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Abstract: Intuitively, the level of autonomy of an agent is related to the degree to which the agent’s
goals and behaviour are decoupled from the immediate control by the environment. Here, we
capitalise on a recent information-theoretic formulation of autonomy and introduce an algorithm for
calculating autonomy in a limiting process of time step approaching infinity. We tackle the question
of how the autonomy level of an agent changes during training. In particular, in this work, we
use the partial information decomposition (PID) framework to monitor the levels of autonomy and
environment internalisation of reinforcement-learning (RL) agents. We performed experiments on
two environments: a grid world, in which the agent has to collect food, and a repeating-pattern
environment, in which the agent has to learn to imitate a sequence of actions by memorising the
sequence. PID also allows us to answer how much the agent relies on its internal memory (versus
how much it relies on the observations) when transitioning to its next internal state. The experiments
show that specific terms of PID strongly correlate with the obtained reward and with the agent’s
behaviour against perturbations in the observations.

Keywords: autonomy; reinforcement learning; information theory; partial information decomposition;
non-trivial informational closure; deep learning

1. Introduction

Reinforcement learning (RL) is a biologically plausible type of learning in which an
agent learns by trial and error while interacting with its environment [1]. Fuelled by deep
neural architectures, artificial RL agents can develop long-term strategies to explore and
exploit the structure and reward signals in complex environments. Such agents have
recently achieved impressive performance in a suite of environments ranging from board
and video games to real-world practical problems, including robotics [2–5]. Intuitively,
the agent’s success is explained in terms of a certain adaptation or internalisation by the
agent to regularities of the environment, including the environment’s response to the
agent’s actions.

The success of RL agents is almost invariably characterised by the amount of reward
obtained in a certain amount of episodes or time. After all, the agent’s learning is driven to
maximise its cumulative reward, and hence, its reward score is indicative of the success
in solving a task. However, a single scalar hardly indicates what the agent has actually
learned or internalised. In particular, the same performance can result from agents with
different levels of reactivity to the current state of the environment. While some tasks
promote agents acting purely reactively, other tasks could induce the emergence of internal
states that allow a certain decoupling from the current environmental state.

Moreover, as we will argue, the level of reliance of the agent on the environmental state
(as opposed to a higher level of reliance on its internal state) has important implications for
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its behaviour against different types of perturbations. Hence, a refined characterisation of
an RL agent’s adaptation and behaviour needs to go beyond the global reward obtained.
In particular, it would need to evaluate how much the agent is being influenced by the en-
vironment and its internal states, respectively. Currently, it is not known how the influence
of the environment upon an RL agent evolves as the agent progresses through its training.
Does it usually increase or decrease during the learning? Does it change monotonically?

At the intuitive level, the autonomy of an agent has been associated with the level of
shielding of the agent’s goals and behaviour from the immediate control by the environment
in which it is situated. Based on such a notion, information-theoretic measures of autonomy
have been formally introduced by Bertschinger et al. [6].

More generally, information theory and its different functionals have historically
served to formalise measures about the degree and direction of influence between agents
as well as between the agent and the environment [7–13]. Furthermore, some of these
measures have been used for intrinsic reward to guide the agent’s learning [14]. Partial
information decomposition (PID) has emerged recently as the information-theoretic tool to
decompose the information that a pair of random variables contain about a third one [15].
Its use to characterise and drive the learning of biological and artificial systems is a current
direction of interest [16–18].

Adaptability and autonomy of artificial agents are considered necessary requirements
for the agent to act flexibly and robustly under changing real-world conditions [19]. This
line of research has, for example, led to developing self-programming agents [20]. For an
agent to be adaptable, it has to be perturbation tolerant [19], for which self-monitoring is a
fundamental requirement [21].

In this study, we capitalise on the measures by Bertschinger et al. [6] and PID to
characterise the evolution of the autonomy of RL agents over their training. We introduce
an algorithm for calculating these and other information-theoretic measures in the limiting
process of time step approaching infinity, allowing to monitor these measures. Further,
we use information theory to characterise a certain kind of perturbation tolerance. In this
work, we have assembled multiple fundamental artificial intelligence problems under a
common information-theoretic setting.

In the following, we first present the information-theoretic framework for the measures
and introduce an algorithm for calculating the measures in Section 2. Next, we describe the
experiments’ setup and results. In particular, we report the level of autonomy as an agent
learns and becomes more successful for two different environments. The use of PID allows
us to decompose the environmental and internal state influence on the agent’s next state.
We also test how the different PID terms predict the robustness of agents’ behaviour to
different perturbations. Finally, we discuss the limitations and implications of our results,
their relation to previous literature, and future directions.

2. Materials and Methods

In the following, we first describe the information-theoretic framework in Section 2.1.
This is the framework in which the used measures are defined. Details for calculating
the measures are given in Section 2.1.4. Next, we introduce PID generally in Section 2.2
and finally, we discuss the specifics of applying PID to the autonomy measures and non-
trivial informational closure (NTIC) in Section 2.3. The algorithm introduced in this work
for calculating the information-theoretic measures is available in a code repository https:
//github.com/antiingel/RL-agent-autonomy (accessed on 15 January 2022).

2.1. Information-Theoretic Framework

In this section, we describe the information-theoretic framework in which Bertschinger et al. [6]
introduced the measures of autonomy, and we describe our method for calculating the mea-
sures introduced by Bertschinger et al. [6]. First, we define the fundamental information-
theoretic quantities. Next, we describe the Markovian structure of the system for which

https://github.com/antiingel/RL-agent-autonomy
https://github.com/antiingel/RL-agent-autonomy
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the measures are defined, and then we introduce the measures themselves. In the last
subsection, we describe the details of calculating the required probabilities.

2.1.1. Preliminaries

In this section, we give an overview of the basic notions of information theory.
Throughout this paper, we work with discrete random variables with a finite number
of states. Let X denote a random variable taking values in some finite set {x1, . . . , xn}. Let
us denote the probability measure of the probability space on which X is defined as P. Then
entropy of X is defined as:

H(X) = −
n

∑
i=1

P(X = xi) log2(P(X = xi)),

where 0 log2 0 is defined to be equal to 0. Suppose now that Y is another random variable on
the same probability space. Then random vector (X, Y) is also a random variable, and we
can calculate its entropy H(X, Y). Conditional entropy is defined as:

H(X | Y) = H(X, Y)− H(Y).

Next, we define mutual information between X and Y as:

MI(X : Y) = H(X)− H(X | Y).

Finally, we define conditional mutual information. For that, suppose we a have
third random variable, Z, on the same probability space. Conditional mutual information
between X and Y, given Z, is:

MI(X : Y | Z) = H(X | Z)− H(X | Y, Z).

2.1.2. Markovian Structure

For our experiments, we use the framework by Bertschinger et al. [6], in which an
agent interacts with an environment, and the interactions between them are analysed.
Thus, we assume that there is a distinction between the agent and the environment. We
assume that time evolves in discrete steps. We denote the agent’s state at time step n as Sn
and similarly the environment’s state as En. Similarly to the partially observable Markov
decision process (POMDP), the agent cannot directly see the state of the environment
in this framework. However, there is a random variable, On, whose distribution is fully
determined by the state of the environment En. The agent can use it together with Sn to
determine its next state Sn+1. Correspondingly, the agent’s state does not directly affect the
environment. However, there is a random variable Mn, the motor action, which can affect
the next environment’s state En+1 and whose distribution is fully determined by the state
of the agent Sn. See Figure 1 for the interactions.

S0 S1 S2 . . .

M0 M1 M2

E0 E1 E2 . . .

O0 O1 O2

Figure 1. Interactions between the agent and the environment.

We assume that the sequence {(Sn, En)}∞
n=0 forms a Markov chain and that Sn+1 and

En+1 are conditionally independent given Sn and En. We assume that this Markov chain is
homogeneous. Practically, we achieve homogeneity by stopping the learning process and
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analysing the agent’s policy at that training step. This analysis can be done separately at
different time steps. Between those time steps, learning can take place.

2.1.3. Autonomy and Non-Trivial Informational Closure

In this framework, Bertschinger et al. [6] introduce quantitative measures to charac-
terise the agent’s behaviour. They define two different measures of autonomy, suitable for
different situations. If the environment drives the agent, which means that En+1 depends
only on En and not on Mn, Bertschinger et al. [6] define the autonomy measure as:

Am = MI(Sn+1 : Sn | En, En−1, . . . , En−m), (1)

where m is a non-negative integer denoting the length of the sequence of the environment’s
considered states. We considered only the case m = 0 throughout this work; thus, we
denote it A0. If the agent drives the environment, which means that Sn+1 depends only on
Sn and not on On, Bertschinger et al. [6] define the autonomy measure as:

A∗ = MI(Sn+1 : Sn). (2)

Some motivations for these definitions are given in Sections 2.3.1, 2.3.2 and 5.1. For fur-
ther details, refer to [6]. In addition to A0 and A∗, Bertschinger et al. [6] define:

NTIC = MI(Sn+1 : En, . . . , En−m)−MI(Sn+1 : En | Sn). (3)

We considered only the case m = 0 for NTIC throughout this work. In case NTIC > 0, it
shows how much the agent models the correlations in the environment. The other case,
NTIC < 0, refers to a synergistic situation where the agent’s and environment’s previous
states together determine the agent’s next state.

2.1.4. Input to Autonomy Measures and NTIC

Bertschinger et al. [6] introduce multiple interesting information-theoretic measures,
such as autonomy and NTIC, in the described framework. To simplify their calculation,
we use a stationary distribution of the Markov chain {(Sn, En)}∞

n=0 or its estimate as an
input to measures (1)–(3). Using stationary distribution removes the dependence on the
time step. The stationary distribution can be interpreted as a limiting distribution for an
aperiodic Markov chain.

In more detail, given the transition matrix and the distribution of (S0, E0), one can
calculate the fraction of time spent in each state in the long run as:

µ(s, e) = lim
n→∞

1
n

n−1

∑
i=0

P(Si = s, Ei = e)

for each environment’s state e and agent’s state s. This distribution forms a stationary
distribution of the Markov chain.

The probabilities µ(s, e) can be calculated as follows. First, find the communicating
classes of the Markov chain. Each communicating class forms an irreducible Markov chain.
Calculate the stationary distribution for each communicating class. Since the stationary
distribution is unique for irreducible Markov chains, any of the available methods for
calculating it can be used. Finally, to obtain the stationary distribution for the whole
Markov chain, the stationary distributions for each class have to be merged together and
weighted by the probability of reaching the corresponding class.

We used Python (version 3.7.6) package discreteMarkovChain (https://github.com/
gvanderheide/discreteMarkovChain, accessed on 15 January 2022) (version 0.22) to calcu-
late the probabilities µ(s, e). According to the package’s documentation, the power method
for calculating the probabilities is robust even if there are hundreds of thousands of states.

https://github.com/gvanderheide/discreteMarkovChain
https://github.com/gvanderheide/discreteMarkovChain
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In order to calculate A0, A∗, and NTIC for m = 0, the probabilities µ(s, e) are not
enough. We need probabilities for triples (s′, s, e) where s and e denote the agent’s and
environment’s current states and s′ denotes the next agent’s state. Thus, we denote the
fraction of time spent in each triple (s′, s, e) as µ(s′, s, e), which can be calculated from the
probabilities µ(s, e) and the transition matrix. If the transition matrix is known, we use
µ(s′, s, e) as the input to A0, A∗, and NTIC.

If the transition matrix is not known, we estimate the fraction of time spent in each
state, denoted µ̂(s′, s, e), by simply counting the number of times the state occurred in a
sample and dividing it by the number of elements in the sample. We use this as an input dis-
tribution to calculate A0, A∗, and NTIC for m = 0. Thus, we are using the plug-in method.
The distribution µ̂(s′, s, e) (or µ(s′, s, e)) is also the input to PID calculation algorithms.

2.2. Partial Information Decomposition

This section describes PID, which allows for decomposing the autonomy measures
and NTIC discussed in Section 2.1.3. This decomposition gives a more refined look at
these measures, possibly giving a better characterisation of the agent’s behaviour. This
section introduces PID generally for the required number of variables. Later we give the
relationships between the measures and PID terms and discuss the decomposition of the
autonomy measures.

PID extends classical information theory by making it possible to decompose the
mutual information into several components [15]. PID partitions MI(T : S1, S2), the infor-
mation that a set of source random variables S1 and S2 have about a target random variable
T, into different information contributions of the source variables [15]. PID partitions
MI(T : S1, S2) into four parts:

1. The unique contribution of S1, denoted by UI(S1), which is the information gained
about T from accessing S1 and cannot be gained otherwise;

2. The unique contribution of S2, denoted by UI(S2), which is the information gained
about T from accessing S2 and cannot be gained otherwise;

3. The synergistic contribution of S1 and S2, denoted by CI, which is the information
gained about T from accessing both S1 and S2 and cannot be gained otherwise;

4. The shared (or redundant) contribution of S1 and S2, denoted by SI, which is the
information gained about T when either S1 or S2 are accessed.

The relationship between the PID terms and classical quantities can be summarised in
the following system:

MI(T : S1, S2) = CI+ SI+UI(S1) + UI(S2),

MI(T : S1) = SI+UI(S1),

MI(T : S2) = SI+UI(S2).

(4)

These partitionings are visualised in Figure 2. PID can be generalised to more than two
sources [15,22], but in this work, we only need to consider the case of two sources (repre-
senting the internal state of the agent and the environment’s state). In this case, each PID
term together with the basic relations (4) determines the three other terms, and thus, it is
sufficient to estimate one of them. Different methods for estimating PID terms are avail-
able, and a unifying PID measure is still missing [15,23–33]. For decomposing autonomy
measures and NTIC, we use ŨI proposed by Bertschinger et al. [24] and Isx∩ proposed by
Makkeh et al. [33]. See Appendix B for further discussion.
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A B

C

D

E

Figure 2. Partial information decomposition (PID) of mutual information partitions MI(T : S1, S2)

into four information contributions of the sources S1 and S2 about the target T (depicted in A).
In addition, this PID entails partitioning any information these sources have about the target, such
as MI(T : S1) (depicted in B), MI(T : S2) (depicted in C), MI(T : S1 | S2) (depicted in D), and
MI(T : S2 | S1) (depicted in E).

2.3. Decomposing Autonomy Measures and NTIC

The autonomy measures and NTIC described in Section 2.1.3 can be decomposed into
PID terms. In this case, the target variable is Sn+1, and the source variables are Sn and En.
Using Equation (4), one can derive the following relationships:

A0 = CI+UI(Sn),

A∗ = SI+UI(Sn),

NTIC = SI−CI .

Next, we discuss the intuition behind the definitions of the autonomy measures and
their decompositions.

2.3.1. Decomposition of A0

Bertschinger et al. [6] suggest using A0 = MI(Sn+1 : Sn | En) to quantify auton-
omy in the scenarios where the environment drives the agent. By the chain rule for
mutual information:

MI(Sn+1 : Sn, En) = MI(Sn+1 : En) + MI(Sn+1 : Sn | En).

Thus, the total mutual information MI(Sn+1 : Sn, En) can be partitioned into MI(Sn+1 : En),
the information gained about Sn+1 by accessing En, and MI(Sn+1 : Sn | En), the information
gained about Sn+1 if accessing Sn is required. Different partitionings of mutual information
are visualised in Figure 2.

Decomposing A0 into unique information UI(Sn) and synergistic information CI
allows for a more detailed interpretation of the measure. The measure A0 seems to account
for autonomy since it measures the information about the future state of the agent gained by
accessing the current state either alone (unique information contribution) or in combination
with the current environment’s state (synergistic contribution). PID quantifies the amount
of these contributions separately.

2.3.2. Decomposition of A∗

Bertschinger et al. [6] suggest using A∗ = MI(Sn+1 : Sn) to quantify autonomy in the
scenarios where the agent drives the environment. The measure A∗ shows the information
gained about Sn+1 by accessing Sn. It reflects how much the agent is in control of its
dynamics. We refer to [6] for a more detailed discussion.
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The measure A∗ can be decomposed into unique information UI(Sn) and shared
information SI. Shared information shows the coherence of the agent and the environment.
High shared information could be interpreted as the agent having more control over
the environment.

3. Experiment Setup

This section describes the experiments conducted using RL to evaluate the measures
of autonomy described in Section 2.1.3. We use two different settings. First, we consider a
theoretically tractable case. In this case, we use the policy iteration algorithm to guarantee
convergence in the training process. Further, we show that using the stationary distribu-
tions discussed in Section 2.1.4 allows us to calculate all the required probabilities and
measures. In this environment, the agent affects the environment, in which case A∗ could
be considered to be the suitable autonomy measure. A similar environment was discussed
by Bertschinger et al. [6].

In the second case, we consider a more practical situation where the transition proba-
bilities are unknown and must be estimated. The transition probabilities are estimated by a
histogram in this case. Thus, we use the plug-in method. We use deep RL for training and
the agent’s memory as its internal state in this case. This environment corresponds to the
case where the agent is driven by the environment, and, thus, A0 is considered to be the
suitable autonomy measure.

We monitor the changes in information-theoretic measures in both cases. The first
environment demonstrates that it is possible to define an internal state for the agent if one
is not readily available through the training method. In the second case, we evaluate if
unique information can be used to determine if the agent relies more on its memory or
observation. We introduce perturbations as a control to test the agent’s reliance on memory.
The following sections give more details about each of the environments.

3.1. Grid Environment

In this experiment, the environment is a 5× 5 grid. The agent starts in a random
location in the grid. At every time step, the agent can move to any adjacent square (left,
right, up, or down) or stay at its current location. Food can appear in the grid’s corners,
and the agent is rewarded for being in the same location as the food. If the agent is in
the same location as the food, the food disappears and later reappears in some corner.
In addition to the positive reward of the food, the agent gets a negative reward for each
moving action. The food has a probability of disappearing at every time step before the
agent reaches the food. The following sections give more details about the environment,
the training process, and the agent.

3.1.1. States of the Environment

From the point of view of the information-theoretic framework introduced in Section 2.1,
the environment’s state is the food’s location—any of the four corners or a no-food state.
Let us denote the probability of the food disappearing at any time step before the agent
reaches it as d. If the environment is in the no-food state at some time step, then at the next
time step, any of the five states are chosen uniformly at random as the next state. If the
state is a corner of the grid, then with probability d, the next state will be the no-food state,
and with probability 1− d, the state remains the same. Let us denote the corner states as
ei for i ∈ {1, 2, 3, 4} and the no-food state as e0. The transitions of the environment can be
summarised as:

P(En+1 = ei | En = ei) = 1− d

P(En+1 = e0 | En = ei) = d

P(En+1 = ej | En = e0) = 0.2,
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where i ∈ {1, 2, 3, 4} and j ∈ {0, 1, 2, 3, 4}. See Figure 3a for the transition diagram. In these
experiments, the observation On is equal to the environment’s state En, which means that
the environment is fully visible to the agent. Refer to Section 2.1.2 for definitions of En
and On.

e0

e1 e2

e3e4

0.2

0.2

0.2
0.2

d
d

d

d

0.2
1 − d 1 − d

1 − d1 − d

(a)

v1 v2 v3

i1 i2 i3

1 1

1 − h

h

1 1

h

1− h

(b)

Figure 3. State transition diagrams of the environment’s state. (a) Grid environment; (b) Repeating-
pattern environment.

3.1.2. Training

We consider the setting as a Markov decision process (MDP) for training the agent.
There is also a notion of a state in MDP, but this state does not coincide with the envi-
ronment’s state or agent’s state of the information-theoretic framework. Thus, there is a
third notion of state. We differentiate between these states because we are using the policy
iteration algorithm (see [1] Section 4.3) to train the agent, and in this setting, there is no
readily available and easily interpretable internal state for the agent. Instead, we define an
internal state of the agent using policies obtained from training (see Section 3.1.3).

In MDP, the state must consist of all the information available to the agent. Thus,
the states of the MDP are chosen to consist of the food’s location and the agent’s location.
The rewards are +10 for being at the same location as the food and −1 for each movement.
The food location changes as described in Section 3.1.1, and the agent’s location changes
according to its policy. The initial policy of the agent is uniformly random, meaning that in
each state, every action has the same probability. The agent is trained using policy iteration.

Policies obtained at each iteration of the policy iteration algorithm (that is, after each
policy evaluation) are saved. The threshold for stopping the policy evaluation (denoted
by θ in [1] Section 4.3) was chosen to be 10−6. The saved policies are used to analyse the
agent’s behaviour at different time steps. We use the greedy policy, meaning that the action
corresponding to the highest value is chosen.

3.1.3. Internal States of the Agent

In this experiment, the agent does not have an internal state that it can directly
manipulate. Thus, the state of the agent is not readily available, and it has to be defined.
One possibility would be to define the agent’s state as its location. However, our preliminary
experiments showed that this approach does not give easily interpretable results since this
state has, in a sense, multiple roles: internal state and location.

Therefore, we define a more high-level state for the agent. Namely, we define the
state as the corners where the agent is heading. This way, we obtain a state that indicates
the agent’s intention and, thus, this state is more suitable to be considered the agent’s
internal state. In more detail, the possible states are the subsets of the corners {e1, e2, e3, e4}.
The subset can contain multiple corners (if there is a positive probability of ending up
in different corners) or be empty. Details of finding the new states and calculating their
transition probabilities are given in Appendix A. The transitions of the state depend on the
policy of the agent. Policies throughout training are obtained as described in Section 3.1.2.
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3.2. Repeating-Pattern Environment

In this experiment, the environment is a repeating pattern of symbols. In some
iterations, the pattern is completely visible to the agent, and in other iterations, the pattern
is invisible. Whether the pattern is visible or invisible for a given iteration is decided
randomly. The agent has to match its action to the pattern to receive a reward. The agent
is provided with a memory to be able to solve this task. This simple setting allows us to
analyse how the agent uses its memory and to what extent it internalises the state of the
environment. Reliance on memory and environment is tested by applying perturbations
to the observations and the pattern. Unlike in the grid environment, here we are using
deep RL, which better reflects a practical situation, and we are estimating the required
probabilities using a histogram. Thus, we are using the plug-in method. The following
sections give more details about the environment, the training process, and the agent.

3.2.1. States of the Environment

The repeating pattern is an ordered triple of symbols, denoted (p1, p2, p3), and the pat-
tern is formed from an alphabet of two symbols, {1, 2}. In our experiments, the repeating
pattern is (p1, p2, p3) = (2, 1, 1). These values are not the environment’s states. Environ-
ment’s states are defined separately to accommodate having visible and invisible states.

In order to have visible and invisible states, six environment states are needed, three
visible states and three invisible states. We denote these states v1, v2, v3 and i1, i2, i3, re-
spectively. The possible observations for the agent are {0, 1, 2}. The environment cycles
over the pattern and produces an observation reflecting the current value of the pattern
in a visible state or 0 in an invisible state. The process of producing observations can be
formalised as a function O from states to observations defined as:

O(vj) = pj

O(ij) = 0.

Whether an iteration will be visible or not is decided randomly at the end of the
previous iteration. With probability h, it is invisible, and with probability 1− h, it is visible,
where h is a parameter that we control. See Figure 3b for the transition diagram. Different
values of h can promote the learning of different strategies, i.e., we would expect that the
agent relies more on its memory for larger values of h.

3.2.2. Training

In order to train an agent in this setting, we consider it a POMDP. The states of the
POMDP are the states of the environment {v1, v2, v2, i1, i2, i3}. The set of possible actions
for the agent is {1, 2}, and the set of observations is {0, 1, 2}. At a given environment’s
state e, the environment produces an observation o using the function O. The agent uses its
policy πz to select an action a, and consequently, the environment provides a reward r and
the next observation o′. The policy depends on the agent’s memory state, denoted by z.

The agent is given a reward of 1 when the action produced matches the current value
of the pattern pj. Otherwise, the agent is punished by 0.9. Consequently, the reward is
maximised when the agent is able to replicate the pattern with its actions. We would
expect this task to be trivial when the pattern is fully visible since the agent just needs to
copy its input to its output. Thus, the environment can hide the state by producing an
observation 0.

The agent cannot rely on the observations to solve the task when the state is invisible.
Thus, we provide it with a memory and consider the state of the memory as the agent’s
state. The agent and its memory are implemented as a neural network that approximates
the Q-value function Qz(o, a). The network consists of a linear layer of size 64 with ReLU
activation, an LSTM [34] with 32 units as the memory, and a linear layer to map the memory
to the set of actions.
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The parameters of the neural network are trained using vanilla Deep-Q-Networks
(DQN) [35]. Samples of the form (o, z, a, z′, o′, r) were used in the training process. Here,
z and z′ denote the memory state in consecutive steps, o and o′ denote the observations
in consecutive steps, a denotes the action, and r denotes the reward. The samples were
collected using the policy πz, which is implemented as:

πz(o) = arg max
a

Qz(o, a),

where o denotes an observation, a denotes an action, and z denotes the memory state.
Figure 4 depicts the interactions of the agent and the environment. It is important to notice
that the agent can solve the task in various ways. For example, it can rely solely on memory
or in a mix of memory and observations, both strategies leading to optimal behaviour.

Figure 4. Illustration of the repeating-pattern environment with pattern (2, 1, 1). The current value of
the pattern is hidden with some probability h by producing an observation of 0. The agent needs to
use its memory z′ to internalise the pattern sequence so it can maximise the reward even when the
pattern is invisible.

3.2.3. Internal States of the Agent

As mentioned in the previous section, the agent’s state is taken as the memory’s
state, and the memory is implemented as an LSTM. More precisely, since discrete random
variables are needed, the agent’s state corresponds to the binned memory value. The agent’s
state has 15 possible values, corresponding to 15 equal-width bins. The smallest value and
the largest value from the collected data were taken as the start of the first bin and the end
of the last bin, respectively.

Data was collected in order to estimate the information-theoretic measures at different
training steps. The training process was frozen every 100 training steps to collect data
for estimating the required probabilities. The data was collected from 20 episodes, each
episode lasting 30 time steps. At each of the 600 time step, the state of the LSTM was saved.
Since the memory values were binned, the required probabilities were simply estimated by
a histogram. From these probabilities, the information-theoretic measures can be calculated
(see Section 2.1.3 for definitions and Section 2.1.4 for calculation details). Thus, we are
using the plug-in method to estimate the information-theoretic measures.

3.2.4. Success of the Agent

We compare the information-theoretic measures to the success of the agent.
In particular, we define overall success as the fraction of correct actions by the agent
over the last 20 episodes; and we define hidden success as the fraction of correct actions
when the pattern is not visible, again over the last 20 episodes. Comparing other measures
to the overall success and hidden success allows us to see how predictive these measures
are of the agent’s success in the original or the perturbed environment.
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3.2.5. Perturbations

Usually, the strategy learned by the agent is treated as a black box, and information-
theoretic quantities could help to characterise the agent’s behaviour. We introduce two
different perturbations into the environment and analyse the agents’ behaviour in the
perturbed environments. We test if UI(Sn) calculated in the original environment can
predict the success of the agent in perturbed environments.

The observation perturbation aims to evaluate whether the agent relies more on its
memory than on observations. In contrast, the pattern perturbation evaluates whether the
agent relies more on the observations, which means that the internal memory is used as a
passthrough module.

The observation perturbation adds noise to the observation, i.e., with a probability
of 0.2, the part of the pattern observed by the agent will be swapped with another value
present on the pattern. For example, if the environment would output 2 at a time step,
the perturbation will replace it with 1 instead. The perturbation happens only for the visible
states. The hypothesis is that if the agent relies on its memory, its performance will not
degrade since its memory is robust to noisy observations.

The pattern perturbation replaces the pattern (2, 1, 1) on which the agent was trained
with another pattern (2, 2, 2). The intuition behind this perturbation is that the agents that
are relying on the observation more than the memory would not be affected by it.

4. Results

The following subsections give the results of the two experiments described in
Sections 3.1 and 3.2. We calculated the information-theoretic measures to characterise
the learning of the agents. We used PID to decompose these measures into more fine-
grained terms. The decompositions were obtained using the BROJA estimator [36]. We
obtained qualitatively similar results with the SxPID estimator [33]. Refer to Appendix C
for examples. The grid environment and repeating-pattern environment results are given
in Sections 4.1 and 4.2, respectively.

4.1. Results on Grid Environment

Recall that the grid environment described in Section 3.1 is the theoretically tractable
case in which the agent can affect the environment and, thus, A∗ could be considered the
appropriate measure of autonomy. In this setting, transition probabilities are known and
do not have to be estimated.

We considered two food disappearing probabilities for the grid environment, d = 0.1
and d = 0.04. Since the agent receives a negative reward for any movement, having a high
probability of food disappearing means it is not beneficial to always chase after the food.
An optimal policy is obtained through the training since the policy-iteration algorithm is
used [1]. In the case d = 0.04, the optimal policy is to always go after the food. In the
case d = 0.1, the optimal policy is to go after the food only if the food is close enough.
The results are presented in Figures 5 and 6.

Figure 5 shows the autonomy measures, NTIC, and their PID decompositions (see
Section 2.3) over the policy-iteration training process. The autonomy measures and NTIC
are introduced in Section 2.1.3, and PID terms SI, CI, and UI(Sn) are introduced in Section 2.2.
For both cases, d = 0.1 and d = 0.04, at iteration 0, the policy is uniformly random, meaning
that each action is chosen uniformly at random. It takes the first four iterations to remove
this completely random behaviour from the policy since, after four steps, most of the values
have been updated. After that, the agent fine-tunes its behaviour more to the corresponding
environment. This shift from the first four iterations to the later phase can also be seen in
the figure.

In both cases, we see an increase in NTIC, which would normally indicate that the
agent’s internalisation of the environment increases. Here, however, we should recall that
the agent’s state is the set of destination corners. Thus, a more likely interpretation is that
there is a coherence between the destination corners and the environment’s state, as NTIC is
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almost equal to SI. This interpretation comes from the definition of SI, since PID is applied
using destination corners and environment’s state as the source variables.
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Figure 5. Shared information (SI) and non-trivial informational closure (NTIC) increase as the
agent gains more control over its environment. The figure depicts autonomy measures and NTIC
for the agents trained with policy iteration in the grid environment for different values of the
food disappearing probability d. The figure also depicts synergistic information (CI) and unique
information (UI(Sn)). See Figure A1 for the same quantities calculated with the SxPID estimator
instead of BROJA.
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Figure 6. This figure is similar to Figure 5. The only difference is that the initial states E0 and S0

are chosen uniformly at random instead of having fixed initial states. The figure depicts autonomy
measures and NTIC for the agents trained with policy iteration in the grid environment for different
values of the food disappearing probability d. See Figure A2 for the same quantities calculated with
the SxPID estimator instead of BROJA.
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Unlike NTIC and SI, we see a decrease in the autonomy measures. This could happen
because the optimal policies are more restrictive, while non-optimal behaviour allows for
more autonomy. The final value of UI(Sn) = 0 is expected for the case d = 0.04 since the
agent always follows the food with the optimal policy in this case.

In Figure 5, we used deterministic initial states for calculating the stationary distri-
butions (see Section 2.1.4). In case the values of the initial states E0 and S0 were chosen
uniformly at random, the results were as seen in Figure 6. As can be seen, the initial random-
ness can affect the measures considerably, at least in the first half of the training. However,
it is more likely that one is interested in how the behaviour affects the measures and not
the initial randomness. Thus, Figure 5 should be a better characterisation of the behaviour.

4.2. Results on Repeating-Pattern Environment

Recall that the repeating-pattern environment described in Section 3.2 was the more
practical case in which agents are trained using deep RL, and transition probabilities had to
be estimated. Since the agent is driven by the environment, A0 is considered the appropriate
autonomy measure.

For the repeating-pattern environment, we considered 11 values for the hiding proba-
bility h, ranging from 0 to 1 with a 0.1 interval. For each value of h, we trained the agent
with 30 different random initialisations. Next, we analysed how the autonomy measures,
NTIC, and their PID decompositions changed throughout the training. We also compared
the information-theoretic measures obtained at the end of the training for different values
of h. Finally, we explored how the information-theoretic measures are related to the agent’s
success in perturbed environments.

4.2.1. Autonomy and NTIC Throughout Training

First, we looked at how the measures changed throughout the training process.
Figure 7 shows NTIC and A0, together with their PID decompositions (see Section 2.3),
the agent’s success, and the total mutual information MI(Sn+1 : Sn, En). The PID terms
SI, CI and UI(Sn) were introduced in Section 2.2. This figure corresponds to one random
initialisation of the agent and to the case h = 0.9. Since there are few visible states for
h = 0.9, solving the task is relatively complex and takes many training steps.

With high hiding probability h, the agent cannot rely on the observations to get a
high success and has to use its memory to model the dynamics of the environment. In the
beginning, the success was around 2

3 , which could be obtained by constantly choosing
action 1. This happens since the pattern is (2, 1, 1), and 2

3 of the symbols are equal to 1.
As the training progressed, the agent’s success got close to the perfect score of 1. Thus,
we see a correlation between NTIC (which is almost equal to SI since CI is close to zero)
and success.

Figure 8 shows scatterplots between overall success and SI over the training. It includes
data of all 30 random initialisations of the agent. We see that the higher the value of h,
the more correlated SI and success become. For small h, the agent usually does not have
to use its memory since the environment is mostly visible. For large h, using memory is
needed to have high success. If the agent’s actions are dictated by its internal state Sn, then
the more coherent its internal state is with the environment, the more successful the agent
is. Thus, SI will correlate with the agent’s success when the agent has a high success and
uses its internal state to calculate its action.
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Figure 7. Autonomy and NTIC, together with their decomposition, the total mutual information
MI(Sn+1 : Sn, En), and the agent’s success throughout training. Here, h = 0.9, and we consider one
random initialisation of the agent.
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Figure 8. Shared information throughout training correlates with the success when the agent has
an incentive to use its memory. The figure depicts scatterplots between overall success and shared
information over the training process. Here, ρ denotes the Pearson correlation coefficient, and the
data from all 30 random initialisations of the agent are included.
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4.2.2. Autonomy and NTIC at the End of Training

In this section, we compare the final values of the measures for different values of
h. For each random initialisation, we calculate the average values of the measures over
the last 10 saved training steps (62,400; 62,500; . . . ; 63,300). The averages and confidence
intervals of these average values are shown in Figure 9.

In scenarios where the environment observations were abundant (h ≤ 0.5), the agent
had less incentive to internalise the dynamics of the environment. In this case, A0 (which
is almost equal to UI(Sn)) constitutes a small portion of MI(Sn+1 : Sn, En), and the agent
could be considered as not possessing a high level of autonomy. However, when the
environment observations were scarce (h > 0.5), the agent had to internalise the dynamics
of the environment in order to receive a high reward. In such scenarios, A0 constituted a
dominant portion of MI(Sn+1 : Sn, En), and the agent could be considered to have a higher
degree of autonomy.

The normalised values in Figure 9 are the original values divided by the total mutual
information MI(Sn+1 : Sn, En). It is easier to compare how much each term constitutes to
the total mutual information by using normalised values. While the non-normalised A0
decreased, the normalised A0 still increased, as seen from the figure. The decrease was due
to a decrease in the total mutual information. We can see that normalised A0 increased
almost monotonically over the values of h.
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Figure 9. Unique information and A0 should increase when an autonomous behaviour of the
agent is the key to better performance. The figure depicts autonomy and NTIC, together with their
decomposition, the total mutual information MI(Sn+1 : Sn, En), and the agent’s success at the end of
training. Here, the values are averages over the 30 random initialisations. Error bars show the 95%
confidence interval (assuming the mean is normally distributed, which is approximately fulfilled due
to the central limit theorem).

4.2.3. Agent in Perturbed Environments

These experiments analyse the strategies learned by different agents, and we test if
UI(Sn) is predictive of the agent’s success in perturbed environments. First, we consider the
observation perturbation experiments. Figure 10 shows scatterplots between the success in
the perturbed environment and the unique information UI(Sn) in the original environment
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throughout the training process. Unique information UI(Sn) quantifies the reliance of Sn+1
on Sn. Again, if h is small, the agent does not need to rely on its memory most of the
time. However, for large h, reliance on memory is required more. We see that the unique
information UI(Sn) in the original environment and success in the perturbed environment
are more correlated for higher values of h.

For pattern perturbations we did not obtain interesting results. In most cases, agents
perfectly imitated the perturbed pattern in cases where the pattern was visible, and executed
the original pattern in cases where the pattern was invisible. In this case, as expected, PID
terms did not have interesting relations to the success in the perturbed environment.
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Figure 10. Scatterplots between overall success in the observed perturbation environment and unique
information UI(Sn) in the original environment over the training process. Here, h is the same in the
original and perturbed environment, ρ denotes the Pearson correlation coefficient, and the data from
all 30 random initialisations of the agent are included.

5. Discussion
5.1. Brief Synthesis of Results

The correlation between shared information and success (Section 4.2.1), and the corre-
lation between unique information and success in the perturbed environment (Section 4.2.3)
give empirical evidence that the measures can be applied in practice to monitor the strategy
of the agent, as these results coincide with our intuitive expectations about the measures.
This also shows the suitability of the introduced algorithm for calculating the measures.
In more complex environments, monitoring these measures could help us to understand if
the agent is learning even if progress is not seen in the obtained reward.

The results and the theoretical analysis suggest that when the agent affects the envi-
ronment (grid environment experiments), autonomy manifests in the shared information
between the internal state and the environment. Whereas, when the agent is solely driven
by the environment (repeating-pattern experiments), autonomy could manifest in the
unique information of the internal state.
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Recall that A∗ = SI+UI(Sn) and A0 = CI+UI(Sn), thus A∗ and A0 can be viewed
as more coarse-grained autonomy measures in the corresponding situations. Fluctuations
in synergy can render A0 hard to interpret (see Section 5.2.1). Thus, in more complex
environments that also exhibit synergy fluctuations, PID is an important tool to devise
more fine-grained measures.

Let us now return to the question of how autonomy increases during training. Figures 5 and 7
show that the autonomy measures have an increasing trend throughout most of the training
in these simple environments. In the end, there is a decrease in A∗ and A0, which can
be explained by the restrictions posed by the optimal behaviour that the agent is close to
achieving. However, in scenarios where the agent drives its environment, it is theoretically
unclear why the unique information UI(Sn) would evolve monotonically during training,
be it increasing or decreasing. Thus more complex environments could exhibit different
changes in the autonomy measure A∗ during training.

5.2. Implications

In this work, PID is used as a monitor to get a more refined look into the autonomy
measures suggested by Bertschinger et al. [6] when applied to RL. Herein, we discuss
some direct implications of PID that scratch the surface beyond monitoring such autonomy
measures. We start by presenting how PID averts a possible synergy dilemma in A0,
and then explain further the robustness of shared information compared to A∗.

5.2.1. PID Averts the Synergy Dilemma in A0

When the environment drives the agent, Bertschinger et al. [6] suggested
A0 = MI(Sn+1 : Sn | En) as a measure of autonomy. Using PID, we see that A0 de-
composes into the unique information of the agent UI(Sn) and the synergistic information
of the agent and the environment.

Bertschinger et al. [6] pondered upon whether synergistic information reflects the
autonomy of the agent or not. To explain the reason for such uncertainty, we recall that
the synergistic information is the information about Sn+1 that can be retrieved only if
Sn and En are simultaneously accessed. Good intuition for synergistic information is
illustrated in the XOR gate, where none of the inputs X1, X2 of the gate can reveal any
information about the output Y (MI(Y : Xi) = 0). However, jointly, they reveal one bit
about Y (MI(Y : X1, X2) = 1). Therefore, the requirement to access En makes the alignment
of synergy with autonomy rather obscure. This obscurity stems from whether to consider
the requirement of accessing En as a weakening argument for the system’s autonomy or
not. The requirement of only accessing Sn could be considered a superiority.

On the one hand, this confusion on the role of synergistic information in autonomy
stresses the importance of PID. Since PID gives the opportunity to either consider CI or,
if needed, discard it and rely on UI(Sn), averting confusion that synergy poses. On the
other hand, we speculate that autonomy is more often about the exclusivity of the system’s
information rather than a requirement of accessing the agent’s internal state. This exclusiv-
ity is well captured by the unique information UI(Sn), suggesting that it might be a more
suitable measure for autonomy. Nonetheless, we would rather leave this matter on which
A0 or UI(Sn) is a more suitable measure of autonomy as an open discussion that requires a
more thorough inspection.

5.2.2. PID Clarifies Autonomy When Agents Drive Their Environments

When the agent is driving the environment, Bertschinger et al. [6] suggested using
A∗ = MI(Sn+1 : Sn) to measure autonomy. The measure A0 could be considered unsuitable
because A0 decays whenever the agent gains more control of its environment. The decay of
A0 might result from a UI(Sn) decrease. This means that:
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1. Autonomy measure A∗ = UI(Sn) + SI will fluctuate w.r.t. training episodes;
2. The only term accounting for autonomy is SI, given the argument by Bertschinger et al. [6]

that A0 eventually should decay to zero.

Therefore, it seems that the shared information, which reflects the coherence of the
agent with the environment, could be a more suitable measure of autonomy than A∗.
However, deciding on the suitability of A∗ or SI for capturing autonomy is another avenue
to be investigated on more solid theoretical ground.

5.3. Relation to Previous Literature

Zhao et al. [14] defined an intrinsic reward based on mutual information between the
agent and the environment to reward an RL agent. A more refined approach was taken in
the current work by decomposing the mutual information using PID. However, we did not
use the obtained values as an intrinsic reward but for characterising the agent’s behaviour.

Similar to our work, Zhao et al. [14] clearly separated the agent and the environment.
They considered the setting as a Markov decision process (MDP) and assumed that the
transition probabilities are known. This setting is similar to the grid environment setting
described in Section 3.1 of the current study.

Seth [37] used a different approach to quantify autonomy. His approach was based
on Granger causality, which allowed him to use an autoregressive model. The advantage
of using regression is that it simplifies the estimation of probabilities compared to the
approach by Bertschinger et al. [6]. Despite the difficulties in estimation pointed out by
Seth [37], our results show interesting relationships between the information-theoretic
quantities and the agent’s success.

Another information-theoretic quantity that is closely related to mutual information
and has been used in RL is channel capacity. While mutual information is symmetric,
channel capacity differentiates between the input and the output, denoted by X and Y,
respectively. The channel is characterised by probabilities P(Y = y | X = x) for possible
values of x and y. Channel capacity is the supremum of mutual information over the
possible distributions of input X.

Klyubin et al. [7] defined empowerment as the channel capacity with the agent’s action
as the input and agent’s sensory input at a later time step as the output. Thus, empowerment
quantifies the maximum amount of information that the agent could transmit through
its actions into its sensory input. Since this transmission of information goes through the
environment, one could perceive empowerment as the amount of control the agent has
over the environment.

Jung et al. [8] generalise empowerment to continuous states and, unlike previous
studies, they consider the case where transition probabilities are unknown. Their approach
relies on Monte Carlo estimators, which can require a large amount of data to obtain
accurate solutions. A more scalable approach is proposed by Mohamed and Rezende [9]
using variational information maximisation.

We did not optimise mutual information as required for calculating empowerment,
in the current work. Instead, we monitored the changes of different information-theoretic
measures of the agent while the agent was trained using standard RL methods. Directly
optimising a measure related to NTIC was conducted by Bertschinger et al. [6,38]. They
chose the transition matrix using simulated annealing optimisation procedure and, thus,
there was no direct link to standard RL.

According to Bertschinger et al. [38], maximising the mutual information between the
agent’s action and its sensory input (as empowerment) can lead to informational closure.
This means that the information flow from the environment into the agent, characterised by
conditional mutual information MI(Sn+1 : En | Sn), tends to zero. This becomes trivial if the
agent’s state does not contain information about the environment, that is, M(Sn+1 : En) = 0.
In the non-trivial case, NTIC, discussed in Section 2.1.3, quantifies the amount of closure
when there is closure.
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5.4. Limitations

One limitation of this work is that the standard RL frameworks like MDP and POMDP
do not directly fit into the information-theoretic framework. The interactions between
the agent and the state are slightly different from those depicted in Figure 1. In POMDP,
the observation can also depend directly on action. The information-theoretic framework
could always achieve this by sending the action through the environment’s state. Another
difference is that in MDP and POMDP, the observation should go from En to Sn and not to
En+1. The effect of this should be minor if the consecutive state changes are not close in
time. We note that even if there are slight differences in the interactions, it is still possible
to calculate the measures A0, A∗, and NTIC using the given formulas; however, one has
to be more careful in their interpretation. A possible solution to this is to separate the
RL framework used in training from the information-theoretic framework used in the
behaviour analysis, as has been done in this work.

Another limitation that could hinder the interpretation of the measures is when the
underlying Markov chain is periodic. For an aperiodic Markov chain, we can interpret the
probabilities µ(s′, s, e) introduced in Section 2.1.4 as the limiting distribution of the Markov
chain. This interpretation essentially means that we consider the measures as the limiting
values obtained if the Markov chain runs infinitely.

Finally, we note that we limited our work to discrete random variables. In the
repeating-pattern environment, we had to bin the agent’s memory to have a discrete
variable. According to Bertschinger et al. [6], the autonomy measures and NTIC can be
generalised to continuous random variables. However, there are currently no convenient
estimators for PID in the continuous case.

Pakman et al. [39] recently introduced an extension of BROJA to continuous random
variables based on copula parameterised optimisation. However, their estimator can only
handle variables of one dimension, which is insufficient for the repeating-pattern environ-
ment. In addition, Schick-Poland et al. [40] provided a measure-theoretic generalisation of
SxPID definition that, in principle, handles mixed continuous-discrete random variables.
Despite the mathematical rigour of the introduced measure, an estimator is still missing for
the measure, prohibiting its usage. Therefore, due to the prematurity of the two continuous
estimation methods, we resorted to using the discrete estimators of BROJA and SxPID.

5.5. Future Directions

This work focused on monitoring autonomy via PID-based measures. We have seen
that PID-based measures aligned well and were robust in indicating the emergence of
autonomy when it is expected. These findings pave the way to investigate further whether
these PID measures constitute a necessary driving factor for the emergence of autonomy by
using them, for instance, as intrinsic rewards.

Moreover, due to the generality of PID, it is a candidate to capture meta-learning
concepts in general, and it is not restricted only to autonomy per se. Therefore, another
line of research to pursue is developing PID-based cost functions (e.g., intrinsic ones) that
motivate certain meta-learning aspects in addition to extrinsic cost functions. For instance,
classical information-theoretic functionals have already been used to formulate intrinsic
cost functions yielding improvements in performance [12,14]. In addition, this PID-based
cost function could also be useful in multi-agent learning where it incentivises agents to
learn specialisation, cooperation, or competition [12,41].

6. Conclusions

This work revolves around quantifying autonomy and several information-theoretic
functionals in RL environments. To monitor autonomy and the internalisation of the
environment by RL agents, we introduced an algorithm for calculating the measures A0,
A∗, and NTIC in the limiting process of time step approaching infinity. The introduced
algorithm and techniques should unlock further practical applications. In addition to
using the autonomy measures A0, A∗, and NTIC suggested by Bertschinger et al. [6], we
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obtained fine-grained decompositions of these measures via PID, a recent extension of
information theory.

We monitored autonomy and NTIC in various environments. These experiments
showed that the autonomy measures aligned with the intuitive understanding of auton-
omy. Moreover, the PID fine-graining of A0, A∗, and NTIC gave additional insights into
understanding the behaviour of these measures in various environments.

PID can also be used to quantify how much an agent relies on the environment and
how much it relies on its own internal state. Our perturbation experiments explored this
reliance and gave some empirical evidence that these measures can be useful in practice.

Finally, we hope this work illustrates an example of utilising the PID framework to
quantify abstract concepts in assessing and guiding learning algorithms.
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Appendix A. Merging the States in the Grid Environment

As discussed in Section 3.1.3, defining an interesting agent’s state was required for the
grid environment. This state is obtained by merging some of the readily available states,
namely the agent’s locations.

https://github.com/antiingel/RL-agent-autonomy
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In more detail, we calculate the states from the policy, the agent’s location, and the
food’s location as follows. First, we freeze the food dynamics, meaning that the food stays
in one location and does not disappear. We obtain the transition matrix for the agent’s
locations using the policy. Since the policy is greedy and calculated from a value function,
the stationary distribution discussed in Section 2.1.4 is a limiting distribution in the context
of this Markov chain. We calculate the limiting distribution for each initial location and
check which of the corners {e1, e2, e3, e4} have a non-zero probability of the agent being in
this corner. We then take the subset of corners with positive probability as the agent’s state.
This procedure defines a function f that gives the destination corners of the agent f (`, e)
given its current location ` and the current food location e.

Next, we find the transition probabilities for the Markov chain with destination corners
as the agent’s state. These transition probabilities can be obtained from the initial Markov
chain of the locations of agent and food using the function f . Essentially, the new Markov
chain was obtained by combining some of the agent’s states. For each pair of locations (`, e),
we define a more high-level state of the agent as the destination corners f (`, e). As a result,
these agent locations `, which correspond to the same destination corner for a food location
e, are merged together. Note that a similar process can be used in other environments,
using other mappings for f .

The initial transition probabilities do not fully determine the transition probabili-
ties of the new Markov chain. To calculate the transition probabilities of the merged
states, we use the corresponding values of the stationary distribution for the probabil-
ities P(Ln = `, En = e), where Ln denotes the random variable modeling the location of
the agent. In more detail, to calculate the transition probabilities for the agent’s state,
the stationary distribution of the combined transition matrix of the agent’s location and the
food is first calculated. Let us denote the set of locations having a fixed destination for a
fixed food state as H(s, e) = {` | f (`, e) = s}. Then, the probability of transitioning from
state (s, e) to (s′, e′) is calculated, using the Bayes rule, as:

∑`′∈H(s′ ,e′) ∑`∈H(s,e) P(Ln+1 = `′, En+1 = e′ | Ln = `, En = e) P(Ln = `, En = e)

∑`∈H(s,e) P(Ln = `, En = e)
.

Here, the sums are over the agent’s locations `, which have the given destination state s
for a given food location e; in short, the locations that satisfy f (`, e) = s. The probabilities
P(Ln = `, En = e) are taken to be the corresponding probabilities of the stationary dis-
tribution, and probabilities P(Ln+1 = `′, En+1 = e′ | Ln = `, En = e) are taken from the
transition matrix.

Appendix B. Estimating PID Terms

An analytical definition that respects certain intuitive notions about PID needs to
be formulated to estimate the PID terms. However, not all these intuitive notions can be
satisfied simultaneously [42]. Therefore, various PID measures were suggested throughout
the literature [15,23–33]. However, these PID measures should not be seen as conflicting but
rather as providing different operational interpretations. Different measures are suitable
for distinct application scenarios.

In our study, we choose ŨI [24] as the primary measure to track autonomy due to its
alignment with the application case. In addition, we use Isx∩ [33] as a control measure. We
briefly explain each measure in the following subsections and argue for this choice.

Appendix B.1. Monitoring Autonomy via Optimal Choice Under Uncertainty

The measure ŨI was proposed by Bertschinger et al. [24] and was based on decision
theory. They considered the following setting: an agent Alice (resp. Bob) takes actions after
exclusively observing S1 (resp. S2) and gets rewarded via a utility u, which is a function
of the target and the actions it took. Then, they derive the analytical definition of unique
information ŨI based on these two axioms:
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1. Alice (resp. Bob) has unique information UI(S1) (resp. UI(S2)) if there exist a set of
actions and a utility u such that Alice’s (resp. Bob’s) reward is at least that of Bob’s
(resp. Alice’s);

2. Alice (resp. Bob) has no unique information UI(S1) (resp. UI(S2)) if, for any set of
actions and any u, Alice’s (resp. Bob’s) reward is at most that of Bob’s (resp. Alice’s).

In other words, unique information emerges if and only if there exists a decision
problem in which there is a way to exploit the information (e.g., accessing S1) to the agent’s
advantage (e.g., acquiring a higher reward on average). Bertschinger et al. [24] formalised
unique information as an optimisation problem using the above decision problem. This
formulation gives rise to an analytical definition of shared information as well.

The optimisation problem seemed surprisingly difficult to solve. Later on, Makkeh et al. [43]
studied the ŨI optimisation problem, and proposed a robust estimator, Broja-2Pid, that
efficiently solves the optimisation problem [36]. We used this estimator to compute ŨI in
all the experiments reported above.

We conclude by discussing the choice of ŨI to monitor autonomy. We argued that
UI(Sn) represents the exclusive information that the agent has about its future state
(Section 5.2). By inspecting the operational interpretation of ŨI, we see that in a decision-
theoretic setting, ŨI(Sn) ≥ 0 only if the current state of the agent Sn can take action to
increase its reward (from utility u) about Sn+1 based on information not available to En.
This operational interpretation seems to align with exclusive information by granting an
advantage for the agent’s state to exploit.

Appendix B.2. Monitoring Autonomy via Uncertainty Reduction

In classical information theory, pointwise mutual information i(t : s1, s2) answers the
question: “how much information does the event S1 = s1 ∧ S2 = s2 have about the event
T = t?” This information is quantified by the log-difference:

log2 P(T = t | S1 = s1 ∧ S2 = s2)− log2 P(T = t).

Mutual information MI(T : S1, S2) is the expected value of i(t : s1, s2).
Makkeh et al. [33] derived the measure Isx∩ as an analytical definition of shared infor-

mation using the same principles. Conceptually, shared information answers the ques-
tion: “how much information does the event S1 = s1 ∨ S2 = s2 have about the event
T = t?” Based on this, Makkeh et al. [33] defined the pointwise shared information as the
log-difference:

log2 P(T = t | S1 = s1 ∨ S2 = s2)− log2 P(T = t).

The expected value of the pointwise shared information is denoted Isx∩ (T : S1; S2).
Gutknecht et al. [22] further show that this definition naturally arises from the formal
logic exposition of PID.

Finally, we briefly allude to the choice of Isx∩ as a PID measure to compare the results
obtained by ŨI. The choice has to do with the inference nature of Isx∩ , which answers how
much in bits Sn+1 can be inferred from Sn, excluding any inference that can be achieved
redundantly from En.

Appendix C. Results with SxPID Estimator

This section reproduces qualitatively similar results to those in the Results section
using the Isx∩ measure of shared information.
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Figure A1. This figure is similar to Figure 5. The only difference is that PID is calculated with the
SxPID estimator instead of BROJA. Initial states are deterministic.
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Figure A2. This figure is similar to Figure 6. The only difference is that PID is calculated with the
SxPID estimator instead of BROJA. Initial states are chosen uniformly at random.
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Figure A3. This figure is similar to Figure 9. The only difference is that PID is calculated with the
SxPID estimator instead of BROJA. The figure depicts autonomy and NTIC, together with their
decomposition, the total mutual information MI(Sn+1 : Sn, En), and the agent’s success at the end of
training. Here, the values are averages over the 30 random initialisations. Error bars show the 95%
confidence interval (assuming the mean is normally distributed, which is approximately fulfilled due
to the central limit theorem).
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