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Abstract

Acamprosate (Campral® – calcium-bis[N-acetylhomotaurinate]) is one of few avail-

able pharmacotherapies for individuals suffering from alcohol use disorder. Previ-

ously, we suggested that acamprosate reduces ethanol intake by increasing

dopamine in the nucleus accumbens (nAc), thereby partly substituting for alcohol's

dopamine releasing effect. An experimental study suggested the calcium moiety of

acamprosate to be the active component of the drug and to mediate the relapse pre-

venting effect. The aim of the present study was to, by means of reversed in vivo

microdialysis, elucidate if the dopamine elevating properties of acamprosate are

mediated by N-acetylhomotaurine or by the calcium moiety. Male rats were equipped

with a microdialysis probe in the nAc and received acute local treatment with regular

acamprosate (CaAcamp 0.5 mM), calcium chloride (CaCl2 0.5 mM), sodium acampro-

sate (NaAcamp 0.5–1 mM), the glycine receptor (GlyR) antagonist strychnine (Stry

20 μM), or vehicle. In all experiments, extracellular levels of dopamine and taurine

were examined. We found that local perfusion with both CaAcamp and CaCl2

increased dopamine levels in a GlyR-dependent manner. NaAcamp did not influence

dopamine levels, but concomitant administration with CaCl2 resulted in an additive

dopamine output compared to the drugs administrated alone. We also found CaA-

camp and the combination of CaCl2 and NaAcamp to increase accumbal taurine

levels, suggesting that CaAcamp may act indirectly on GlyRs via taurine release. The

present results indicate that both N-acetylhomotaurine and the calcium moiety of

acamprosate have dopamine elevating properties within the nAc and that, in this

respect, these substances are beneficial in combination.

K E YWORD S

acamprosate, alcohol, calcium, in vivo microdialysis, nucleus accumbens, taurine

1 | INTRODUCTION

Alcohol addiction and the manifested use of alcohol in an abusive way

account for a pronounced quantity of the total burden of disease and

injury worldwide.1 Alcohol use disorder (AUD) is a chronic relapsing

brain disease, involving several neuronal pathways and circuits includ-

ing the mesolimbic dopamine system, a major part of the brain reward

pathway.2,3 Ethanol-induced activation of the mesolimbic dopamine
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system increases dopamine levels in the nucleus accumbens (nAc), a

phenomenon common to most drugs of abuse and associated with

reward and positive reinforcement.4,5

One of the few pharmacotherapies available to treat AUD is acam-

prosate (calcium-bis[N-acetylhomotaurinate]; Campral®),6,7 a drug

initially found to have an ethanol intake-reducing effect in rat.8 Early

clinical studies, with different biological and clinical endpoints, found

acamprosate to generate a positive outcome with reduced alcohol

intake and relapse frequency in patients with AUD.9,10 Furthermore, a

meta-analysis with data originating from both alcohol-dependent men

and women demonstrated acamprosate to be beneficial relative to pla-

cebo when comparing four efficacy endpoints with no differences in

drug response between the sexes.7 In several rodent models, acampro-

sate treatment was shown to attenuate alcohol seeking behaviour and

decrease preference for ethanol,11,12 as well as to reduce the fre-

quency of relapse to high ethanol intake in a dose-dependent

manner.13–15 Acamprosate was put on the market in France in 1989,16

that is, more than 30 years ago, and the mechanism of action is still not

fully understood. In the development of new molecules targeting cellu-

lar or molecular mechanisms related to AUD, it is of importance to gain

knowledge of the mechanism of action for existing treatment methods.

Acamprosate is a homotaurine derivative sharing structural analo-

gies with both the γ-aminobutyric acid (GABA) and the endogenous

amino acid taurine, a glycine (GlyR) and GABAA receptor agonist with

a number of physiological functions including possessing osmoregula-

tory properties.6,17 Several hypotheses have been put forward on the

mechanism underlying the ethanol-intake reducing effect of acampro-

sate suggesting a modulatory role on both GABA and glutamate

neurotransmission by direct or indirect interaction with GABAA-,

NMDA- and mGluR receptors, respectively.8,18–22 We previously

demonstrated that GlyRs in the nAc and nicotinic acetylcholine

receptors in the ventral tegmental area also participate in mediating

the effects of acamprosate.23,24 In line with others, we found

acamprosate to have dopamine elevating properties, following both

systemic and local administration in the rat, to a similar degree as

previously demonstrated for ethanol25,26 and taurine.27,28 Thus,

acamprosate may partially act as a neurochemical substitution for

ethanol in its mesolimbic dopamine activating effect. Interestingly, an

experimental study suggested that the calcium moiety of the calcium-

bis(N-acetylhomotaurinate) compound is solely responsible for the

drug effect on ethanol consumption.29 This conclusion was made

because the sodium salt of N-acetylhomotaurinate failed to reduce

excessive alcohol drinking, alcohol-seeking and relapse-drinking

behaviour, whereas calcium administration alone was successful. It

was further suggested that N-acetylhomotaurine lacks a binding site

within the central nervous system and is biologically inert.29

As the mechanism of action underlying the effects of acampro-

sate is still elusive, we aimed to perform an in depth in vivo microdia-

lysis study exploring the acute effects of different salt forms of

N-acetylhomotaurinate and calcium on dopamine output in the nAc.

Although it has been suggested that N-acetylhomotaurine is biologi-

cally inert, we hypothesised that homotaurine may act together with

calcium to raise accumbal dopamine levels, and thus, that regular

acamprosate could possess two active ingredients. We further postu-

lated that regular acamprosate and calcium would elevate accumbal

dopamine levels in a GlyR-dependent manner, thereby resembling the

mechanism by which ethanol activates the brain reward system.

Because acamprosate shares the same structural backbone as the

amino acid taurine, we also aimed to characterise the tentative effects

of these drugs on extracellular levels of taurine.

2 | MATERIAL AND METHODS

2.1 | Animals

Naïve male Wistar rats (Envigo, the Netherlands) weighing 280 to

340 g, corresponding to an age of 9–10 weeks, were used in the exper-

iments. From arrival until the microdialysis probe-placement surgery,

the animals were housed in groups of three to four animals in each

cage, at constant room temperature (20–22�C) and humidity (55–65%)

and were kept under a regular 12-h light/dark cycle (lights on at

7:00 AM and lights off at 7:00 PM). The animals had access to standard

rodent chow and water ad libitum during the entire experiment

and were allowed to adapt to the novel environment during 1 week

before any experiments were initiated. The study was approved by

the Ethics Committee for Animal Experiments, Gothenburg, Sweden.

2.2 | Drugs and chemicals

Calcium-bis(N-acetylhomotaurinate) (CaAcamp) (kindly provided by

Merck, Lyon, France), sodium-N-acetylhomotaurinate (NaAcamp) (TCI,

Zwijndrecht, Belgium), CaCl2 (Fisher Scientific, Gothenburg, Sweden)

and strychnine hydrochloride (Sigma-Aldrich, Stockholm, Sweden) were

dissolved and diluted in Ringer's solution (consisting of [in mmol/l]: 140

NaCl, 1.2 CaCl2, 3.0 KCl and 1.0 MgCl2). CaAcamp, NaAcamp and CaCl2

were all diluted to a concentration of 0.5 mM. NaAcamp was also

diluted to an additional concentration of 1 mM, because this

concentration equals 0.5 mM CaAcamp with respect to the

stoichiometry of CaAcamp (two N-acetylhomotaurinates to one calcium

ion; NaAcamp = one N-acetylhomotaurinate to one sodium ion). The

GlyR antagonist strychnine was diluted to a concentration of 20 μM. All

drugs used were administered via reversed microdialysis. Using this

type of drug administration, the actual concentration of substance pass-

ing over the probe membrane in vivo is difficult to estimate. However,

perfusion with 0.5 mM calcium-bis(N-acetylhomotaurinate) was previ-

ously demonstrated to yield approximately the same dopamine output

within the nAc as the physiological relevant dose of 200 mg/kg i.p.

2.3 | In vivo microdialysis

The microdialysis experiments were performed in awake and freely

moving rats (n = 88). Two days prior to the experiment, the rats were

anaesthetised by isoflurane (Baxter, Kista, Sweden), mounted into a
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stereotaxic instrument (David Kopf Instruments, Lidingö, Sweden) and

placed on a heating pad to prevent hypothermia during the surgery.

Two holes were drilled for anchoring screws and one for the place-

ment of a custom-made dialysis probe, with an active space of 2 mm,

allowing passive diffusion of solutes. The probe was lowered into the

nAc core/shell borderline region (A/P: +1.85, M/L: �1.4 mm relative

to bregma, D/V: �7.8 relative to dura30) and was, together with the

anchoring screws, fixed to the scull with Harvard/dental cement (DAB

Dental AB, Gothenburg, Sweden). To prevent dehydration, the ani-

mals received saline (2 ml 0.9% NaCl s.c.) and were allowed to recover

in individual cages before the experiment.

On the day of the microdialysis experiment, the sealed inlet and

outlet of the probe were cut open and, via a swivel, connected to a

microinjection pump (U-864 Syringe Pump, AgnTho's, Lidingö Sweden)

allowing the animals to move around freely in its home cage. The probes

were perfused with Ringer's solution at a rate of 2 μl/min, and dialysate

samples (40 μl) were collected every 20 min during the entire

experiment. Two hours prior to baseline sampling began, the rats were

perfused with Ringer's solution to allow for equilibrium. Drugs were

administered locally in the nAc after a stable dopamine baseline was

obtained, with accepted normal fluctuation of ±10%. Instantly after the

experiment, the animals were sacrificed, brains were removed, fixed

(Accustain, Sigma-Aldrich, Sweden) and stored (�4�C) until verification

of probe placement 5–7 days later. Only rats with a correct probe place-

ment and no visual signs of brain tissue damage were included in the sta-

tistical analysis (Figure 1). A total of 10 rats were excluded in this study.

2.4 | Biochemical assays

The dialysate sample was split and analysed for dopamine and taurine

separately. Dopamine was separated and detected using two different

simultaneously running high-performance liquid chromatography

(HPLC) systems with electrochemical detection, as previously

described.31 To identify and quantify the dopamine peak, an external

standard containing 3.25 nM of dopamine was used. The dopamine

samples were analysed online. In order to avoid degradation of tau-

rine, sodium azide (50% v/v) was added to each individual sample

before storage in �20�C. Taurine was detected using an HPLC system

with fluorescence detection, as previously described.32 Identification

and quantification of taurine was accomplished by using two external

standards containing 0.5–1.0 μM of taurine.

2.5 | Statistical analysis

The content of dopamine and taurine in each sample was expressed

as the percentage of the average pre-treatment baseline. From the

dialysates collected, the overall drug effect was calculated as the aver-

age alteration of dopamine and taurine content after the drug admin-

istration (0–180 min or 20–180 min) and was statistically evaluated

using two-way analysis of variance (ANOVA) with repeated measures

(treatment group � time). One-way ANOVA followed by Tukey's post

hoc analysis was used for statistical evaluation of the area under the

curve (AUC). All data are presented as mean ± SEM, and a probability

value (p) less than 0.05 was considered statistically significant.

3 | RESULTS

3.1 | Calcium acamprosate elevates dopamine in
the nAc but not when perfused in combination with
strychnine

In the first set of experiments, we aimed to verify the dopamine ele-

vating effect of acamprosate and the role of GlyRs in mediating this

F IGURE 1 Microdialysis probe placement. Location of the microdialysis probe illustrated as (A) black lines, representing a subset of the probe
placements in the nAc (approximately every fourth animal), and (B) a photomicrograph, showing a Cresyl violet stained 80-μm thick slice of the
nAc following a microdialysis experiment. Placement of the active space of the probe is represented in the box. Numbers beside each figure
represent distance from bregma. nAc = nucleus accumbens
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effect. Animals were pre-treated with either vehicle (Ringer's solution)

or the GlyR antagonist strychnine (20 μM in the perfusate) 20 min

before concomitant application of CaAcamp (0.5 mM) via the micro-

dialysate probe. Administration of CaAcamp within the nAc increased

the extracellular levels of dopamine as compared to vehicle (Veh)

treatment (two-way ANOVAt = 0–180 min: group effect F1, 17 = 15.05,

p = 0.001, η2 = 0.46; time effect F9, 153 = 4.00, p < 0.001, η2 = 0.19;

interaction F9, 153 = 6.20, p < 0.001, η2 = 0.26; Figure 2A). However,

pre-treatment with strychnine completely blocked the dopamine ele-

vating effect of CaAcamp (two-way ANOVAt = 0–180 min: group effect

F1, 14 = 0.681, p = 0.423; time effect F9, 126 = 0.821, p = 0.598;

interaction F9, 126 = 0.759, p = 0.654; Figure 2B).

3.2 | Calcium chloride elevates dopamine in the
nAc, an effect prevented by strychnine

In the next set of experiments, we examined if calcium itself had the

capability to increase nAc dopamine. Administration of CaCl2

(0.5 mM) alone resulted in a modest increase of dopamine compared

to vehicle perfused animals (two-way ANOVAt = 0–180 min: group

effect F1, 14 = 20.31, p < 0.001, η2 = 0.59; time effect F9, 126 = 0.935,

p = 0.497; interaction F9, 126 = 2.00, p = 0.045, η2 = 0.12;

Figure 3A). In similarity with CaAcamp, the previously observed

calcium-induced dopamine elevation was absent in animals pre-

treated with strychnine (20 μM; two-way ANOVAt = 0–180 min: group

effect F1, 14 = 0.592, p = 0.455; time effect F9, 126 = 1.70, p = 0.096;

interaction F9, 126 = 0.549, p = 0.836; Figure 3B).

3.3 | Sodium acamprosate administration does not
increase nAc dopamine alone but in combination with
calcium chloride

In order to evaluate whether the N-acetylhomotaurine part of CaA-

camp influences nAc dopamine, we explored the effects of the sodium

salt of the drug (NaAcamp). Administration of NaAcamp (0.5 mM or

1 mM) did not significantly increase dopamine over time (two-way

ANOVAt = 0–180 min; 0.5mM: group effect F1, 15 = 0.018, p = 0.894,

time effect F9, 135 = 1.55, p = 0.137, interaction F9, 135 = 0.806,

F IGURE 2 CaAcamp increases accumbal dopamine in a glycine receptor-dependent manner. Time-course graphs of the nAc dopamine levels
following local perfusion of (A) CaAcamp (0.5 mM) or vehicle (Ringer's solution) and (B) the combination of CaAcamp (0.5 mM) and strychnine
(20 μM) or strychnine (20 μM) alone, following a 20-min pre-treatment period with vehicle or strychnine (20 μM). Drug administration is indicated
by arrows. All data are presented as mean ± SEM. ***p < 0.001. CaAcamp = calcium acamprosate, nAc = nucleus accumbens, Stry = strychnine,
Veh = vehicle

F IGURE 3 CaCl2 elevates extracellular dopamine levels in the nAc in a glycine receptor-dependent manner. Time-course graphs of the nAc
dopamine levels following local perfusion of (A) CaCl2 (0.5 mM) or vehicle (Ringer's solution) and (B) the combination of CaCl2 (0.5 mM) and
strychnine (20 μM) or strychnine (20 μM) alone, following a 20-min pre-treatment period with vehicle or strychnine (20 μM). Drug administration
is indicated by arrows. All data are presented as mean ± SEM. *p < 0.05. CaCl2 = calcium chloride, nAc = nucleus accumbens, Stry = strychnine,
Veh = vehicle
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p = 0.611; 1 mM: group effect F1, 19 = 2.15, p = 0.159, time effect

F9, 171 = 0.790, p = 0.626, interaction F9, 171 = 0.965, p = 0.471;

Figure 4A, B). To further investigate the possible effects of NaAcamp,

we explored concomitant administration of CaCl2 (0.5 mM) and NaA-

camp (1 mM). Perfusion with the combination of the drugs produced

a significant elevation of dopamine in comparison to both vehicle-

treated animals and to each of the drugs locally perfused alone (one-

way ANOVA of AUCt = 20–180 min: F (3, 29) = 13.22, p < 0.001,

η2 = 0.58; post hoc analysis: Veh versus CaCl2-NaAcamp p < 0.001,

CaCl2 versus CaCl2-NaAcamp p = 0.023, NaAcamp versus CaCl2-

NaAcamp p < 0.001; Figure 5A, B).

3.4 | Acamprosate increases taurine levels in
the nAc

As acamprosate is a homotaurine analogue, where the carbon backbone

has an acetyl group added at the amino end to facilitate absorption, we

wanted to investigate taurine levels in the nAc following the adminis-

tration of the different salt forms of acamprosate. We also examined

the levels of taurine following CaCl2 treatment alone and when com-

bined with NaAcamp. The amino acid analysis showed that CaAcamp

(0.5 mM) has taurine elevating properties compared to vehicle-

administrated animals (two-way ANOVAt = 0–180 min: group effect F1,

18 = 4.16, p = 0.056, time effect F9, 162 = 2.83, p = 0.004, η2 = 0.14,

interaction F9, 162 = 3.19, p = 0.001, η2 = 0.15; Figure 6A). Treatment

with CaCl2 (0.5 mM) or NaAcamp (1 mM) alone did not significantly ele-

vate taurine levels (two-way ANOVAt = 0–180 min; CaCl2: group effect

F1, 14 = 0.794, p = 0.388, time effect F9, 126 = 0.568, p = 0.821, inter-

action F9, 126 = 0.721, p = 0.689; NaAcamp: group effect F1,

21 = 0.251, p = 0.622, time effect F9, 189 = 3.07, p = 0.002, η2 = 0.13,

interaction F9, 189 = 1.79, p = 0.073; Figure 6B, C), whereas the two

substances combined increased the accumbal taurine output compared

to vehicle treatment (two-way ANOVAt = 0–180 min: group effect F1,

13 = 8.03, p = 0.014, η2 = 0.38; time effect F9, 117 = 4.13, p < 0.001,

η2 = 0.24; interaction F9, 117 = 3.85, p < 0.001, η2 = 0.23; Figure 6D).

F IGURE 4 NaAcamp does not increase accumbal dopamine levels alone. Time-course graphs of the nAc dopamine levels following local
perfusion with (A) NaAcamp (0.5 mM) or vehicle (Ringer's solution) and (B) NaAcamp (1 mM) or vehicle. Drug administration is indicated by
arrows. All data are presented as mean ± SEM. NaAcamp = sodium acamprosate, nAc = nucleus accumbens, Veh = vehicle

F IGURE 5 The combination of CaCl2 and NaAcamp additively increase dopamine output in the nAc compared to CaCl2 and NaAcamp alone.
(A) Time-course graphs of the nAc dopamine levels following local perfusion with vehicle (Ringer's solution), the combination of CaCl2 (0.5 mM)
and NaAcamp (1 mM), as well as following CaCl2 (0.5 mM) and NaAcamp (1 mM) alone. (B) Area under the curve representing dopamine levels in
the nAc following local perfusion with vehicle, CaCl2 (0.5 mM), NaAcamp (1 mM) and the combination of CaCl2 (0.5 mM) and NaAcamp (1 mM)
during the time interval 20–180 min. Drug administration is indicated by arrows. All data are presented as mean ± SEM. *p < 0.05, ***p < 0.001.
AUC = area under the curve, CaCl2 = calcium chloride, NaAcamp = sodium acamprosate, nAc = nucleus accumbens, Veh = vehicle
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4 | DISCUSSION

Contradicting the idea that the acamprosate molecule is biologically

inactive, the findings presented here show that there is an additive

effect produced by calcium and N-acetylhomotaurine on dopamine as

well as a potentiated effect on taurine output in the nAc following

local drug administration. In addition, this dopamine increase appears

to depend on GlyR activation as the acamprosate-induced dopamine

elevation was prevented by strychnine pre-treatment. Even though

acamprosate previously was demonstrated not to directly interact

with α1 subunit containing GlyRs when using a Xenopus oocyte

model,33 the drug could interact with other α subunit containing GlyRs

or act indirectly through the release of taurine. Regardless, GlyRs

appear to be a major participant in the effects of acamprosate as GlyR

antagonism also has been shown to reverse the ethanol intake reduc-

ing effect of the drug.24

In the search for a mechanism of action for acamprosate, it was

suggested that the calcium moiety of acamprosate is solely responsi-

ble for the effects of the drug because different forms of calcium

mimicked the effects of acamprosate whereas the sodium salt of N-

acetylhomotaurinate did not.29 By means of in vivo microdialysis, we

show in this study that local nAc administration of calcium chloride

increases accumbal dopamine. Interestingly, this effect also appears to

involve GlyRs, as strychnine prevents the calcium chloride-induced

dopamine elevation. When comparing the dopamine increases pro-

duced by regular acamprosate and calcium chloride, we found a larger

increase by acamprosate indicating a possibility of multiple mecha-

nisms of the compound on dopamine output. Administration of the

corresponding sodium salt formulation of acamprosate did not pro-

duce a significant alteration of dopamine on a group level, supporting

previous studies concluding that the calcium moiety of acamprosate is

responsible for the drug's effect and that N-acetylhomotaurine is bio-

logically inactive.29 Nevertheless, our study exploring nAc dopamine

levels demonstrated an enhanced elevation of dopamine following

local concomitant administration of calcium chloride and sodium

acamprosate. This finding strengthens the idea that calcium and N-

acetylhomotaurine exert multiple effects, which may influence dopa-

mine neurotransmission in an additive or even synergistic manner.

Hence, N-acetylhomotaurine does not appear to be biologically inert,

as suggested by Spanagel and co-workers. It should be noted, how-

ever, although we employed the Wistar rat, the Sprague–Dawley

strain was used in the former study, a difference which could account

for this discrepancy.

Dopamine has been suggested to have a major impact on ethanol

consumption, not just as a pharmacological consequence of passive

(injections) or active (voluntary intake) ethanol exposure, but the

endogenous dopamine tone in the mesolimbic dopamine system

appears to differentially drive the individual towards consumption. A

spontaneously low dopaminergic tone, or a decreased dopaminergic

tone as a consequence of long-term alcohol consumption, appears to

be associated with a high voluntary ethanol consumption both in rats

and humans.34–36 The increase in dopamine following acamprosate

administration has not received much attention when examining the

mechanism underlying the anti-alcohol effect of the drug. However, in

a previous study, we found a link between the ethanol-intake reduc-

ing effect of acamprosate and its ability to increase dopamine.37 Apart

from increasing dopamine by itself, acamprosate prevented ethanol

from an additional influence on dopamine in the nAc. Conversely, fol-

lowing repeated administration of acamprosate, there appeared to be

a tolerance towards the ethanol-intake reducing effect of the drug,

and once this phenomenon occurred, acamprosate had also lost its

ability to raise nAc dopamine. Whether the decline of effect of

F IGURE 6 Extracellular nAc
taurine levels are elevated as an
effect of administration of
acamprosate in different salt
formations and combinations.
Time-course graphs of the nAc
taurine levels following local
perfusion with (A) CaAcamp
(0.5 mM), (B) CaCl2 (0.5 mM),

(C) NaAcamp (1 mM) or (D) the
combination of CaCl2 (0.5 mM)
and NaAcamp (1 mM) within the
nAc. Drug administration is
indicated by arrows. All data are
presented as mean ± SEM.
**p < 0.01, ***p < 0.001.
CaAcamp = calcium acamprosate,
CaCl2 = calcium chloride,
NaAcamp = sodium acamprosate,
nAc = nucleus accumbens,
Veh = vehicle
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acamprosate following long-term treatment is species specific and

only present in the rat14,37–39 is not known, the dopamine elevating

properties of acamprosate may indeed be central to its effect on alco-

hol consumption.

The link between acamprosate and GlyRs may not be direct, but

rather indirect as indicated by a previous study.33 A systemic injection

of a very high dose of acamprosate (1 g/kg) was shown to increase

nAc taurine,40 indicating the possibility of an indirect influence of

acamprosate on GlyRs. Although previous interpretations included an

acamprosate and taurine-induced normalisation of a hyperglutamater-

gic state, when both acamprosate and taurine were found to block

the glutamate increase following ethanol withdrawal,41,42 activation

of GlyRs may be another or additional effect of the drug. In the pre-

sent study, we used a lower dose of acamprosate (0.5 mM, corre-

sponding to 200 mg/kg i.p. with regards to influence on nAc

dopamine23) but were still able to detect a significant increase of tau-

rine. We have previously speculated that acamprosate acts as a neu-

rochemical substitute for ethanol in the mesolimbic dopamine

system,37 because the drug, just as previously shown with ethanol,

increases dopamine.23,43 Here we thus demonstrate another ability of

acamprosate that mimics that of ethanol, the ability to increase tau-

rine.44 Considering that taurine increases dopamine in the nAc,27 this

further supports the idea that acamprosate may partially act as a sub-

stitution for ethanol with regards to dopamine elevation. Indeed, as

low dopamine levels may motivate for further ethanol consumption,45

the acamprosate/taurine-induced activation of GlyRs and the ensuing

dopamine elevation may be the underlying reason to decreased etha-

nol intake, a suggestion further supported by the finding that strych-

nine locally applied in the nAc reversed the ethanol intake reducing

effect of acamprosate.24 However, this indication is based on the pos-

tulate that acamprosate acts as a neurochemical substitute for ethanol

in the nAc and needs to be further confirmed in future studies to

include or exclude other known or unknown mechanisms.

Neither calcium chloride nor sodium acamprosate significantly

altered nAc taurine following local administration via the dialysis

probe. Because calcium chloride increased dopamine levels without

impacting taurine, calcium may have dopamine modulating properties

by mechanisms separate from that of N-acetylhomotaurine. Indeed,

calcium is known to impact neurotransmission including primary

effects on both neurons and astrocytes,46,47 and further studies are

needed to unravel the specific mechanisms underlying the calcium-

induced dopamine elevation relevant to acamprosate treatment.

Regardless, because the calcium-induced dopamine elevation was

absent following strychnine pre-treatment, the mechanism of action

appears to involve GlyRs. Furthermore, sodium acamprosate treat-

ment did not induce a significant elevation of taurine. Further support

of separate mechanisms acting in an additive manner of calcium and

N-acetylhomotaurine was found following co-administration of the

drugs. Although each drug on its own was unable to increase taurine,

the combination of calcium chloride and sodium acamprosate elevated

extracellular taurine levels to approximately the same extent as regu-

lar acamprosate. Whether additive or synergistic impact of calcium

and N-acetylhomotaurine only holds true relative to dopamine

neurotransmission or if this also extends to voluntary ethanol intake

remains to be established.

In the present study, we used sodium acamprosate synthesised

according to what was previously described.29 For administration of

acamprosate locally in the nAc, we used the same concentration

(0.5 mM) as in a previous publication,23 a concentration equivalent to

a physiologically relevant systemic dose of 200 mg/kg i.p. Using cal-

cium chloride, we aimed to obtain approximately the same concentra-

tion (0.5 mM) for equivalent amounts of Ca2+ ions. However, as the

drugs were administered by reversed microdialysis, the excovery of

the compounds could be somewhat different, but we do not estimate

this to have a significant impact on the findings presented. Using

sodium acamprosate, we perfused two different concentrations (0.5

and 1 mM). The higher concentration equals to the perfused dose of

regular acamprosate, as the original acamprosate salt dissociates

completely into its constituents following dissolution in a hydrophilic

media.22 The lower concentration contains equivalent amounts of

ions (Na+ versus Ca2+) with regards to the perfused dose of regular

acamprosate and calcium chloride. Furthermore, as taurine is an

osmoregulator and is released into the extracellular space upon alter-

ations in the osmotic environment,17,48,49 we considered the differ-

ence in osmolarity between the various drug solutions perfused. As

no differences with respect to dopamine or taurine output were

observed following sodium acamprosate (0.5 mM: dopamine

Figure 4A, taurine data not shown; or 1 mM: dopamine Figure 4B,

taurine Figure 6C), we chose to only use the higher concentration in

combination with calcium chloride to correctly compare 1 mM of

sodium acamprosate with 0.5 mM regular acamprosate.

In conclusion, in the present microdialysis study, we show that

regular acamprosate increases both dopamine and taurine in the nAc

and that the dopamine elevation is GlyR dependent. In contrast to

others, we do not find that the calcium moiety of acamprosate is

solely responsible for the biological effects of the compound, but

instead that the calcium ion and N-acetylhomotaurine act in an addi-

tive manner to elevate dopamine in the nAc. The exact mechanism(s)

underlying this dual effect of the compound remains to be estab-

lished, but both increased levels of taurine and activation of GlyRs

appear to be important for the dopamine elevating properties of the

drug. Whether these additive effects are functionally relevant follow-

ing systemic administration and with respect to voluntary ethanol

intake remains to be established.
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