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Abstract. Neuroendocrine neoplasms (NENs) are a 
heterogeneous group of rare tumors with different types of 
physiology and prognosis. Therefore, prognostic informa‑
tion, including morphological differentiation, grade, tumor 
stage and primary location, are invaluable and contribute to 
the formulation of treatment decisions. Biomarkers that are 
currently used, including chromogranin A (CgA), serotonin 
and neuron‑specific enolase, are singular parameters that 
cannot be used to accurately predict variables associated with 
tumor growth, including proliferation, metabolic rate and 
metastatic potential. In addition, site‑specific biomarkers, such 
as insulin and gastrin, cannot be applied to all types of NENs. 
The clinical application of broad‑spectrum markers, as it is the 
case for CgA, remains controversial despite being widely used. 
Due to limitations of the currently available mono‑analyte 
biomarkers, recent studies were conducted to explore novel 
parameters for NEN diagnosis, prognosis, therapy stratifica‑
tion and evaluation of treatment response. Identification of 
prognostic factors for predicting NEN outcome is a critical 
requirement for the planning of adequate clinical manage‑
ment. Advances in ‘liquid’ biopsies and genomic analysis 
techniques, including microRNA, circulating tumor DNA or 
circulating tumor cells and sophisticated biomathematical 
analysis techniques, such as NETest or molecular image‑based 
biomarkers, are currently under investigation as potentially 
novel tools for the management of NENs in the future. Despite 
these recent findings yielding promising observations, further 
research is necessary. The present review therefore summa‑
rizes the existing knowledge and recent advancements in the 
exploration of biochemical markers for NENs, with focus on 
gastroenteropancreatic‑neuroendocrine tumors.

Contents

1.	 Introduction
2.	 Aim and search strategy
3.	 Currently available biomarkers
4.	 Potential novel biomarkers
5.	 Conclusions

1. Introduction

Neuroendocrine neoplasms (NENs) are a heterogenous group 
of rare malignancies that arise from neuroendocrine cells 
distributed throughout the body and produce peptide hormones 
and/or biogenic amines (1). NENs can be dichotomised into 
‘functional’ (F) and ‘non‑functional’ (NF) tumors (2). The 
F‑NENs category represents 33% of all NENs and is mainly 
characterized by well‑defined clinical symptoms that are 
caused by the over secretion of their circulating products (2). 
Examples of F tumors include NENs in the midgut (such as the 
small intestine), which are classically associated with carci‑
noid syndrome (CS) due to the overproduction of serotonin (3). 
Symptoms of CS have been previously reported to be asso‑
ciated with the overproduction of serotonin by F NENs. By 
contrast, NF NENs are more common in terms of incidence 
and can cause mechanical symptoms, including ischemia or 
obstruction, the complications of which from local tumor 
growth can ultimately result in mortality (2).

Due to the substantial heterogeneity in these NENs both 
in terms of clinical aggressiveness and response to therapy, 
management of patients with such diseases is a significant 
challenge (4). In total, 60‑80% of NENs have already metasta‑
sized on diagnosis (5). Prognostic and predictive markers have 
been intensively investigated to explore the optimal clinical 
management strategy for this category of neoplasms  (6). 
Investigation into prognostic markers contribute valuable 
information in understanding the physiology of NENs and their 
natural course. They reveal beneficial mechanistic information 
underlying the aggressive properties of the disease and the risk 
of recurrence or death. By contrast, predictive markers can be 
used to estimate the benefit of a certain therapy compared with 
their corresponding condition at baseline, which can assist 
in implementing the optimal treatment strategy for the most 
favorable outcome (7).
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At present, the most important prognostic factor for NENs 
is morphological differentiation characteristics, which can 
be divided into the well‑ or poorly‑differentiated categories, 
corresponding to neuroendocrine tumors (NETs) or neuroen‑
docrine carcinomas (NECs) (8). Furthermore, NENs display 
a varying degree of proliferation known as grade (G), which 
is approximated using the Ki‑67 proliferation index and 
mitotic count (9). Specifically, the latest 2019 World Health 
Organization (WHO) classification of gastro‑entero‑pancre‑
atic (GEP)‑NENs distinguishes three grades of NENs that are 
classified into the low (G1), intermediate‑(G2) and high‑grade 
(G3) categories based on the degree of differentiation, with 
the mention that poorly differentiated NECs are considered 
definitively G3 (10,11). Although the WHO classification of 
tumors is considered to be the gold standard tumor classifica‑
tion, it differs depending on their primary site in the body. For 
example, the 2015 WHO Classification of Tumors of the Lung, 
Pleura, Thymus and Heart does not make use of the Ki‑67 
proliferation index (11). However, the current consensus is to 
improve the management of NENs by adopting an uniformized 
nomenclature system towards different organs (12). It is hoped 
that this new classification will serve as a novel grading tool 
that can be introduced into common clinical practice to reveal 
essential information regarding NENs (12).

In addition to adequate classification and grading, tumor 
staging also carries prognostic significance (13). European 
Neuroendocrine Tumors Society (ENETS) and tumor, nodes 
and metastases (TNM) classification of the American Joint 
Committee on Cancer (AJCC) are currently used staging 
systems that present the classification criteria but are not 
identical and are site specific (14,15). A number of studies 
have reported comparative data between the two systems 
for the classification of pancreatic neuroendocrine tumors 
(Pan‑NETs), suggesting a similar prognosis being found 
by the two systems in ENETS and TNM of the AJCC, both 
regarding progression free‑survival (PFS) and overall survival 
(OS)  (16,17). However, further studies are needed, as the 
ENETS staging system appeared to be superior in stratifying 
prognosis for each stage of pancreatic NENs according to a 
previous report (18).

However, in terms of the formulation of concrete guide‑
lines for the clinical management of these tumors, numerous 
issues persist due to the lack of comprehensive databases and 
registries  (9). In addition, an insufficient number of lesion 
types have been studied despite wide variations in tumor 
heterogeneity (9). The 5‑year survival rate ranges between 15 
and 95%, depending on the location of the tumor primary site, 
the level of metastatic spread at diagnosis, the available treat‑
ment options and the geographical site of care (19‑21).

Several methods have been reported to predict OS and 
PFS, including nomograms taking into account the number 
of liver metastases, tumor size and the Ki‑67 index (22), the 
blood neutrophil‑lymphocyte ratio, Ki‑67 index and the lymph 
node ratio (23) or phosphorylated histone H3 (24). However, 
further research is required.

An important obstacle in clinical practice is the scarcity 
of a set of sensitive and specific tumor biomarkers (25). The 
‘perfect’ biomarker would ideally be characterized by high 
sensitivity in diagnosing NENs, good prediction of disease 
evolution and response to therapy (26). Currently available 

NETs biomarkers belong to the mono‑analyte class and vary 
in the rates of sensitivity and specificity for indicating the 
biological characteristics, such as primary tumor site, or 
functional or non‑functional type secretion. In addition, 
these mono‑analyte measurements are unable to define the 
state of disease progression or efficacy of therapy (27), which 
frequently do not correlated well with radiological evaluation 
data (28). To overcome these shortcomings, interest in the 
molecular profiling of NENs is increasing. Recent studies 
have demonstrated the utility of molecular imaging as a 
viable option for predicting the prognosis of NENs (29,30). 
Since the density of somatostatin receptors (SSTRs) can also 
be quantitively assessed using immunohistochemistry (IHC) 
in the surgical specimens, this can be used to predict treat‑
ment response (31‑33). Furthermore complementary imaging 
modalities or early radiological biomarkers, such as the tumor 
grade rate (TGR), have been proposed to contribute valuable 
prognostic information (34,35).

Molecular diagnostics have previously been performed 
on biopsies of solid tumor tissues  (13). As one branch of 
this technique, ‘liquid’ biopsy is a non‑invasive strategy that 
can provide the opportunity to investigate the molecular 
genomic mechanism of tumor cells in circulating blood (the 
‘tumor circulome’) to characterize the circulating molecular 
profiles, which may be useful for subsequent diagnosis and 
monitoring (36,37). Emerging biochemical and therapeutic 
markers have become increasingly popular since 2004 and 
their relevance are expected to increase exponentially by 
2050 (13,38,39). Identifying novel parameters is important for 
optimally predicting the prognosis and treatment response for 
each patient. Therefore, the present review summarizes some 
of the current and future directions in this field of research 
with an emphasis on GEP‑NENs.

2. Aim and search strategy

The aim of the present review is to summarize the available 
data on the diagnostic, prognostic and predictive biomarkers 
for NENs. The review is structured into the following two 
parts: i) Discussion of the markers most commonly used in 
clinical practice at present; and ii) potential future diagnostic, 
prognostic and predictive biomarkers.

Search strategy. Published data in the SCIENCEDIRECT 
(ht t ps: //www.sc ienced i rec t . com / )  and PU BM ED 
(https://pubmed.ncbi.nlm.nih.gov/) databases were collected 
and analyzed. Publications from the past 5  years were 
prioritized and selected using the following relevant key words 
either alone or in combination: ‘Neuroendocrine neoplasms’, 
‘neuroendocrine tumors’, ‘biomarkers’, ‘liquid biopsies’ and 
‘molecular imaging’. Additional studies were identified by 
reviewing the references of all selected articles, whereas publi‑
cations from major scientific meetings were searched manually. 
After the exclusion of 52 duplicates, 353 articles were scanned, 
following which 99 titles were removed because they didn't 
satisfy the subject of the present review. We included A total 
of 254 publications were selected for a full‑text evaluation. 
The inclusion criteria were clinical and practical relevance in 
the management of NENs. Full articles and English language 
published original and review papers were included that 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  22:  1479,  2021 3

addressed the diagnosis and especially the prognostic and 
predictive markers in NENs, with different degrees of statis‑
tical power due to the rarity of these neoplasms. Exclusion 
criteria were case reports and publications with abstracts not 
relevant for the present review were removed (case studies 
removed, four; publications removed, 129), so that at the end of 
the selection process, 121 publications were included (Fig. 1).

3. Currently available biomarkers

A number of biomarkers are currently applied for the diag‑
nosis of NENs. However, they are frequently not correlated 
with diagnosis or clinical outcomes, mainly due to sensitivity 
and specificity issues (Table I).

Chromogranin A (CgA). Human CgA is a glycoprotein that 
belongs to the family of chromogranins and is localized 
in the secretory granules alongside peptide hormones and 
catecholamines throughout the neuroendocrine system (40). 
Recognition of CgA as the default NET biomarker is widely 
applied over the past decade due to its broad‑spectrum nature, 
with high levels being found in both F and NF NENs (41‑43). 
Yet, CgA detection and reliability are still based on different 
non‑standardized assays  (44). However, Cg A is highly 
expressed in NETs tissue, but can also be measured in serum 
or plasma as a widely used circulating tumor marker (40). High 
levels of CgA are mainly observed in well‑differentiated NETs 
and are associated with larger tumor burden, especially in gut 
NETs (5,45). By contrast, CgA suffers from low sensitivity 
for poorly‑differentiated tumors, where its production is less 
pronounced (40,46).

As a result, enthusiasm for the application of CgA as a 
marker is waning, which is compounded by the accumu‑
lating evidence of its low utility (43,47). The specific cut‑off 
value (identified by the receiver operating characteristic 
analysis between different assays) (44), primary location of the 
NEN (48), endocrine‑associated syndrome (5), disease spread, 
liver metastases (49), false‑positive elevations in CgA typi‑
cally caused by proton pump inhibitors, atrophic gastritis and 
kidney failure (13), can all influence the accuracy of this test.

However, a recent systematic review and meta‑analysis 
evaluated the role of CgA in bronchopulmonary NENs because 
of the scarcity of evidence in this field (43). This previous 
study reported the clinical utility of CgA for the diagnosis of 
lung NENs, especially in small cell lung cancer (SCLC) with 
a mean diagnostic specificity of 79.5±3.1 and sensitivity of 
59.9±6.8%. Still, this finding require further validation (43).

Urinary 5‑hydroxyindoleacetic acid (5‑HIAA). 5‑HIAA is 
a metabolite of serotonin, which is excessively produced by 
serotonin‑secreting tumors and is excreted in the urine (13). 
Prior to interpretating the 5‑HIAA test measurement in the 
urine as a result, pharmacological and dietary artifacts must 
first be ruled out, typically by avoiding the intake of trypto‑
phan‑ and serotonin‑rich foods (50). Measurement of urinary 
5‑HIAA excretion is more practical for patients with primary 
midgut (jejunoileal, appendiceal and ascending colon) NETs, 
which produces the highest levels of serotonin (51). For carci‑
noid syndrome (CS), this test has a reported sensitivity of >90% 
and a specificity of 90% (52). Additionally, a level of 5‑HIAA 

>300 mmol/24 h and three flushing episodes per day can be 
considered to be a predictive factor of carcinoid heart disease 
(CHD) (53). There is also evidence that 5‑HIAA in combination 
with N‑terminal probrain natriuretic peptide (NT‑proBNP) can 
be accurately used in screening for CHD (54). Nevertheless, its 
prognostic role remains controversial.

N‑terminal Pro‑Brain Natriuretic Peptide (NT‑proBNP). 
NT‑pro BNP is a peptide that is released by myocardial cells 
as a result of an increase in heart volume and pressure and is 
used especially for CHD prediction, which has been previously 
correlated with patient survival  (55,56). A high sensitivity 
and specificity for CHD, 92 and 91%, respectively, has been 
reported at the cut‑off value of 260 pg/ml (57). In addition, 
measurement of the level of serum NT‑proBNP has been 
recommended for intestinal NENs and CS for the diagnosis 
and follow‑up of CHD (54).

Neuron specific enolase (NSE). NSE is the main enolase‑isoen‑
zyme present in neuronal and neuroendocrine tissues (58). 
Although mainly expressed poorly‑differentiated NET cells, 
measurement of serum NSE cannot be used to distinguish 
among different subtypes of NENs (59). Consequently, although 
elevated levels of NSE seems to have a degree of prognostic 
value for poor outcome and correlate with tumor burden, NSE 
is now rarely used in clinical practice since it is inferior to 
CgA in terms of the information that can be extracted (59). 

Figure 1. Flow chart for the selection of studies discussed in the present 
review.
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However, NSE is currently applied as the default tumor marker 
for SCLC diagnosis, prognosis and follow‑up, even though 
elevated levels of NSE can also be found in non‑small cell lung 
cancer (NSCLC) (58).

Pancreatic polypetide (PP). PP is serum marker produced by 
the neuroendocrine cells of the colon and pancreas (60). PP 
is considered to be a non‑specific marker for NENs, where 
its levels has a modest degree of accuracy as a diagnostic 
marker (13). However, it appears that an >50% increase in the 
serum levels of PP in GEP‑NETs patients has a direct propor‑
tional relationship with the increase in tumor according to 
RECIST 1.1 criteria on conventional imaging (CT scan ± MRI 
scan) imaging (60).

Connective tissue growth factor (CTGF). CTGF is a modular 
secreted protein that serves an important role in complex 
biological mechanisms, including angiogenesis, tumorigen‑
esis and wound healing (61). In addition, CTGF can regulate 
various types of fibrosis formation, such as cardiac fibrosis (62). 
Therefore, CTGF has a reported sensitivity of 80% in detecting 
heart disease (62). For NETs, previous studies have reported 
that CTGF expression measured in plasma is more likely to 
be found in small‑bowel ileal rather than in bronchial, pancre‑
atic or rectal NETs (63,64). However, a high level of CTGF 
was found to be an independent predictive factor for right 
ventricular dysfunction (61).

Ki‑67 proliferation index /mitotic count. Mitotic count, 
Ki‑67 index and necrosis are typically used for the grading 
of NENs (9). While mitotic count is recommended to be 
reported as mitoses per mm2 area, in clinical practice this 
process could be affected by limited areas available for 
counting. On the other hand, Ki 67 is determined using IHC 
measured in the most mitotically active areas of the patho‑
logical specimen, but due to the intratumoral heterogeneity 
this process can be affected (9). However, this manner of 
scoring can be time‑consuming, which is compounded by 
the lack of consensus in the optimal method for determining 
the proliferative rate (9,65). In clinical practice, when there 
is a discordance between these two types of measurements 
in assigning the grade, higher ‘grade counts’ are normally 
negatively associated with poorer prognosis  (65‑67). For 
example, in ~33% of well‑differentiated Pan‑NETs, a G1 

grade is determined based on the mitotic count, whereas 
the G2 grade is determined using the Ki‑67 prolifera‑
tion index (66). In addition, the same percentage (33%) of 
G2 Pan‑NETs are found for after mitotic count, but G3 
according to the Ki‑67 proliferation index (64). Therefore, 
the use of Ki‑67 IHC staining is essential for accurately 
grading well‑differentiated NETs (65,66)

The latest 2019 WHO classification of GEP‑NENs (10,67) 
now recognizes the category of high‑grade tumors as those 
with a Ki‑67 index of >20%, of which well‑differentiated 
GEP‑NENs represent ≤7% of all NENs (68). In addition, 
tumor grade based on the Ki‑67 index cut‑off values has been 
demonstrated to correlate with patient survival independent 
of tumor stage in primary and metastatic GEP‑NENs (69,70) 
In particular, the Ki‑67 index has also been considered 
to be a viable prognostic marker for recurrence after the 
resection of PanNETs (71). In liver metastases, the Ki‑67 
index has a predisposition to be higher compared with that 
in primary GEP‑NETs, where a proportional relationship 
between the size of the metastasis and the Ki‑67 index was 
found (72‑74)

In clinical practice, detection of multiple primary 
tumors, multiple lymph node metastases and/or multiple 
distant metastases are recommended for evaluating tissue 
blocks with the biggest focus of tumor due to the intratu‑
moral heterogeneity  (75). Furthermore, the Ki‑67 index 
may present a variability during the course of the disease or 
between primary tumor and metastasis (76). In a previous 
study, the Ki‑67 index was evaluated in 103 GEP‑NETs, of 
which 24% presented with higher grades in the metastasis, 
10% with higher grades in the primary tumor and 66% 
with same grade between the metastasis and the primary 
tumor (77). The PFS and OS were found to be identical for 
both G1 primaries and G2 metastasis categories, and also 
for G2 primaries and metastasis; however, these are worse 
compared with the G1 primary tumors only (G1 stable 
category). Therefore, any G2 tumors (in primary or in 
metastases of NETs) influences patient survival.

The Ki‑67 index also hold promising potential for 
clinical application in NECs, since a Ki‑67 index with a 55% 
cut‑off for response was found to be associated with poorer 
prognosis, favorable response to platinum‑based chemo‑
therapy (CHT) (78) and adverse reactions to temozolomide 
CHT (79).

Table I. Sensitivity and specificity of current biomarkers.

First author/s, year	 Tumor marker	 Primary tumor location	 Sensitivity %	 Specificity %	 (Refs.)

Oberg et al, 2015	 Chromogranin A	 Nonspecific	 60‑90	 <50	 (2)
Feldman, 1986	 Urinary 5‑hydroxyindole	 Midgut	 70	 90	 (51)
	 acetic acid
Bhattacharyya et al, 2008	 N‑terminal probrain	 Midgut: carcinoid heart	 92	 91	 (57)
	 natriuretic peptide	 disease
Baudin et al, 1998	 Neuron specific enolase	 Nonspecific	 33	 68	 (59)
Walter et al, 2012	 Pancreatic polypeptide	 Pancreas	 No data	 84	 (60)
Laskaratos et al, 2017 	 Connective tissue	 Midgut: right ventricular	 88	 69	 (61)
	 growth factor	 dysfunction
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4. Potential novel biomarkers

The current demand in this field is to improve the methodology 
for the diagnosis, treatment and prognosis of NENs. Therefore, 
novel markers have been evaluated over the past decade.

Genetic mutations. Recent studies have benefited from 
advances in sequencing technology for characterizing the 
complex molecular landscape of NENs (80,81). Regarding 
PanNETs, the current trend is mainly focused on deter‑
mining the roles of multiple endocrine neoplasia 1 (MEN1), 
death‑domain associated protein (DAXX), α‑thalassemia and 
mental retardation syndrome X‑linked (ATRX) genes in the 
alternative lengthening of telomeres (ALT) axis and compo‑
nents in the mTOR and DNA damage pathways (82,83). In 
particular, molecular alterations have been consistently associ‑
ated with the following four events: DNA damage repair; cell 
cycle regulation; PI3K/AKT/mTOR signaling; and telomere 
maintenance (84).

DAXX and ATRX expression and ALT. Recent studies have 
revealed increasingly consistent findings despite the lower 
mutation burden of PanNETs (82) as mutations in the MEN1, 
ATRX and DAXX genes were frequently observed in this type 
of tumors (85‑87). In total, up to 40% of well‑differentiated 
NENs in the pancreas exhibit somatic mutations in the DAXX 
and ATRX genes (82). These two genes encode proteins that 
interact and have multiple cellular functions, including modu‑
lating telomeric chromatin. ATRX and DAXX interact to deposit 
histone H3.3‑containing nucleosomes in the centromeric and 
telomeric regions of the genome and may interact to suppress 
the ALT pathway under normal circumstances  (88,89). 
ATRX/DAXX mutations result in loss of nuclear expression 
of their proteins, as detected by IHC, in tumor tissue, which 
correlates with the suppression of ALT  (90). A negative 
expression of ATRX/DAXX is typically associated with 
well‑differentiated NENs, and correlate with worse survival 
in Pan‑NETs  (90,91). ALT is a telomerase‑independent 
telomere maintenance mechanism that has been previously 
studied using fluorescence in situ hybridization (92). Altered 
telomeres are a key process frequently found in PanNETs (93). 
As such, positive ALT status in liver metastases of NENs was 
found to associate with worse survival and increased risk of 
recurrence (94,95). It has been previously shown that there is 
100% concordance among the ALT phenotype, ATRX/DAXX 
mutations and/or protein loss  (92), where the presence of 
ALT‑positive and ATRX/DAXX‑negative (inactivation muta‑
tion) in well‑differentiated PanNETs is associated with a 
significantly higher grade, size, grading, vascular/perineural 
invasion, metastatic disease and with reduced relapse‑free 
and tumor‑specific survival (96). Therefore, this profile can be 
applied as a marker of more aggressive PanNET phenotypes 
for patient stratification (97,98).

Application of fine‑needle aspiration (FNA) makes it 
possible to detect the loss of ATRX/DAXX and the presence 
of ALT as a non‑invasive method to sample tumors. As afore‑
mentioned, somatic mutations of ATRX/DAXX genes can be 
detected using IHC to indicate a loss of nuclear expression of 
their respective proteins (90). In addition, ALT can be assessed 
using telomere‑specific fluorescence in situ hybridization (92). 

This procedure is becoming increasing important in clinical 
practice, through which ALT or the loss of ATRX or DAXX 
expression can be verified with higher degrees of confidence 
during the prognostic process (92).

mTOR signaling pathway. Somatic gene alterations are 
currently studied in PanNETs (98,99), of which two processes 
have been frequently observed to be affected chromatin 
remodeling and activation of PI3K/Akt/mTOR signaling (100). 
The mTOR pathway regulates cell proliferation, cell cycle 
and apoptosis; however, in tumor cells, an abnormal activa‑
tion of mTOR pathway influences the tumor to grow and 
metastasize  (101). Since 14.7% of PanNET cases exhibit 
mutations in the PI3K/Akt/mTOR pathway, this finding that 
can be exploited to select patients for treatment with mTOR 
inhibitors (100,102).

Mutations in the tuberous sclerosis complex 2 (TSC2) and 
PTEN genes are suppressors of the Akt/mTOR pathway, which 
are present in up to 11% of sporadic PanNETs (100). Reduced 
expression of both PTEN and TSC2 was found to be associated 
with more aggressive phenotypes, presence of liver metastases 
and reduced disease‑free survival and OS in a cohort of 72 
primary PanNETs according to microarray analysis  (99). 
However, further studies are warranted before mutations 
of components in the PI3K pathway can be considered as a 
biomarker of response.

Retinoblastoma protein 1 (RB1) and p53 in NECs but not in 
NETs. The most recent 2019 WHO classification of GEP‑NENs 
made a clear distinction between NET G3 and NEC (10). NET 
G3 lacks consensus‑based recommendations is associated 
with longer OS (98). In certain cases, histology is not suffi‑
cient for differentiating between highly proliferative NETs 
and NECs (103), where it is hoped that molecular profiling can 
amend this deficiency. Abnormal immunolabeling of p53 and 
RB1 pathways are currently being proposed for the distinction 
of well‑differentiated NETs, especially NETs G3 from poorly 
differentiated NECs during diagnosis  (103). Although p53 
and RB1 are considered to be two key drivers of NECs, but in 
NETs these mutations are rarely observed (104‑107). Double 
inactivation of the TP53 and RB1 genes is one of the genetic 
signatures of SCLC (108). The presence of these inactivated 
mutations is used as a predictive marker of the response to 
platinum‑based CHT in lung and GEP‑NECs (104,105,108). In 
addition, the loss of RB1 is associated with superior responses 
to platinum salts in both lung and pancreas NECs (104,109), 
whilst the presence of p53 staining in colorectal NECs is 
associated with weaker responses to platinum‑based CHT and 
worse prognosis (105). In GEP‑NECs, p53 IHC is currently 
under examination as a possible diagnostic, prognostic and 
predictive method for GEP‑NECs, which was reported in 
several studies with frequencies of p53 immunoreactive cells 
ranging from 20‑100% (103), where mutations in TP53 associ‑
ates poor survival, moreover TP53 being the most prevalent 
mutation in NECs (105,110).

Expression markers
Insulinoma‑associated protein 1 (INSM1). INSM1 is a 
zinc‑finger family of transcription factors that serves a role 
in neurogenesis and neuroendocrine cell differentiation (111). 
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INSM1 confers certain advantages in NECs as it more sensitive 
compared with traditional general neuroendocrine markers, 
such as CgA or synaptophysin, since the clear nuclear expres‑
sion pattern of INSM1 facilitates its accurate interpretation 
and quantification whilst reducing the incidence of staining 
artifacts (65).

The Notch/hairy and enhancer of split‑1 (Hes‑1) signaling 
pathway serves a key role in tumor growth and development, 
which has also been reported to inhibit INSM1 (112). INSM1 
has recently been reported to be an important biomarker in 
the diagnosis of SCLC as it serves as an important factor in 
ASCL1‑driven pathways. ASCL1 is needed for the protein 
expression of NE molecules and in the development of lung 
NE cells  (113,114). Furthermore, functional interactions 
between ASCL1 and the Notch1‑Hes1 pathway have been 
reported (113). As aforementioned, the Notch1‑Hes1 pathway 
is involved in the suppression of INSM1 expression  (112). 
Moreover, the implication of INSM1 suppression is being 
studied as a modulator factor in PanNETs, which could be 
connected to the Notch1‑Hes1 signaling pathway (112,115).

Tanigawa et al (112) revealed that INSM1 expression was 
positive in all cases of PanNETs but negative in cases of pancre‑
atic ductal adenocarcinoma (PDAC), rendering it a potential 
marker for distinguishing between PanNETs and PDAC. In 
addition, INSM1 has also been found to be a potential marker 
for SCLC, since a number of studies reported that INSM1 
expression was present in 97‑100% SCLC cell lines, which 
appeared to be more sensitive and specific compared with CgA 
and l‑3,4‑dihydroxyphenylalanine decarboxylase (111,113). 
Furthermore, recent studies reported the superior sensitivity of 
INSM1 for the diagnosis of NENs regarding their neuroendo‑
crine origin (65,116). Bellizzi et al (65) studied a cohort of 93 
NECs, where 95% sensitivity was found for INSM1 compared 
with 83 and 82% for CgA and synaptophysin, respectively.

NETest‑a transcriptomic signature of NETs. The NETest uses 
multianalyte assays with algorithmic analyses (MAAAs), 
which is a novel method including procedures that incorpo‑
rate results derived from multiple assays and can increase 
both the sensitivity and specificity (117). This assay involves 
mRNA isolation, cDNA synthesis followed by the subse‑
quent quantitative‑PCR measurement of 51 circulating NET 
marker genes (117). These genes were chosen based on the 
analyzed microarray datasets containing the cellular profiles 
of fresh frozen tumor samples and whole blood samples from 
patients diagnosed with NET to characterize the expression 
patterns (117). Finally, a multi‑analyte liquid biopsy represen‑
tative for NETs was used to determine the biological activity 
of the tumor and therefore clinical status of the patient (118). 
Results are presented as the numeric score (NET score) that 
include the following three categories: i)  Low, ≤21‑40%; 
ii) intermediate, 41‑79%; and iii) high (biologically aggres‑
sive), ≥80%. The PCR test is standardized and reproductible; 
moreover, diet, proton pump inhibitors medication, age, 
sex and ethnicity do not interfere with the accuracy of the 
test (119,120). In addition, MAAA is reproducible at multiple 
time points, which provides real‑time NET scores (118,120).

In a cohort of 100 patients with three different types of 
tumors (GEP, lung bronchopulmonary NETs and unknown 
origin tumors), the NETest test had a reported diagnostic 

sensitivity of 96%, which was >90% effective in combination 
with diagnostic imaging for guiding treatment decisions (121). 
This previous study also demonstrated that a low NET score 
(≤40%) was associated with superior outcomes, where the 
PFS was not reached, whilst intermediate to high NETest 
scores (41‑100%) were associated with significantly shorter 
PFS and treatment failures (121). In addition, the NETest has 
been documented to be a useful tool for the detection of lung, 
thymic, pancreatic and gastrointestinal tract NETs, as well as 
paragangliomas and pheochromocytomas with ≥90% accu‑
racy (39). Moreover, the NETest can predict aggressive tumor 
behavior in other NENs (122,123), or the outcome following 
tumor resection and efficacy of medical treatments, such as 
somatostatin analogues (SSAs) or peptide receptor radio
nuclide therapy (PRRT) (39).

A recent meta‑analysis was conducted to assess the 
eligibility of NETest as a biomarker tool in the field of 
oncology (124). The results supported the utility of this test 
as a diagnostic tool for GEP and bronchopulmonary NETs, 
which reported an accuracy of 85% in differentiating between 
stable and progressive disease whereas a specificity of ~90% 
was reported (124).

Aristaless related homeobox (ARX)/pancreatic and duodenal 
homeobox 1 (PDX1) expression. ARX and PDX1 are regula‑
tory proteins involved as epigenetic modifiers in pancreatic 
development (86). The assessment of ARX/PDX1 expression 
has been previously studied as a potential pre‑operative risk 
stratification marker for PanNETs (125). Since >50% PanNETs 
already have liver metastases at first presentation, novel strate‑
gies are emerging for the other 50% with aims to reduce the 
risk of metastasis (126). Although the choice of surgery for 
the primary tumor can reduce the risk of metastasis, it is also 
associated with increased risk of post‑surgery morbidity and 
mortality. Therefore, apart from tumor size, transcription 
factors ARX and PDX1 alongside ATRX/DAXX mutations 
and the status of ALT were studied as prognostic markers 
in resected NF PanNETs  (96). Cytological specimens of 
PanNETs obtained by endoscopic FNA was previously studied 
using the IHC staining of ARX, PDX1 and telomere‑specific 
fluorescence in situ hybridization to detect ALT (125). Positive 
ALT activity and ARX expression in the tumor coupled with 
negative PDX1 staining was documented to predict metastatic 
phenotype for the stratification of patients into the low‑ or 
high‑risk groups preoperatively (125).

MicroRNA (miRNA or miR) markers. miRNAs are a class of 
RNAs that do not encode protein and are ~22 nucleotides in 
length (127). They typically regulate post‑transcriptional gene 
expression by targeting mRNA molecules (127). Circulating 
miRNAs can be used as minimally invasive biomarkers of 
ovarian, cervical or breast cancer as they are readily detectable 
in a wide variety of biofluids, including plasma, serum and 
saliva (128).

The global microRNA expression patterns were studied 
in normal pancreas, PanNETs and acinar carcinomas in order 
to assess the role of microRNAs in malignant transforma‑
tion and progression (129). miR‑103 and miR‑107 expression 
levels were found to be higher whereas the level miR‑155 
expression was lower in PanNETs compared with the normal 
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pancreas (129). Furthermore, miR‑21 expression level appears 
to be higher in the plasma of patients with PanNETs compared 
with that in patients with chronic pancreatitis (129). Therefore, 
it can be applied both as a diagnostic and a prognostic tool for 
PanNETs, since higher levels of miR‑21 expression and high 
Ki‑67 proliferation index were associated with the presence of 
metastases (129,130).

It was recently reported that in tumors without a known 
primary site, miRNA expression can be used to facilitate 
diagnosis (131). miRNA expression profiles were previously 
analyzed in four pathological types of GEP‑NETs, including 
samples from pancreatic, ileal, appendiceal and rectal 
NETs  (131). The results were promising, as the midgut 
NETs (ileum and appendix) could be discriminated from 
non‑midgut NETs (rectum, pancreas) according to miR‑615 
and miR‑92b expression (131). In addition, ileal NETs could be 
discriminated from appendiceal NETs according to miR‑125b, 
miR‑192 and miR‑149 expression, whilst rectal NETs could be 
distinguished from pancreatic NETs based on miR‑429 and 
miR‑487b expression (131).

Due to their stability in the circulation and abundance, 
cell‑type and disease stage specificity and their reported 
roles in a number of biological processes, miRNAs have been 
investigated in various studies. However, due to the lack of 
consistency in the reported signatures (between results that 
used tissue and those that used circulating blood) for the same 
disease and the lack of standardization methods with accurate 
techniques, further research is required (132,133).

Methylation markers. Epigenetic events occur depending on 
the subtype of NETs (134). DNA hypermethylation is an early 
event that frequently occurs during cancer initiation and can 
dictate the rate of disease development and progression (135). 
The ‘Hypermethylation phenotype’ was associated with poorer 
OS and with more progressive disease in PanNETs (135).

O‑6‑methylguanine‑DNA methyltransferase (MGMT) for 
NETs but not for NECs. The role of the MGMT enzyme is 
to repair DNA lesions as a result of alkylating agents usually 
used in NENs. Loss of MGMT function occurs as a result of 
epigenetic events, such as hypermethylation, of the MGMT 
gene promoter (136). This in turn leads to the loss of MGMT 
protein expression, which can be detected using IHC or 
detected on the gene level by methylation analysis (for example 
using methyl‑specific PCR or pyrosequencing). Analysis of 
the MGMT status can be used to predict the prognosis and 
response to alkylating agents that induce DNA damage in 
well‑differentiated NENs  (107). Previous studies showed 
that reduced MGMT expression is associated with increased 
rates of treatment response to temozolomide, dacarbazine and 
streptozotocin CHT in digestive and lung NENs (136,137).

Circulating biomarkers
Cell‑free DNA (cfDNA). The importance of tumor‑specific alter‑
ations in cell‑free DNA (cfDNA) in liquid biopsies is becoming 
increasingly recognized, which can either complement or 
replace tissue biopsies for several types of cancer, including 
NSCLC with mutations in the EGFR gene (138,139). cfDNA 
consists of a proportion of circulating tumor DNA (ctDNA) in 
the blood plasma, which originates from the tumor following 

apoptosis, necrosis and active secretion (140,141). cfDNA can 
be used as a biomarker for cancer, as patients with patients are 
reported to have greater levels of plasma cfDNA compared with 
tumor‑free controls (142); in addition, high levels of cfDNA are 
also described in other diseases, such as autoimmune disor‑
ders (143). However, further studies in NENs are required to 
verify the utility of cfDNA as a profiling tool. Boons et al (141) 
first reported that the presence of ctDNA through the identi‑
fication of copy number variations and tumor specific point 
mutations using shallow whole genome sequencing and 
droplet digital PCR, respectively can be used to differentiate 
between metastatic and localized PanNET. The results of 
this study demonstrated that ctDNA is found in the plasma 
samples of patients with metastatic disease. This was shown 
by tumor‑specific variants that were obtained through whole 
exome sequencing (WES) analysis of primary tumor tissue and 
germline DNA, in comparison with localized PanNETs where 
when genotyping variants in cfDNA, the variants could not 
be detected. Therefore, cfDNA is a candidate as an alternative 
biomarker to tissue biopsies for molecular profiling.

Circulating tumor cells (CTCs). CTCs are typically released 
into the blood of patients who have undergone epithe‑
lial and mesenchymal transition, which cause metastatic 
disease  (13,144). The presence of CTCs at the moment of 
recruitment/initial evaluation in the blood samples of patients 
with midgut, pancreas, bronchopulmonary and of unknown 
primary metastatic NENs was previously associated with 
worse PFS and OS (145). In addition, CTCs are associated 
with higher tumor grades and burden, high levels of CgA and 
higher Ki‑67 indices in G1 and G2 midgut and pancreatic 
NETs (146). Their potential predictive role was previously 
studied in a cohort of 138 patients with metastatic NENs, 
where 41 (29.7%) received long‑term SSAs. Changes in repeat 
CTC count at 3‑5 weeks after initiation of therapy were asso‑
ciated with both progressive disease and OS (147). Improved 
survival was recorded in patients who did not have CTCs at 
baseline and after therapy in addition to those who presented 
with >50% CTC reduction after treatment (147). However, 
CTC lacks sensitivity and specificity as a diagnostic tool for 
different types of NENs (13). This limitation is currently under 
investigation in a multicenter, exploratory CalmNET phase IV 
study (ClinicalTrials.gov Identifier, NCT02075606), which is 
monitoring a relatively homogeneous group of patients with 
F G1‑G2 midgut NETs treated with lanreotide autogel. This 
study is attempting to evaluate the predictive power of CTC 
count on clinical outcome, PFS and quality of life (148).

Molecular imaging as biomarkers
Somatostatin receptors agonists. Expression of SSTR in the 
majority of NENs, particularly subtype 2, can be imaged by 
labelling SSAs with a radionuclide, which is typically 68Ga, 
using a chelate, such as 1,4,7,10‑tetraazacyclododecane‑1,4,7,1
0‑tetraacetic acid (DOTA) (149,150).

At present, two types of molecular imaging that can be 
used to target SSTR in clinical practice: 111In‑pentetreotide 
(OctreoScan) and 68Ga‑DOTA‑Phe1‑Tyr3‑Octreotide 
( TO C),  6 8Ga‑DOTA‑Na I 3‑ O c t r eo t ide  ( NO C)  or 
68Ga‑DOTA‑Tyr3‑Oct reotate (TATE). 68Ga‑DOTA-
TATE/TOC/NOC‑PET/CT confers h igher scanner 
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sensitivity, superior spatial resolution and require lower radia‑
tion doses (151). Although all three radiotracers (DOTA‑TOC, 
DOTA‑NOC and DOTA‑TATE) have good affinity for SSTR 
types 2 and 5, 68Ga‑DOTA‑NOC exhibits higher affinity for 
SSTR type  3  (152). However, 68Ga‑DOTA‑TATE confers 
superior diagnostic precision for the nuclear imaging of NENs 
and is currently used in USA, whilst 68Ga‑DOTA‑TOC‑PET is 
mainly used clinically in the European Union (153,154).

68Ga‑DOTA‑TATE‑PET has previously demonstrated 
its superiority over Octreoscan for the location of primary 
GEP‑NETs, with a 95.1% detection rate compared with 
30.9 and 45.5% from other conventional imaging modali‑
ties, respectively (155). This outcome changed the medical 
recommendation in 32.8% of the patients (155). Results from 
68Ga‑DOTA‑TOC‑PET/CT imaging also demonstrated a high 
affinity to SSTR2 expression derived from IHC and can serve 
as a predictive marker for patient response to treatment with 
PRRT (156,157). In addition, 68Ga‑DOTA‑TOC‑PET/CT can be 
used to select patients who may potentially benefit from SSAs 
and PRRT, as a high tumor uptake of 68Ga‑DOTA‑TOC‑PET/CT 
can be useful in the treatment selection of the patients (158).

PRRT is a key second‑line treatment option for G1 or G2 
midgut NETs with disease progression on SSA treatment (91). 
PRRT can be used to identify radiation delivered by radionu‑
clides, such as lutetium‑177 (177Lu) or yttrium‑90 (90Y), to NET 
cells following internalization after binding to SSTR (151). 
However, the expression of SSTRs is currently being 
studied as a predictive marker for treatment response (13). 
In the NETTER‑1 prospective randomized phase  3 
clinical trial (ClinicalTrials.gov Identifier, NCT01578239), 
177Lu‑DOTA‑TATE demonstrated its superiority compared 
with high‑dose octreotide in prolonging the PFS in patients with 
midgut NETs (PFS at month 20, 65.3% for 177Lu‑DOTATATE; 
10.8% for high‑dose octreotide group) (159).

Somatostatin receptors antagonists. Higher tumor uptake of 
radiolabeled somatostatin receptor antagonists their poten‑
tial role has been studied for diagnostic and therapeutic 
approach in NETs (160). Previous studies reported higher 
sensitivity and diagnostic accuracy with increased image 
contrast for 68Ga‑NODAGA‑JR11 (68Ga‑OPS202), a SSTR‑2 
antagonist, compared with agonists 68Ga‑DOTA‑TATE 
and 68Ga‑DOTA‑TOC, for staging G1 and G2 GEP‑NETs 
(ClinicalTrials.gov identifier, NCT02162446) (160,161). A 
‘theragnostic pair’‑68Ga/177Lu‑DOTA‑JR11 combination was 
also investigated in a single‑center study (ClinicalTrials.gov 
identifier, NCT02609737). Although there are indications 
that it binds to more cell types compared with DOTA‑TATE 
or DOTA‑TOC in low‑grade NETs, this investigation 
remain in progress at present. Similarly, a peptide ligand, 
68Ga‑DOTA‑bombesin, which can bind to the gastrin 
realizing peptide receptor in prostate cancer cells  (162), 
is another example of this receptor system that is under 
evaluation for NENs. Its first application for PET imaging in 
humans for prostate and breast cancer has been previously 
reported (162).

18F‑fluoro‑deoxyglucose (FDG)‑PET/CT (18F‑FDG‑PET/CT). 
18F‑FDG‑PET/CT avidity, especially for detecting G3 NET, was 
reported to be an indirect marker of proliferative activity in the 

tumor, showing a higher sensitivity (87.5%) than somatostatin 
receptor scintigraphy (87.6%) for detecting rapidly progressive 
disease (163). In a retrospective study, 18F‑FDG avidity was 
measured quantitatively as a potential prognostic marker in a 
cohort of 89 patients with metastatic GEP‑NETs (164). These 
patients were divided into three groups based on the ratio of 
standardized uptake value (SUV) max of the lesion that had 
the highest FDG uptake as compared to normal liver uptake of 
FDG (tumor‑to‑liver T/L SUV ratio) (ratio ≤1, 1‑2.3 and >2.3). 
These three categories associated positively with OS (median 
OS not reached after 114 months for patients with T/L SUV 
ratio ≤1 vs. 55 months for patients with T/L SUV ratio of 1‑2.3 
vs. 13 months for patients with T/L SUV ratio >2.3) (164).

NET‑PET score. Somatostatin receptor imaging (SRI) 
is currently considered the gold standard for detecting 
well‑differentiated NETs. However, it has a number of limita‑
tions for detecting high grade NETs due to the possibility of 
false‑negatives, since these types of tumors do not express 
SSTRs (156). Although 18F‑FDG‑PET can be used for staging 
G3 NECs, it is more suited for predicting the prognosis of 
well‑differentiated NETs, where higher levels of uptake were 
associated with an increased risk of early progression (163). 
By contrast, lower levels of uptake is associated with a less 
aggressive phenotype of the tumor (163). Chan et al  (165) 
therefore proposed a grading system combining these two 
nuclear imaging techniques (SRI and 18F‑FDG‑PET) as a 
single parameter, named ‘NET‑PET’, which was found to 
associate with OS. This scoring system is designated into five 
risk category groups: i) Grade P0, negative uptake for both 
scans; ii) grade P1, purely STTR‑positive lesions without 
FDG uptake above background; iii) grades P2‑P4, interme‑
diate categories; and iv) grade P5, presence of significant 
FDG‑positive/STTR‑negative disease (166). The NET‑PET 
score may influence the initial management method of 
patients with well‑differentiated metastatic midgut NET, 
since the ENETS guideline (167) recommends CHT or SSA 
as the first‑choice treatment option. During the initial phases 
of SSA therapy, there is no consensus on the upper cut‑off 
value of the Ki‑67 proliferation index (165). In this case, the 
NET‑PET score would favor SSA treatment if there is high 
SRI uptake and low FDG uptake, whilst the contrary would 
favor CHT (168). The same line of reasoning can be made 
during patient selection for PRRT, where high SRI uptake but 
low FDG uptake would suggest PRRT as a viable treatment 
option, whilst higher FDG uptake and low SRI uptake would 
indicate likelihood of PPRT resistance (169). Since this was 
a retrospective analysis, it remains to be elucidated how the 
individual intermediate classifications can influence the prog‑
nosis and treatment decision in a prospective study.

Tumour growth rate as an early biological marker. 
Accumulating data suggest that the response evaluation 
criteria in solid tumors (RECIST 1.1) has several limitations 
in predicting the response to different types of systemic treat‑
ments (ST) (34,170). According to RECIST 1.1, the majority 
of patients with G1‑2 GEP‑NETs would be classified as having 
‘stable disease’  (170). However, even non‑responders can 
survive for a long period without disease progression, since it 
is known that well‑differentiated GEP‑NETs have a relatively 
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slow growth rate  (34). Therefore, is important to discover 
a tumor marker that can identify patients who are at high 
risk of disease progression at the early stage (171). Previous 
studies reported TGR to be a dynamic marker, which analyzes 
images from two examinations and the time between the 
examinations and can reveal beneficial quantitative informa‑
tion regarding the percentage of change in the tumor volume 
each month (171,172). The GREPONET I study confirmed 
that the TGR measured at 3 months (TGR3m) after starting ST 
or watch and wait (WW) treatment with a cut‑off of 0.8%/m 
(m, percentage of the change of the tumor size in one month), 
could be used in clinical practice to monitor the treatment 
response in NETs for the early prediction of PFS (34). In addi‑
tion, an increased TGR3m (≥0.8%/m) was found to associated 
with shorter PFS, whilst a decreased TGR3m (<0.8%/m‑) was 
found to associate with longer PFS (34). This finding suggests 
that patients with high TGR3m should be followed up more regu‑
larly, whilst those with lower TGR3m can receive imaging less 
regularly to avoid unnecessary radiation (34). Subsequently, 
the GREPONET II study explored whether beginning any ST 
including WW can induce any changes in TGR, which was 
defined as TGR3m‑TGR0 (TGR0 was calculated by comparing 
the baseline and imaging examination performed within 
1 year before the baseline scan) (35). Since it was expected 
that TGR can be used for monitoring treatment change with no 
impact on PFS, further study is required.

5. Conclusions

Selection of the optimal treatment option for patients with 
NEN is difficult due to the heterogeneity in the tumor 
physiology and varying degrees of aggressiveness. There is a 
demand for multidisciplinary tumor management guidelines 
driven by data derived from modern radiology and molecular 
profiling techniques, to inform the optimal medical decision. 
Overall, further studies integrating a combination of markers 
based on tumor genomics and a large spectrum of radiological 
techniques, such as molecular imaging, would be better placed 
for shaping the future of clinical NEN research. The present 
review highlights the importance of a second opinion for 
improving the method of prognostic stratification and choice 
of personalized treatment strategies.
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