TGFbzKM,TGFb,IL6,act

ð10Þ

where, PIL6,d is the external production rate of IL-6 with the unit of

pM:day{1. bIL6 is the endogenous production of IL-6 by OBu

with the unit of day{1. IL6max is the maximum concentration of

IL-6. DIL6 is the degradation of IL-6. pTGFb
act,IL6 is the ‘activator’

function and KM,TGFb,IL6,act is the half-maximal concentration of

TGF-b promoting the production of IL-6.

RANKL production is controlled by both PTH and IL-6 in the

extended bone model, and so the calculation of RANKL

concentration at the steady state is updated from the Pivonka et

al. model [1] as follows:

RANKLeff ~RRANKL:OBp
:pligands

RANKL ð11Þ

pligands
RANKL~pIL6

act,RANKLzpPTH
act,RANKL{pIL6

act,RANKL
:pPTH

act,RANKL ð12Þ

pIL6
act,RANKL~

IL6

IL6zKM,IL6,RANKL,act

ð13Þ

RANKL~

PRANKL,dzbRANKL
:OBp

(1zKA,OPG
:OPGzKA,RANK

:RANK):(
bRANKL

RRANKL:pligands
RANKL

zDRANKL)

ð14Þ

where RANKLeff represents the ‘effective carrying capacity’ on the

surface of osteoblast precursors, which is the maximum concen-

tration of RANKL. KA,OPG and KA,RANK are the association rate

constant for RANKL binding to OPG and RANK respectively.

RRANKL is the maximal number of RANKL that can be expressed

on the surface of osteoblast precursors. PRANKL,d is the external

production rate of RANKL with the unit of pM:day{1. bRANKL is

the endogenous production of RANKL by each OBp cell with the

unit of day{1. DRANKL is the degradation of RANKL. pligands
RANKL is

the enhanced (c~{1) ‘activator’ function in response to

simultaneous PTH and IL-6 stimulation (see discussion for

Eq.(3)). pIL6
act,RANKL and pPTH

act,RANKL are the single ‘activator’

functions in response to PTH and IL-6 stimulation. KM,IL6,RANKL,act

is the half-maximal concentration of IL-6 on promoting the

production of RANKL.

The calculations of concentrations of TGF-b, PTH and OPG

are the same as described in Pivonka et al. [1] (see Supporting

Information S1).

3.1.2 Perturbations on bone model. Before perturbations

are performed to test the behavior of the extended bone model,

this model has to reach the steady state representing normal bone

physiology. To do this, the density of bone cells at steady state are

re-estimated here based on reported values for adults available in

the literature (see Table 2), and so are different to the bone-cell

densities used by Pivonka et al. [1,18]. The parameter values of the

extended bone model are carefully estimated so that re-estimated

bone-cell densities (see Table 2) are obtained when solved using

the routine ‘fsolve’ in the Matlab (see parameter estimates in

Table 3).

After this calibration, various perturbations of this model are

performed from steady state (by adding or removing cells or

signaling molecules) and the effects of the perturbations are

compared with the responses obtained in Pivonka et al. [1,18].

This allows us to clarify whether this extended bone model is able

to keep the original changes in density of bone cells and keep the

original changes in bone volume (as reported in the Pivonka et al.

model [1,18]). Perturbed cells or signaling molecules are expected

to quickly reach a new steady state and to quickly recover to the

original steady state when perturbations are removed, just as they

did in the Pivonka et al. model [1,18]. In the series of tests, all the

perturbations are added at day 20 and end at day 80 (after the

extended bone model has reached a new steady state). The

dynamic simulations are implemented using the routine ‘ode15s’

in the Matlab.

To evaluate whether IL-6 related parameters are well estimated

(to quantitatively reflect the IL-6 roles in this extended bone

Table 2. The initial values of densities of bone cells and MM
cells in the MM-bone model.

Variables Values Unit References or estimation

OBu/BMSC1 3.2761026 pM [21]; [76];

OBp
2 7.6761024 pM estimated;

OBa
3 6.3961024 pM [77]; [78];

OCp
4 1.2861023 pM [8];

OCa
5 1.0761024 pM [77]; [78];

MM6 3.2661021 pM [79]; [57];

Note 1: BMSC is 1/2.56105 of total bone marrow cells in adults [21]; the
estimated number of total cells in leg bone marrow is 4.461011 (#) (http://
bloodguys.com/blood-education); the volume of bone marrow in leg is 8.6% of
total bone marrow volume [76]; By assuming that cells in bone marrow are
evenly distributed in different bone types, the number of BMSC in adults is
2.056107 (#) ( = 4.461011/8.6%/2.56105). Given that MM is generally occurred
in the elder people and BMSC percentage in bone marrow decreases to
1/26106 in elder people aged 80 [21], the estimated BMSC number is corrected
to J of the number in adults, namely 5.126106 (#).
Note 2: It is assumed to be 1.2-fold greater than the number of active
osteoblasts (OBa).
Note 3: There are 1,26106 BMU [77] in the total body while there are about
102,103 active osteoblasts (OBa) per BMU [78]. Hence, we estimate OBa

numbers as 16109 (#).
Note 4: Active osteoclasts (OCa) includes 9 nuclei [8] because they are fused by
osteoclast precursors (OCp) differentiated cells. By assuming that OCp is 12-fold
of OCa, The estimated OCp number is 26109 (#).
Note 5: There are about 10,102 active osteoclasts (OCa) per BMU [78]. Hence,
we estimate OCa number as 1.676108 (#).
Note 6: Synthesis rate of M-protein by MM cells is 0.5,1.2610211 g/day/MM
cell; the half-life of M-protein is 11.6,17 days [79]; the volume of total blood in
the adult is 5L; the diagnosis of MM is required the concentration of M-protein
is greater than 30 g/L [57]. As a result, the estimated MM cell number at the
diagnosis is 5.161011 (#) ( = 30656 (log(2)/17)/1.2610211).
Note 7: All the estimated cell numbers (#) are based on the total human body.
They are converted into density (pM) by divided by Avogadro number
(6.0261023 #/mol) and the volume of total bone marrow, which is estimated
2.6L because the estimated mass of total bone marrow is 2.6 kg (http://en.
wikipedia.org/wiki/Bone_marrow) and the marrow density is assumed to be
close to water.
doi:10.1371/journal.pone.0027494.t002
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model), ratios of pIL6
act,RANKL and pPTH

act,RANKL to (pIL6
act,RANKL

zpPTH
act,RANKL)=2 is calculated respectively. If IL-6 and PTH

equally contribute to RANKL production, both ratios are equal to

1. If IL-6 dominantly contributes to RANKL production, the ratio

pIL6
act,RANKL=((pIL6

act,RANKLzpPTH
act,RANKL)=2) is greater than 1 while

the ratio pPTH
act,RANKL=((pIL6

act,RANKLzpPTH
act,RANKL)=2) is lower than 1.

On the contrary, if PTH dominates the contribution to RANKL

production, the ratio pPTH
act,RANKL=((pIL6

act,RANKLzpPTH
act,RANKL)=2)

is greater than 1, while the ratio pIL6
act,RANKL=((pIL6

act,RANKLz

pPTH
act,RANKL)=2) is lower than 1. Based on the ratios, the

quantitative roles of IL-6 in RANKL production and impacts of

IL-6 on the bone microenvironment may be assessed.

The outcomes of the perturbation test series are summarized in

Table 4. In all perturbation tests, bone cells or signaling molecules

quickly reach a new steady state following perturbations and

quickly recover to the original steady state after the perturbations

are removed, which is consistent with the response behavior in the

Pivonka et al. model [1,18]. In terms of changes of bone volume,

the modified model fully aligns with the Pivonka et al. model

[1,18] for all test perturbations. It is worth noting that bone

volume depends on the history of the bone cell populations and so

bone volume reaches a new value after removing perturbations

rather than returning to the original value. All these observations

demonstrate that the new extended bone model incorporating the

new IL-6 related control functions behaves essentially identically

with the Pivonka et al. model [1,18].

At the steady state, the ratio pIL6
act,RANKL=((pIL6

act,RANKLz

pPTH
act,RANKL)=2) and pPTH

act,RANKL=((pIL6
act,RANKLzpPTH

act,RANKL)=2) are

found to be 0.4 and 1.6 respectively, indicating the IL-6

contribution to RANKL production is not dominant in the case

of normal bone physiology. This has been achieved through

appropriate model calibration. In all perturbation cases (except for

adding IL-6 perturbation), the IL-6 concentration is not

significantly changed and its contribution to RANKL production

is not significantly increased under normal bone conditions. For

example, when PTH is added at a rate of 1000 pM/day,

concentration of PTH, IL-6 and RANKL increase 2-fold, 1.6-fold

and 3-fold respectively (Figure 4e), while the ratio pPTH
act,RANKL=

((pIL6
act,RANKLzpPTH

act,RANKL)=2) increases with a simultaneous de-

creased ratio pIL6
act,RANKL=((pIL6

act,RANKLzpPTH
act,RANKL)=2) (Figure 4f).

This indicates that TGF-b activation does not induce a substantial

increase in IL-6 production in the extended bone model. In other

words, under normal bone conditions, IL-6 does not make a

dominant contribution to RANKL production.

When IL-6 is injected at a rate of 10 pM/day, IL-6

concentration increases eight-fold while RANKL concentration

increases two-fold (Figure 4c), leading to increase in osteoclast

bone cell densities and a decrease in bone volume (see Figure

4a-b). In addition, the ratio pIL6
act,RANKL=((pIL6

act,RANKLzpPTH
act,RANKL)

=2) increases from 0.4 to 1.4 while the ratio pPTH
act,RANKL=

((pIL6
act,RANKLzpPTH

act,RANKL)=2) decreases from 1.6 to 0.6 (Figure

4d), indicating the relative contribution of IL-6 to RANKL

production is dominant. The IL-6 perturbation analysis demon-

strates that substantial increase in IL-6 is able to produce

significant impacts on the RANKL production and so has a

strong influence on the bone microenvironment.

These results show that the new extended bone model has been

carefully calibrated such that under normal conditions, IL-6 only

does not play a dominant role in bone physiology because of its

moderate regulation of RANKL production. However, if some

mechanism or mechanisms trigger a significant increase in IL-6 in

the bone microenvironment, the IL-6 contribution to RANKL

production can become dominant, inducing significant increase in

RANKL concentration (and consequent increase in densities of

osteoclastic bone cells and bone resorption). Therefore, the

Pivonka et al. model [1] has been suitably extended to take into

account the actions of IL-6 in normal bone physiology in

preparation for modeling MM disease states.

3.2 MM-bone model
3.2.1 Formulation of governing equations. In the

presence of MM cells in the bone environment, MM cells

proliferate due to stimulation by IL-6, MM-BMSC adhesion and

other events, and die due to T-cell interactions and other actions.

The population of MM cells is seen to increase in an S-shape

fashion in a few biological experiments [53,54]. In terms of

mathematical modeling, a logistic function is widely used to model

the S-shape increase in tumor cells [55]. Consequently the

Table 3. The parameter values in the (MM-free) normal bone
model.

Parameters Values Unit References or estimation

DOBu 2.94e+2 /day estimated;

DOBp 3.57e-1 /day estimated;

AOBa 3e-1 /day [1];

DOCp 2e-1 /day estimated;

AOCa 1.2 /day [1];

KM,TGFb,act 4.28e-4 pM [1];

KM,TGFb,rep 2.49e-4 pM [1];

KM,PTH,act 2.09e+2 pM [1];

KM,PTH,rep 2.21e-1 pM [1];

KM,TGFb,IL6,act 2.9e-3 pM estimated;

KM,IL6,RANKL,act 8.8 pM estimated;

KM,RANKL,act 4.79e+1 pM [1];

a 1 pM/% [1];

DTGFb 2e+2 /day [80];

bPTH 9.74e+2 pM/day [81];

DPTH 3.84e+2 /day [81];

bIL6 1.2e+7 /day [36]; [24];

DIL6 4.99e+1 /day [82];

IL6max
1 8.04e-1 pM [75];

bOPG 3.42e+6 /day estimated;

DOPG 4.16 /day [83];

OPGmax
2 7.98e+2 pM [69];

bRANKL 3.37e+5 /day estimated;

DRANKL 4.16 /day [83];

RRANKL 3e+6 - [1];

RANK 1.28e+1 pM [1];

KA,OPG 5.68e-2 /pM [84];

KA,RANK 7.19e-2 /pM [84];

kres 2e+2 %/(pM*day) [18];

kform 3.34e+1 %/(pM*day) estimated;

Note 1: It is assumed to be 30-fold greater than IL-6 concentration at steady
state.
Note 2: It is assumed to be 20-fold greater than OPG concentration at steady
state.
doi:10.1371/journal.pone.0027494.t003
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population growth of MM cells is modeled here using a logistic

function. By assuming the apoptosis of MM cells is a first-order

process, with the rate of the apoptosis proportional to the density

of MM cells [56], the dynamics of MM-cell population satisfies the

following equations:

dMM

dt
~(PMM

:pligands
MM zPMM,other):MM:(1{

MM

MMmax
)

{AMM
:MM

ð15Þ

pligands
MM ~pIL6

act,MMzpVCAM1
act,MM {pIL6

act,MM
:pVCAM1

act,MM ð16Þ

pIL6
act,MM~

IL6

IL6zKM,IL6,MM,act

ð17Þ

pVCAM1
act,MM ~

1

1z
(1zVLA4:KA,VCAM1):KM,VCAM1,MM,act

VCAM1tot

ð18Þ

where, PMM is the proliferation of MM cells controlled by IL-6 and

MM-BMSC adhesion. PMM,other is the proliferation of MM cells

controlled by other events (e.g., IGF-1 rather than arising from IL-

6 and MM-BMSC adhesion). AMM is the apoptosis of MM cells.

pligands
MM is the enhanced (c~{1) ‘activator’ function in response to

simultaneous MM-BMSC adhesion and IL-6 stimulation (as

defined by the Eq.(3)). pIL6
act,MM and pVCAM1

act,MM are the ‘activator’

functions in response to IL-6 and MM-BMSC adhesion

stimulation separately. KM,VCAM1,MM,act and KM,IL6,MM,act are the

half-maximal concentration of VLA-4 and IL-6 on facilitating

MM-cell proliferation. KA,VCAM1 is the association rate constant for

VLA-4 binding to VCAM-1. VCAM1tot is the total concentration

of VCAM-1. The details to derive Eq.(18) are described in

Supporting Information S1.

The membrane bound VLA-4 concentrations at steady-state are

calculated in much the same way as RANKL concentrations (see

equation (31)-(36) in Pivonka et al. [1]), via:

VLA4eff ~RVLA4:MM ð19Þ

VLA4~
PVLA4,dzbVLA4

:MM

(1zKA,VCAM1
:VCAM1tot):(

bVLA4

RVLA4
zDVLA4)

ð20Þ

where VLA4eff represents the ‘effective carrying capacity’ on the

surface of MM cells, which sets the maximum concentration of

VLA-4. PVLA4,d is the external production rate of VLA-4 with the

unit of pM:day{1. KA,VCAM1 is the association rate constant for

VLA-4 binding to VCAM-1. RVLA4 is the maximal number of

VLA-4 that can be expressed on the surface of MM cells. bVLA4 is

Table 4. Outcomes of perturbations on the (MM-free) normal bone model.

Perturbations
Bone cells
(OBp, OBa, OCa) Bone volume

Molecules
(OPG, RANKL, IL-6)

OBp q
Adding 8e-5 pM/day

q q, to new value;
above normal;

q

OBa q
Adding 6e-5 pM/day

OBa q but OBp and OCa Q q, to new value;
above normal;

OPG q but RANKL and IL-6 Q

OCa q
Adding 1e-5 pM/day

q Q then q to
new value;
below normal;

q

OBp Q
Removing 3e-5 pM/day

Q Q, to new value;
below normal;

Q

OBa Q
Removing 2e-5 pM/day

OBa Q but OBp and OCa q Q, to new value;
below normal;

OPG Q but RANKL and IL-6 q

OCa Q
Removing 3e-6 pM/day

Q q then Q to new value;
above normal;

Q

PTH q
Adding 1e+3 pM/day

q Q then q to
new value;
below normal;

RANKL and IL-6 q but OPG Q

OPG q
Adding 2e+2 pM/day

Q q then Q to new value;
above normal;

OPG q but RANKL and IL-6 Q

RANKL q
Adding 3e+2 pM/day

q Q then q to
new value;
below normal;

q

IL-6 q
Adding 10 pM/day

q Q then q to
new value;
below normal;

q

OPG Q
Removing 5e+1 pM/day

q Q then q to
new value;
below normal;

OPG Q but RANKL and IL-6 q

Note 1: All perturbation responses in (MM-free) bone model (except IL-6 perturbation response) are qualitatively consistent with those of Pivonka et al. model [1,18].
Note 2: This table summarizes transient changes of state variables (i.e. densities of bone cells and molecule concentrations) after adding perturbations, while it
summarizes transient changes in bone volume after adding perturbations together with the new state of bone volume reached after removing perturbations.
doi:10.1371/journal.pone.0027494.t004
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the production of VLA-4 by MM with the unit of day{1. DVLA4 is

the degradation of VLA-4. VCAM1tot is the total concentration of

VCAM-1.

In the presence of MM cells, IL-6 production is stimulated not

only by TGF-b but also by MM-BMSC adhesion. To account for

this, the calculation of IL-6 concentration in updated form (from

Eq.(9)) is as follows:

IL6~
PIL6,dzbIL6

:OBu
:pligands

IL6

bIL6
:OBu

:pligands
IL6

IL6max
zDIL6

ð21Þ

pligands
IL6 ~pTGFb

act,IL6zpVLA4
act,IL6zc:pTGFb

act,IL6
:pVLA4

act,IL6 ð22Þ

pVLA4
act,IL6~

VLA4

VLA4zKM,VLA4,IL6,act

ð23Þ

where, pligands
IL6 is a synergistic ‘activator’ function in response to

VLA-4 and simultaneous TGF-b stimulation (its calculation is

defined by Eq.(3)). pTGFb
act,IL6 and pVLA4

act,IL6 are ‘activator’ functions in

response to TGF-b and MM-BMSC adhesion stimulation.

KM,VLA4,IL6,act and KM,TGFb,IL6,act are the half-maximal concentra-

tions of VLA-4 and TGF-b respectively, when promoting the

production of IL-6.

By assuming the internalization and degradation of OPG by

MM cells is proportional to OPG concentrations and the density

of MM cells, the calculations of OPG concentration is updated

from [1] as follows:

OPG~
POPG,dzbOPG

:OBa
:pPTH

rep,OBa

bOPG
:OBa

:pPTH
rep,OBa

OPGmax
zDOPGzDOPG,MM

:MM

ð24Þ

where, POPG,d is the external production rate of OPG with the unit

of pM:day{1. bOPG is the endogenous production of OPG by

active osteoblasts with the unit of day{1. OPGmax is the maximal

concentration of OPG produced by active osteoblasts. DOPG is the

degradation of OPG. DOPG,MM is the degradation of OPG by MM

cells. pPTH
rep,OBa is the ‘repressor’ function, which is the same as that

in [1].

In the presence of MM cells, RANKL is produced not only by

the osteoclast precursors (OBp), but also by the uncommitted

osteoblasts (OBu) as a result of MM-BMSC adhesion. Our

estimations suggest that the number of OBu cells is two orders of

magnitude lower than the number of OBp cells, that is, OBu ,,

OBp (see Table 2). Consequently, RANKL production by OBu cells

is thought to contribute little to the total RANKL concentrations in

the context of MM disease, and so this contribution may be

neglected without significantly influencing MM disease progression.

For this reason, the calculation for the RANKL concentrations in

the presence of MM cells is the same as Eq.(14).

3.2.2 Bifurcation. Eq.(15) represents the balance between a

source term (due to the proliferation of MM cells) and a sink term

(due to the apoptosis of MM cells). The density of MM cells may

increase or decrease depending on parameter values. Clearly, if

the source term is greater than the sink term, MM-cell density

increases, while if source term is smaller than the sink term, MM-

cell density decreases. A dynamic increase in MM-cell density may

suddenly revert to the dynamic decrease in MM-cell density at a

critical condition, and vice versa. In other words, a bifurcation

might occur in the MM cell population equation (Eq.(15)), which is

determined by the critical condition.

PMM
:pligands

MM zPMM,other{AMM~0:

If PMM
:pligands

MM zPMM,other{AMM .0, MM-cell density

increases;

If PMM
:pligands

MM zPMM,other{AMM = 0, MM-cell density

remains constant;

If PMM
:pligands

MM zPMM,other{AMM ,0, MM-cell density

decreases.

In order to ensure an increase in MM-cell density during

simulations of the MM-bone model, the first condition has to be

met. Because PMM,other is assumed to be very small in the model,

the critical condition is mainly determined by the parameters PMM,

AMM and pligands
MM . While PMM and AMM are independent of time,

pligands
MM is time dependent because it is a function of the

concentrations of IL-6 and VLA-4, which are time dependent.

At the beginning of simulation, the concentrations of IL-6 and

VLA-4 can be calculated from the steady state of normal bone

model and the initial density of MM cells respectively; and so the

value of pligands
MM is estimated at the beginning of simulation. AMM is

estimated as 261023/day according to the literature; consequent-

ly, PMM must be greater than 2.8761022/day to meet the first

condition, ensuring MM cells increase from the beginning of

simulation (note that MM cell density may subsequently decrease

if PMM changes during the simulation).

3.2.3 Simulations. In order to simulate the transient

behavior of the MM-bone model following the introduction of

MM cells, the initial state for MM cells needs to be estimated. MM

disease progression is clinically divided into three phases according

to criteria for classification recommended by IMWG [57]: (i)

monoclonal gammopathy of undetermined significance (MGUS);

(ii) so-called ‘smoldering MM’ (or asymptomatic MM); (iii)

malignant MM (or symptomatic MM). Malignant MM is

associated with bone lesions, while MGUS and smoldering MM

does not exhibit bone lesions. Because our primary concern is

MM-induced bone destruction, our simulations are focused on

phase (iii)-malignant MM. Furthermore, malignant MM (phase

(iii)) is further divided into three clinical stages (namely, stages I, II

and III), based on staging system of Durie-Salmon (or some

alternate combination of prognostic factors) [58,59]. The median

survival duration following diagnosis is currently in the range 50–

55 months [60]. As a result, our simulations here start from the

early part of stage I in phase (iii) of MM, and end at the end of

stage III, phase (iii), with this transition occurring over a time

period of about 60 months. For these circumstances, the initial

density of MM cells is estimated as 0.326 pM (see Table 2).

Figure 4. Perturbations of the (MM-free) normal bone model. (a) Bone cells after adding IL-6. (b) Bone volume after adding IL-6. (c) Molecules
after adding IL-6. (d) Ratios of pPTH

act,RANKL and pIL6
act,RANKL to (pPTH

act,RANKLzpIL6
act,RANKL)=2 respectively after adding IL-6. (e) Molecules after adding PTH. (f)

Ratios of pPTH
act,RANKL and pIL6

act,RANKL to (pPTH
act,RANKLzpIL6

act,RANKL)=2 respectively after adding PTH.
doi:10.1371/journal.pone.0027494.g004
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The parameter values of the MM-bone model are given in

Table 5. These parameters are estimated based on reported values

in the literature, together with best-fitting model estimates from

least-square optimization criteria (i.e. parameters bVLA4, DOPG,MM

and c are optimized using this criteria). It should be noted that

although there are a lot of parameters, the values for most of them

are not obtained by fitting procedures. About 80% of model

parameters are pathophysiology-related and estimated based on

experiments reported in the literature. The optimization criterion

used in this paper is to minimize the errors between simulations

and experiments or clinical observations, that is, to minimize the

following objective function:

J~
Xm

j~1

½ypred{yexp�j
n o2

½yexp�j
n o2

ð25Þ

Where, the ypred and yexp are normalized simulated values and

corresponding experimental or clinical values respectively, at the

end of simulations. The j represents different variables (specifically,

they refer to MM-cell density, IL-6 concentrations, RANKL

concentrations and OPG concentrations). The values of [ypred]j are

calculated using the routine ‘ode15s’ in the Matlab and the values

of [yexp]j are estimated based on clinical observations (specifically,

MM-cell density is estimated to increase 5-fold, IL-6 concentration

to increase 10-fold, RANKL concentration to increase 4-fold and

OPG concentration to decrease 0.7-fold, at the end of the

simulations (see Table 6)). The optimization process is implement-

ed using the routine ‘patternsearch’ in Matlab.

With the calibrated parameter values (e.g., PMM equals 0.055/

day), transient behavior of bone cells, MM cells and bone volume

are simulated. The code has been checked in accordance with a

comprehensive comparison of the simulation results against

clinical data as reported in the literature (refer Section 3.2.5).

Good agreement has been demonstrated. As cyan dash lines in

Figure 5a-e show, MM cells and bone cells increase quickly and

approach an upper limit after about 4 years, while bone volume

continuously decreases. This curve represents a progressive MM

disease process and approaches an upper limit at about the mean

time for death that is observed clinically. It is worth noting that

bone cells exhibit a sharp increase at the very beginning of

simulations followed by an S-shape increase until the end state.

Because we simulate the MM development in bone marrow by

starting from stage I phase (iii) of MM (initial density of MM cells

is 0.326 pM), this sharp increase is artificial and actually driven by

the accumulated increase in bone cells during the period from the

start of MM until the beginning of stage I phase (iii). After this

sharp increase, the S-shape increase represents increased bone

cells due to the MM disease over the period from stage I phase (iii)

to stage III phase (iii).

Furthermore, as indicated by sensitivity analysis (see following

section) the population growth of MM cells is most dependent on

the proliferation of MM cells (the parameter PMM), and so the

influence of PMM on the MM-cell population growth and MM-

induced bone resorption are considered further. For different PMM

values, different evolutions of MM are observed in the model (see

Figure 5a-e). For example, when PMM equals 0.035/day, MM cells

and bone cells slightly increase and bone volume loss remains

small. This curve indicates that MM is only slightly progressive.

When PMM equals 0.045/day, MM cells, bone cells and bone

volume loss increases more. When PMM equals to 0.065/day, MM

cells and bone cells increase more quickly and reach the upper

limit by about 3 years, while reducing bone volume more

significantly. This curve represents a more rapid progression of

MM than the mean time observed clinically.

Figure 5f shows that the ‘activator’ function for IL-6 production,

simultaneously stimulated by TGF-b and MM-BMSC adhesion,

increases fourteen-fold at the end of simulation, while ‘activator’

function of IL-6 production stimulated by either TGF-b or MM-

BMSC adhesion increase by only two-fold and four-fold

respectively. The ratio of IL-6 production by two ligands

stimulation compared to the sum of each ligand separately is over

Table 5. The parameter values in the MM-bone model.

Parameters Values Unit References or estimation

PMM 5.5e-2 /day estimated;

PMM,other 2e-4 /day estimated;

AMM 2e-3 /day [85];

MMmax 1.98 pM [79];

KM,VCAM1,MM,act 8.07e-2 /pM estimated;

KM,VLA4,IL6,act 3.36e+5 /pM estimated;

KM,IL6,MM,act 1.76 pM estimated;

bVLA4 2.74e+6 /day calibrated;

DVLA4 2 /day estimated;

RVLA4 5.6e+4 - [86];

VCAM1tot 1.92 pM [86];

KA,VCAM1 8.3e-2 /pM [87];

DOPG,MM 4.11 /(pM*day) calibrated;

c -1 (enhanced response) or
2.47e+1 (synergistic response)

- estimated for enhanced response while
calibrated for synergistic response;

Note 1: The external dosing rate PVLA4,d, PIL6,d, POPG,d and PRANKL,d are all set to zero.
doi:10.1371/journal.pone.0027494.t005
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two-fold at the end of simulation, confirming the ‘synergistic’

effects of simultaneous TGF-b and MM-BMSC adhesion

stimulation on the IL-6 production.

Clearly, as can be seen from Figure 5g, the ‘activator’ function

of MM-cell proliferation stimulated by IL-6 increases three-fold at

the end of simulation, while the ‘activator’ function of MM-cell

proliferation simulated by MM-BMSC adhesion decreases to 20%

of its original value However the ‘activator’ function of MM-cell

proliferation simultaneously stimulated by IL-6 and MM-BMSC

adhesion stimulation increase about two-fold at the end of

simulations. This suggests that MM-cell proliferation mainly

results from IL-6 stimulation as the MM disease process

progresses, while MM-BMSC adhesion contributes to a lesser

amount to MM-cell proliferation.

3.2.3 Sensitivity analysis. In order to clarify the impacts of

various parameters on MM disease progression, a sensitivity

analysis is performed to identify critical parameters. The sensitivity

is defined as the relative change of an output variable vi to the

relative change in an input variable pj at the relevant time point,

The sensitivity may be calculated as [61]:

sij~(Lvi=vi)=(Lpj=pj) ð26Þ

Given that the sensitivity estimate found from Eq.(26) is

evaluated at a single time, while we are concerned with temporal

changes of output variables over a period of 60 months, we extend

this concept using the time integral
Ð
jsij(t)jstarting from the

beginning of the simulation and finishing at the endpoint of the

simulation. The greater the integral, the greater the time averaged

sensitivity between a specific output variable and a specific input

variable.

Figure 6 shows the outcomes of such a sensitivity analysis. It is

apparent that the density of MM cells is most sensitive to PMM,

bIL6, AMM, DOCp and AOCa while bone volume is most sensitive to

AOBa, DOBu, DOCp and AOCa. Because parameters PMM, bIL6 and

AMM are directly associated with MM-cell density they are

regarded as MM-related parameters. Likewise, parameters AOBa,

DOBu, DOCp and AOCa are directly associated with bone-cell density

and bone volume and so they are regarded as bone-related

parameters (bIL6 may also be regarded as bone-related parameter

due to the dual roles of IL-6). More specifically, AOBa, and DOBu are

osteoblast-related parameters whereas DOCp and AOCa are osteo-

clast-related parameters. Outcomes of the sensitivity analysis

suggest that MM-cell density are most sensitive to MM-related

group of parameters, and next most sensitive group are the

osteoclast-related parameters, while bone volume is most sensitive

to osteoblast-related group of parameters and next most sensitive

to osteoclast-related parameters. Bone volume seems least sensitive

to MM-related parameters while MM-cell density seems least

sensitive to osteoblast-related parameters. These outcomes appear

to be consistent with experimental or clinical observations. For

example, anti-catabolic agents (e.g., an inhibitor of osteoclast

activity or a specific inhibitor of RANKL) halt MM-induced bone

resorption and result in inhibition of MM cell proliferation and

survival [62,63]. However, osteolytic lesions may still progress

even if patients with MM respond to anti-MM therapy [64,65].

3.2.3 Detailed comparisons of model outcomes and

clinical observations. The main goal of this paper is to

clarify whether this proposed MM-bone model appropriately

reflects clinical data on MM disease progression in bone marrow.

The observed major clinical features of MM disease include: the

increased bone resorption markers (i.e., N-terminal telopeptides

of type I collagen, NTX) and bone formation marker (i.e.,

bone-specific alkaline phosphotase, bALP) [66], indicating an

increase in the number of osteoclasts and osteoblasts as a result of

increased RANKL and decreased OPG concentrations. The

elevated osteoclast and osteoblast activities lead to increased bone

turnover and reduced bone volume [66]. Malignant plasma cells

(MM cells) in bone marrow secrete paraprotein (i.e., Bence-Jones

proteins) and prognostic indicators of MM disease (e.g., IL-6),

which increase as MM disease progresses [66-68].

Table 6. Comparisons of the MM-bone model outcomes under the condition of PMM = 0.055/day with experimental observations.

Stage I/II Stage III

experiments simulations experiments simulations

RANKL 1.62-fold [70] 1.75-fold 2.65-fold [69];
2.26-fold [70];
13.5-fold [71];
15.67-fold [72];

4.35-fold

IL-6 2.6-fold/4.22-fold [75] 3.55-fold 9.79-fold [75] 10-fold

OPG Q [69];
q [88]1

Q 0.71-fold [73];
0.73-fold [38];
0.82-fold [74];
0.59-fold [69]

0.69-fold

OBa q [67,68,89] q q [67,68,89] q

OCa q [67,68,89] q q [67,68,89] q

Bone turnover q [67,68,89] q q [67,68,89] q

Bone volume Q [67] Q Q [67] Q

MM cells 3-fold [67] q Up to 6-fold [67] 4.48-fold

Note 1: Clinically, it is observed that serum OPG concentrations decrease at the early stage of MM disease [69], while it is recently suggested that serum OPG
concentrations increase compared with healthy controls [88]. The exact reasons to cause the different observations are still not known. Possibly, OPG is produced by
various skeletal and extra-skeletal tissues [90], leading to serum OPG concentrations do not reflect its availability in the bone microenvironment [88].
Note 2: All the ratios of experiments are obtained by comparing with healthy controls, whereas all the ratios of simulations are obtained by comparing with steady state
of the normal bone model.
doi:10.1371/journal.pone.0027494.t006
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Further, relative to normal healthy subjects, serum sRANKL

(soluble RANKL) concentrations increase about one and a half

fold in patients with stage I or stage II MM. Serum RANKL

concentrations increase more variably later in the course of the

disease. For example, relative to normal healthy subjects, serum

RANKL concentrations are reported to increase 2.65-fold [69],

2.26-fold [70], 13.5-fold [71], and 15.67-fold [72] in patients with

stage III MM. Relative to healthy controls, serum OPG

concentrations have recently been reported to increase about

one and half fold in patients with early stage MM [70], however in

late stage MM, serum OPG concentrations have been reported to

decrease 29% [73], 27% [38], 18% [74] and 41% [69]. Relative to

healthy controls, serum IL-6 concentrations have been reported to

increase 2.57-fold, 4.22-fold and 9.79-fold in MM patients at

stages I, II and III respectively [75]. For patients with MM,

measureable concentrations of IL-6 and sIL-6R are found in both

marrow fluid and serum patients, and both fluids show similar

increases in concentration [66]. The number of malignant plasma

cells in bone marrow can account for up to 65% of the total

number of cells in the bone marrow [67]. This is over six times

higher than the clinical diagnosis criteria for MM with MM cells

comprising 10% of the total number of cells. All these clinical

observations are summarized in Table 6.

Most importantly, comparisons between the model outcomes

and the above-mentioned clinical observations demonstrate that

our simulation qualitatively and quantitatively agrees with these

clinical observations. As summarized in Table 6, at the early stage

I phase of MM, simulated RANKL and IL-6 concentration

increase about 1.75-fold and 3.55-fold respectively, while clinical

observations indicate that RANKL and IL-6 concentration

increase about 1.62-fold and 2.6-fold respectively [70,75]. For

the MM example with PMM = 0.055/day, at the endpoint of

simulation (corresponding to later stage III phase of MM),

simulated concentrations of OPG, RANKL and IL-6 and MM-

cell density increase 0.69-fold, 4.35-fold, 10-fold and 4.48-fold

respectively, while clinical observations suggest that concentrations

of OPG, RANKL and IL-6 and MM-cell density increase

approximately 0.7-fold [38,73], 4-fold [69,70], 10-fold [75] and

5-fold respectively (Figure 5d). The simulations also indicate that

the density of osteoblast precursors (OBp), active osteoblasts (OBa)

and active osteoclasts (OCa) increase 2.14-fold, 1.65-fold and 1.97-

fold respectively (Figure 5a-c) while bone volume decreases to 91%

at the end of year-5 (Figure 5e), which are qualitatively consistent

with clinical observations [67]. The synergistic effect of TGF-b
and MM-BMSC adhesion on IL-6 production by BMSCs is also

observed. The simulated ratio of IL-6 production by two ligands

stimulation compared to the sum of each ligand separately is

between 1.48-fold and 2.19-fold, while the reported experimental

ratio is between 1.45-fold and 2-fold [35].

The quantitative and qualitative agreements between our

simulations and clinical observations suggest that this proposed

MM-bone model is able to capture some of the major features of

the MM disease progression and so within the limitations of the

model, appropriately reflect the MM disease progression in bone

marrow.

Discussion

4.1 The relative importance of regulation by the positive
feedback cycles

There are two positive feedback cycles identified in our MM-

bone model (see Figure 2). Based on the similarity of the clinically

Figure 5. Simulations of the MM-bone model for various PMM Values. (a) OBp. (b) OBa. (c) OCa. (d) MM cells. (e) Bone volume. (f) The ‘activator’
function for IL-6 production (PMM = 0.055/day). (g) The ‘activator’ function for the proliferation of MM cells (PMM = 0.055/day).
doi:10.1371/journal.pone.0027494.g005

Figure 6. Outcomes of relative sensitivity analysis. 1-DOBu; 2-DOBp; 3-AOBa; 4-DOCp; 5-AOCa; 6-bIL6; 7-bOPG; 8-bRANKL; 9-PMM; 10-PMM,other; 11-AMM;
12-bVLA4; 13-DOPG,MM; 14-c.
doi:10.1371/journal.pone.0027494.g006
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observed normalized increase in MM cells and the normalized

decrease in bone volume and the model results (see Figure 5d-e),

this suggests that the two feedback cycles included in the model are

sufficient to jointly drive the disease interaction between MM cells

and the bone microenvironment. However, the relative impor-

tance of the two positive feedback cycles is not yet clear. This issue

can be addressed by performing a quantitative analysis on the

positive feedback cycles.

Our quantitative analysis on the relative importance of the

positive feedback cycles is based on comparing changes of

variables when both positive feedback cycles are intact, with

model outcomes when either one or other, or both, of the positive

feedback cycles are disabled (i.e. blocked). The density of MM cells

and the bone volume are suitable variables to track for evaluating

the significance of the two positive feedback cycles on MM disease

progression. The dynamic changes of MM-cell density and bone

volume during MM disease progression may be quantified by

calculating the ‘area under the curve’ (AUC), which is defined as

the time integral of the change in the variable from beginning of

the simulation to the end of the simulation. We propose that if the

total change of MM-cell density is reduced by ten to fifty percent,

or total change of bone volume loss is reduced by ten to fifty

percent, when either one of the positive feedback cycles is blocked,

then this feedback cycle is deemed ‘significant’ with respect to

bone volume or MM-cell density.

The expression ‘vicious cycle’ is commonly used in the

biological/cancer literature to identify positive feedback loops

between the cancer cells and their microenvironment; however it

is not usually given a quantitative definition. Here we propose that

if blocking a positive feedback cycle is effective in more than

halving the MM-cell density (i.e. greater than a fifty percent

reduction) or more than halving the bone loss (i.e. greater than fifty

percent reduction) or doing so to both, then we say this positive

feedback cycle is a ‘vicious cycle’. This definition at least accords

with the original intention of use of this expression by Mundy [13].

We investigated five cases where the two positive feedback

cycles are blocked at different points in their cycle, namely (i)

positive feedback cycle A is blocked at the point of IL-6 interaction

with osteoblast precursors, (ii) positive feedback cycle B is blocked

at the point of IL-6 interaction with MM cells, (iii) positive

feedback cycle A and B are simultaneously blocked for IL-6 at the

point of IL-6 production, (iv) an additional contribution to positive

feedback cycle A is blocked at the point of OPG degradation by

MM cells, and (v) an additional contribution to positive feedback

cycle B is blocked at the point of MM-BMSC adhesion-stimulated

MM cell proliferation. The precise blocking points of all these

cases are illustrated in Figure 7.

Figure 8a-b show dynamic changes of bone volume and MM-

cell density corresponding to each of the above-mentioned cases. It

is noted here that PMM is selected as 0.055/day for the purpose of

clearly displaying the results, but in fact, the conclusions for this

value hold true for other values of PMM. A marked reduction of

bone volume loss is observed in the first and the second case, while

there is a slight increase in bone volume observed in the third case.

Slightly less density of MM cells is observed in the first case

whereas a marked decrease in MM-cell density is observed in the

Figure 7. Schematic showing blocks in the MM-bone positive feedback cycles at specific points in the MM-bone model.
doi:10.1371/journal.pone.0027494.g007
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second and the third case (curves of the second and the third case

are overlapped in the Figure 8b).

These changes suggest to us that MM cell population growth

and bone volume loss are reversed when these two positive

feedback cycles are simultaneously blocked, while they are partly

inhibited when only one of the positive feedback cycles is blocked.

Furthermore as shown in Table 7, the AUC of bone volume when

the positive feedback cycle A and B are blocked compared to that

when both positive feedback cycles are intact, expressed as a

percentage is 6.74% and 31.06% respectively. The AUC of MM-

cell density when the positive feedback cycle A is blocked

compared to that when both positive feedback cycles are intact,

expressed as a percentage is 79.77%. Based on these quantitative

results for bone volume and MM-cell density changes and our

definition, IL-6 stimulated RANKL production by osteoblast

precursors is deemed to be significant with respect to bone volume,

and IL-6 stimulated MM cell proliferation is deemed significant

with respect to both bone volume and MM-cell density.

Additionally, both positive feedback cycles would qualify as

‘vicious cycles’ with respect to bone volume changes. In contrast,

positive feedback cycle A is deemed not to be a ‘vicious cycle’ with

respect to MM-cell density, while positive feedback cycle B is

deemed to be a ‘vicious cycle’ with respect to MM-cell density.

In addition, a marked reduction of bone volume loss is observed

in the fourth case, while slightly lesser density of MM cells is

observed in the fourth case. As shown in Table 7, the AUC of

bone volume in the fourth case compared to that when positive

feedback cycles are intact, expressed as a percentage is 38.47%,

while the AUC of MM-cell density in the fourth case compared to

that when positive feedback cycles are intact, expressed as a

percentage is 89.76%. These changes suggest to us that

degradation of OPG by MM cells has a very significant impact

on bone volume loss, while it almost has no impact on MM cell

population growth. In terms of the fifth case, both a slight

reduction of bone volume loss and slightly lesser density of MM

cells are observed. The percentage of AUC of bone volume and

the percentage of AUC of MM-cell density in the fifth case,

compared to those when both positive feedback cycles are intact

are 78.35% and 79.4% respectively (see Table 7), indicating that

MM-BMSC adhesion-stimulated MM cell proliferation has

neither a significant impact on the bone volume loss nor on

MM cell population growth.

From these analyses, a picture of the dominant processes

emerges. In the presence of MM cells, MM-BMSC adhesion and

TGF-b induce ‘synergistic’ production of IL-6 by BMSCs. The

substantially increased IL-6 concentration stimulates proliferation

Figure 8. Model outputs after blocking positive feedback cycles in the MM-bone model. (a) Bone volume after blocking positive feedback
cycles at specified points. (b) The density of MM cells after blocking positive feedback cycles at specified points. Case 1 Positive feedback cycle A is
blocked at the point of interaction of IL-6 and osteoblast precursors. Case 2 Positive feedback cycle B is blocked at the point of interaction between
IL-6 and MM cells. Case 3 Positive feedback cycles A and B are simultaneously blocked at the point of IL-6 production by BMSC. Case 4 Positive
feedback cycle A is blocked at the point of OPG degradation by MM cells. Case 5 Positive feedback cycle B is blocked at the point of MM-BMSC
adhesion-stimulated MM-cell proliferation.
doi:10.1371/journal.pone.0027494.g008

Table 7. The percentages of AUC of bone volume and MM-cell density when positive feedback cycles are blocked to those when
these cycles are intact.

Case 1 Case 2 Case 3 Case 4 Case5

Percentage of AUC of bone volume 6.74% 31.06% q 38.47% 78.35%

Percentage of AUC of MM-cell density 79.77% Q Q 89.76% 79.4%

Note: case 1: Positive feedback cycle A is blocked at regulation mechanism between IL-6 and osteoblast precursors; case 2: Positive feedback cycle B is blocked at
regulation mechanism between IL-6 and MM cells; case 3: Positive feedback cycle A and B are simultaneously blocked at regulation mechanism of IL-6 production; Case
4: additional pathway to positive feedback cycle A is blocked at regulation mechanism of OPG degradation by MM cells. Case5: additional pathway to positive feedback
cycle B is blocked at regulation mechanism of MM-BMSC adhesion-stimulated MM-cell proliferation.
doi:10.1371/journal.pone.0027494.t007
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of MM cells leading to enhanced MM-BMSC adhesion and more

degradation of OPG. On the other hand, increased RANKL

production by osteoblast precursors together with decreased OPG

concentration result in more bone resorption and more TGF-b
released from bone matrix. The dominant processes in the two

positive feedback cycles are highlighted by the red arrows in

Figure 9. These dominant processes suggest potential drug targets

to achieve different therapeutic objectives. For example, targeting

IL-6-stimulated RANKL production by osteoblast precursors can

reduce bone loss and so improve MM-induced bone lesions, while

targeting IL-6-stimulated MM cell proliferation can reduce MM

tumor burden and contribute to improving MM-induced bone

lesions.

Conclusion
In this paper, we have developed a computational model

describing interactions between multiple myeloma and bone. This

computational model is based on the previous bone remodeling

model of Pivonka et al. [1], and explicitly considers IL-6 and MM-

BMSC adhesion related pathways. Inclusion of these new

pathways leads to the formation of two positive feedback cycles

in this model. The parameters of this model are estimated based

on reported values in the literature, and when required, best-fit

parameter estimates are made using a least-square optimization

criterion. Using this approach, the progression of MM disease is

simulated numerically. Our model simulations are qualitatively

and quantitatively consistent with known clinical observations for

both normal bone physiology and for MM disease progression.

This model suggests that the two MM-bone positive feedback

cycles employed in this computational model are sufficient to

jointly drive MM disease progression.

Analysis of the model behavior resulted in the clarification of the

relative importance of the two positive feedback cycles, and

identified the dominant influences within the feedback cycles. The

dominant influences contributing to the feedback cycles suggest

possible drug targets, which are different for different clinical

objectives.

It is hoped that this computational model describing the

interactions between multiple myeloma and bone can be improved

over time, and eventually applied as a modeling platform for

analyzing the relative efficacy of various therapeutic interventions.
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