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In flow cytometry, different cell types are usually selected or “gated” by a series of 1- or 2-dimensional geometric subsets of
the measurements made on each cell. This is easily accomplished in commercial flow cytometry packages but it is difficult to
work computationally with the results of this process. The ability to retrieve the results and work with both them and the raw
data is critical; our experience points to the importance of bioinformatics tools that will allow us to examine gating robustness,
combine manual and automated gating, and perform exploratory data analysis. To provide this capability, we have developed a
Bioconductor package called flowFlowJo that can import gates defined by the commercial package FlowJo and work with them
in a manner consistent with the other flow packages in Bioconductor. We present this package and illustrate some of the ways in
which it can be used.
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1. Introduction

Flow cytometry is a high-information content platform that
is increasingly becoming a high-throughput platform as well
[1]. Flow cytometers measure individual cells, and thus are
capable of revealing subtleties of biology that other tech-
nologies cannot detect. Recent advances in instrumentation
such as 4 and 5 color laser systems and the availability
of reagents and protocols for assessing internal proteins
and their phosphorylation state are serving to make flow
cytometry a very important tool for understanding disease
processes in human biology [2]. There is also a growing
appreciation that it is important to assess cells not only
in their quiescent state, but also in response to various
stimuli [3]. This adds another layer of complexity to flow
cytometry data sets. Powerful analysis tools are needed to
properly explore and analyze data sets in which each sample
has many stimuli, cell subpopulations, and phosphoprotein
measurements.

There are a number of challenges associated with the
analysis of these large, complex flow cytometry data sets. The
challenges can be divided into. (1) acquisition of high-quality

data, (2) tools for data organization, annotation, and query,
(3) tools for data manipulation, and (4) techniques and
statistical methods for data analysis. All of these components
are related and, done well, serve to reinforce each other.
The first two of these tasks tend to be application- and lab-
specific, while the latter two lend themselves well to the
development of shared tools for all those faced with complex
flow cytometry analyses. Similar to tools developed for
microarrays, a set of packages is evolving in the Bioconductor
community that holds great promise for flow cytometry
data analysis. These packages which include flowCore [4, 5],
flowQ, flowViz, flowUtil, flowStats, flowClust [6] and others
all operate on a common set of core methods and classes for
reading, transforming, gating and otherwise manipulating
flow cytometry data.

In the analysis of flow cytometry data it is important
to be able to work with the gates that have been manually
defined. Commonly these gates are defined in a commercial
flow cytometry analysis package that is used, along with
“cut-and-paste” and simple analysis packages such as Excel
or Prism, to provide results. This becomes problematic
when dealing with complex problems and large data sets.
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To address this problem, we have built a package that
provides a way to extract data from one such commercial
package, FlowJo (http://www.flowjo.com/), into the publicly
accessible analysis platform R/Bioconductor. We chose to
use FlowJo because it is amongst the most commonly
used flow cytometry programs and it stores its session
information in an open format. The package flowFlowJo can
produce R data structures with either summary statistics or
fully flowCore compliant objects representing the various
gates, compensation matrices, and other related information
embedded in FlowJo sessions. The goal of flowFlowJo is
to make it easy, in R, to use compensation and gating
information that has been produced using FlowJo. The
flowFlowJo package provides the ability to work with both
the raw data and the gating information in a powerful
analysis environment that makes full use of the existing open
source community efforts.

2. Software

2.1. Overview of the flowFlowJo Package. FlowJo is a com-
mercially available software package used for the gating,
visualization, and analysis of data from flow cytometry
experiments. FlowJo saves its session information in an
eXtensible Markup Language (XML) text file called a
workspace. A workspace file contains all the information
necessary to describe the gating structures, compensation,
transformations, locations of the Flow Cytometry Standard
(FCS) [7] files, graphs, and figures created by the user. FlowJo
workspace files do not contain raw cytometry data.

The R package flowFlowJo is a set of methods and classes
designed to extract the file locations, gates, compensation
matrices, and some of the other information contained in
FlowJo workspace files and return the information in a
manner consistent for use with the Bioconductor flowCore
packages. The flowFlowJo package can execute the following
actions when supplied with the location of one or more
FlowJo workspaces:

(1) read and parse the workspace(s),

(2) extract the location of all of the FCS files referenced
in the workspace(s),

(3) extract all of the intermediate and final gates as
flowCore S4 class filters objects,

(4) extract the spillover matrices,

(5) extract the transformation settings,

(6) organize the extracted information into a set of
data structures so that all of the compensation and
gating strategies described in the workspace(s) can
be executed in R. In effect, this captures and executes
much of the analysis workflow stored in the FlowJo
workspace,

(7) return a set of identically ordered lists containing all
of the file locations, file names, filter objects, filter
names, and compensation matrices.

These operations are typically done by an analyst using
flowFlowJo in order to

(1) produce summary tables of the names and numbers
of gates described in the workspace(s),

(2) execute the complete set of gatings described in
the workspace, returning a comprehensive table of
summary statistics for all of the populations for each
of the channels,

(3) obtain a set of ordered lists of FCS file paths, spillover
matrices, and flowCore S4 filter objects identical with
that created by the researcher using FlowJo. These
objects can then be used in a more detailed event-
level analysis than would be possible from simple
summary statistics alone.

Figure 1 illustrates how the major components of the
flowFlowJo package are related in typical data analysis
sessions. The following code examples demonstrate part of
such an R session using flowFlowJo to analyze a set of
cytometric data. In the first line of this example the analyst
reads in a FlowJo workspace from a file on his system. In
the second line the analyst obtains a list of all the files and
gate names referenced in the workspace to ensure that correct
number and types of gates have been obtained. For brevity,
the contents of this call are not shown in the demo below. In
the third line the analyst “executes” the workflow detailed in
the workspace via the collectSummaryFlowInfo command to
assemble a complete set of summary statistics on all of the
FCS files and all of the gates described in the workspace. In
this example, the analyst also instructs the code to recover
the photomultiplier tube voltage setting as recorded in each
FCS file via the keywords argument. In fact, the keywords
argument allows the analyst to recover any of the metadata
embedded within the header section of each FCS file. The
list of possible keywords and their values can be found for
any FCS file with the standard flowCore call, keyword. In
the fourth line of code, the analyst converts the complex
summary object to a standard R data structure while merging
it with additional metadata describing experimental details:

fjListObj <- readFlowJoList("C://Documents
and Settings/TestFlowJoFile.wsp")

gateAndFileInfo <- getFlowJoSummary
(fjListObj)

summaryStatsObj <- collectSummaryFlowInfo
(fjListObj, keywords=c("$P1V"))

flowReport <- createFlowReport
(summaryStatsObj, extraMetaDataFrame)

The analyst then works with the resulting standard R data
structure to produce reports and analyses as needed. The
above code provides only summary statistical information
on the populations delineated in the workspace. However in
some cases the analyst may wish to examine the distribution
of data within a population much more carefully or gain
event by event access to the cells within a population. The
getFlowJoGates command as invoked in the first line of
the example session below returns an ordered list-of-lists
containing all of the file locations, file names, compensation
matrices, gate names and flowCore compliant filter objects

http://www.flowjo.com/
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corresponding to all of the FCS files with the regular expres-
sion “Specimen.∗C01” in their full pathname. As discussed
above, the getFlowJoSummary command will return the full
set of file names referenced in the in a FlowJo workspace
from which the analyst may wish to choose a subset via
the fileNamePatterns argument. The default for the
fileNamePatterns argument returns the information for
all of the FCS files referenced in the workspace. In the
second and third lines below, an FCS file is loaded into
memory and compensated. The fourth and subsequent lines
illustrate standard flowCore operations on the associated
“CD3+:Lymphocyte” filter object. The summary command
shows the number and percent of cells recorded in the FCS
file that fall within the boundaries of the CD3+: Lymphocyte
gate. Finally the gate is adjusted by moving each of its forward
scatter polygon coordinates 10% higher:

gateList <- getFlowJoGates(fjListObj,
fileNamePatterns=c ("Specimen.∗C01"))

aFlowFrame <- read.FCS
(gateList$FCSFilename[[1]])

aFlowFrame <- flowJoCompensate
(aFlowFrame, gateList$compMats[[1]])

aFilter <- gateList$filter[[1]]
aFilter
filter ‘Specimen 001 C1 C01.fcs:

Lymphocytes: CD3+’
the intersection between the 2 filters
Polygonal gate ‘Specimen 001 C1 C01.fcs:

Lymphocytes’ with 6 vertices in dimensions
FSC-A and SSC-A

Rectangular gate ‘Specimen 001 C1 C01.fcs:
CD3+’ with dimensions:

Pacific Blue-A: (337.211599131617,
5996.56443562053)

PE-A: (11.0542047560856, 37903.8875296341)
summary(filter(aFlowFrame, aFilter))
Specimen 001 C1 C01.fcs:Lymphocytes: CD3++:

14342 of 99286 events (14.45%)
summary(filter(aFlowFrame, aFilter@filters

[[1]]@boundaries [,"FSC-A"] ∗ 1.1))
Specimen 001 C1 C01.fcs:Lymphocytes:CD3++:

13043 of 99286 events (13.14%)

As can be seen, the types of operations that can be conducted
at this point are virtually limitless. The getFlowJoGates
method simply provides the user with all of the relevant
components found in the FlowJo workspace as R and
flowCore compliant objects in a set of commonly ordered
lists.

2.2. File Locations, Gates/Filters, Spillover Matrices Com-
pensation Matrices and Transformations. Prior to using the
flowFlowJo package, FlowJo will have been used to manually
process (compensate and gate) one or more FCS files to
produce one or more FlowJo workspaces. This is a routine
process for those analyzing flow cytometry data. Worth
noting is that the location of the FCS files is stored in the
FlowJo workspace as absolute or relative paths. Moving the
FCS files to another location will cause the location of these

files as extracted from the workspace to be in error and
further processing steps on these files will be impossible. In
anticipation of this possibility, the readFlowJoList method
allows the user to specify an alternate path for the referenced
FCS files.

It is common practice that an assay is performed over
many weeks or months, with the data from each day’s
run being accumulated into a single FlowJo workspace.
Furthermore, it is not uncommon for the files containing
the data from various runs to be given the same names.
The package flowFlowJo allows for this by reading in any
number of FlowJo workspaces at the same time and tracking
the location of the FCS files by their full pathname.

Some inconsistencies appear in the use of terminology
in flow cytometry software and literature with respect to
compensation matrices. FlowJo workspaces include sections
labeled “CompensationMatrix” which are more properly
referred to as “spillover” matrices. The spillover matrix
elements represent the proportion of the signal emitted by
each fluorescent dye that falls within the band pass windows
for each of the other fluorescent dyes. The compensation
matrix is the inverse of this matrix. Currently, in order to
obtain similar results (e.g., mean fluorescent intensities and
cell counts) between FlowJo and flowCore, it is necessary to
multiply the observed signal values by the spillover matrix to
the data with the usual flowCore method call (compensate)
and then to divide all of the observed fluorescent (nonscat-
ter) data by the maximum of the values in the spillover
matrix. The flowFlowJo package implements an internal
method, flowJoCompensate, to automatically take care of this
issue when generating summary statistics. It is also worth
noting that FlowJo (and flowFlowJo) allow for a different
spillover matrix for each FCS file referenced within each
workspace.

Standardized interpretation of the gating coordinates can
also be problematic. The information contained within the
DivaSettings and TransformSettings sections of the FlowJo
workspace records the user’s preference for gating visualiza-
tions. This data is parsed and returned by the readFlowJoList
method. However, all the fluorescence channel coordinates
are encoded by FlowJo in their nontransformed gate coor-
dinates. Hence there are no methods in flowFlowJo that
currently utilize transformation and “DivaSettings” data,
since they appear to have no impact on the obtained results.
Additionally, due to code legacy, FlowJo reads the scatter gate
data of FCS files in only 12 bit resolution (i.e., a maximum
value of 4096). However modern flow cytometers typically
record integrated signal intensities at 18 bit resolution (i.e.,
a maximum value of 262143). Thus the forward and side
scatter gate coordinates are currently (FlowJo 7.2.5) encoded
as 1/64 of their actual values for 18 bit FCS files. In these
cases the readFlowJoList method automatically (internally)
multiplies each of the scatter gating coordinates by 64 to
adjust for this prior to generating flowCore filter objects.

2.3. Data Summary Objects. The first step in automating the
analysis of manually gated data is to ensure uniformity of the
naming convention across all of the samples and to confirm
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Figure 1: Diagram of the major methods of the flowFlowJo package and their relationship in typical use.

that all of the expected data is present. With larger data sets,
problems may include (1) different names for the same cell
populations, (2) missing gates, (3) missing samples, and (4)
unexpected gates or samples. Such unanticipated deviations
from the experimental plan can become buried in a large set
of data and often compromise the downstream data analysis.
A simple summary of the data is useful for identifying these
anomalies. Toward this end, the getFlowJoSummary method
returns a table showing the number and counts of different
gate names associated with all of the FCS files in one or more
FlowJo workspaces.

In some cases, a data analyst may wish to proceed
manually in R with the organized lists of FCS files, filters,
and spillover matrices extracted by flowFlowJo. This can
be accomplished with the getFlowJoGates method described
above. However, in many cases, the analyst may be satisfied
with the gating choices created in FlowJo, and may wish
to simply acquire a complete set of summary statistics
on all of the cell populations. The FlowFlowJo package
provides methods to automatically “execute” the gating
strategy provided in the workspace. It is only at this point
that the flowFlowJo methods actually access the FCS files.
The collectSummaryFlowInfo method systematically employs
standard flowCore methods to create a data structure
summary object with median fluorescent intensities and cell
counts for each of the channels for each of the populations,
as well as any requested header information from each of the
FCS files.

Each FCS file is composed of several sections in addition
to the raw list-mode data. The header section of each FCS file
typically contains 100 or more pieces of information about
each flow run, including laser settings, photomultiplier tube
voltages, run times, and other information. The collectSum-
maryFlowInfo method can be configured to collect one or
more of these items from each FCS file. As a practical matter,

since each FCS file may be quite large, the code only reads
one FCS file into memory at a time, extracts the appropriate
information, and frees its memory before moving on to the
next file.

Finally, the createFlowReport method can combine the
summary object with additional metadata about the exper-
iment such as sample information or treatment conditions.
The resulting flow report will contain one line for each
channel of each cell population of each FCS file along with
any associated metadata and keywords from the header
section of the FCS file.

There are a wide variety of possible gate types within
FlowJo. The current version of flowFlowJo can process range,
rectangle, polygon, quadrant, and “auto” gates. Elliptical
gates are not currently supported. With the advent of FlowJo
version 7.5, the gate descriptions in the workspace are
expected to be consistent with the Gating-ML standard [8],
and we will be upgrading flowFlowJo to handle all gate
types produced by FlowJo. Additional detail on the use of
flowFlowJo is contained in the vignette that is available
through Bioconductor (http://www.bioconductor.org/).

3. Applications

In the following sections we describe two applications in
which we believe it is beneficial to have computational
access to manually defined gates. These two applications
are intended to illustrate how flowFlowJo, by allowing for
computational access to manually defined gates, will make
it easy to address questions and concerns about gates and
the gating process. We hope that flowFlowJo will provide
for an easier comparison of manual and automated gating
approaches and improve our confidence in different gating
procedures.

http://www.bioconductor.org/
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3.1. Supporting Reproducible, Semiautomated Flow Cytometry.
In our experience, flow cytometry is commonly practiced
in one of two ways. The first way occurs when a small
number of samples are evaluated as part of an ongoing
process of hypothesis generation and testing. The second
way occurs in the clinical lab, a highly-regulated, high-
throughput environment, in which there is little room for
exploration or follow-up. In our view there is an important
need for a third option in flow cytometry. This third way
(which we call reproducible, semiautomated flow cytometry)
supports the manual, exploratory analysis which is easy to
do in software tools such as FlowJo or FCSExpress, but also
allows for the type of modeling and analysis that has proven
beneficial in the microarray arena. In addition, reproducible,
semiautomated flow cytometry should have the potential to
retain, and even improve upon, many of the benefits available
in the highly regulated clinical environment.

The flowFlowJo package supports a reproducible, semi-
automated system in three primary ways. First, the package
supports the use of FlowJo, which provides the bench
researcher with a familiar tool for the visualization and
exploration of flow data. Secondly, flowFlowJo moves all
computations on the original data set into the R pro-
gramming environment—thus allowing for automation and
reproducibility of analysis statistics [9]. These summary
statistics can then be readily exported into other visualization
tools such as SpotFire. Third, the availability of all the
data in R allows the use of a wide range of sophisticated
statistical analysis tools. Data visualization and analysis often
raises questions pertaining to the gating of cell populations.
These questions can be readily explored because all of the
postgating analyses can be automated.

3.2. Gating Robustness. Gating is an important and often
time-consuming component of the analysis of large flow
cytometry data sets. The delineation of the boundaries of
cell populations is often made difficult by variable numbers,
size, shape, and location of both target and nontarget cell
populations. This variability may be due to debris arising
from problems with sample handling or reagents, or may
be due to changes in cell populations arising from disease
or specific genetic differences. These problems may only
become apparent in the midst of a large project, and it
can be problematic to preemptively design an algorithm
or model capable of handling such unforeseen problems.
The difficulty of automating the pattern recognition of
(potentially) distorted objects in the presence of noise
is recognized in other fields [10] as well, in which the
human ability to identified distorted words and characters
is relied upon. While manual gating is relatively robust to
unanticipated cell population distributions, it suffers from
the potential for operator bias. In fact all gating methods have
their drawbacks in particular cases, and tools and procedures
are needed for evaluation of the results of the gating process.

It is important to be able to assess the robustness of
gating results irrespective of the method employed, and some
relatively robust approaches do exist [11, 12]. In general, the
results of an experiment are considered robust if they are not

sensitive to small changes in the assumptions or methods
used to arrive at the results. To assess gating robustness in
flow cytometry, it is extremely useful to be able to work with
gates in a computational framework. There are at least three
intertwined aspects of gating robustness that are important
to assess: gating method, gate method tuning, and gate
homogeneity. For illustrative purposes, we focus on the first
and only briefly comment on the other two.

As an illustration of the assessment of gating method
robustness, we examined a set of human blood samples run
in a single 96-well plate. These samples originated from
blood drawn from four healthy donors that were stimulated
ex-vivo with various levels of TNF-α by three operators
(resulting in a total of 96 samples) as part of an assay
development program. The samples were stained with a
variety of different antibodies, of which we only consider the
antibodies for CD3/CD14 and P-p38 (the phosphorylated
form of mitogen-activated protein kinase 14) as expressed by
the monocytes. The antibodies to CD3 and CD14 were both
conjugated to the same dye because cells staining for either
of these markers can be distinguished in the SSC channel,
thus allowing for the use of more channels for other markers
of interest. P-p38 is intracellular and was detected by an
experimental protocol in which the cells were permeabilized.

Monocytes were gated in several ways in order to assess
the robustness of results to the choice of gating method
employed. For method I gates were created manually in
FlowJo using a polygon gate drawn on a SSC versus
log10(CD3/CD14) bivariate plot. The gates for method II
were obtained with a robust normal fit via the fitNorm2
method from the R package prada [13] on the cells gated
with method I. The fitNorm2 method uses a contour level
for the resulting bivariate normal distribution chosen as the
gate boundary [13]. Method III found the intersection of
manually gated cells from method I with regions of signifi-
cant curvature obtained via the featureSignif method in the
R feature package which fit a two dimensional probability
density function [14] to all of the SSC and CD3/CD14 data
for each flow file. Results were then compared across the
three methods for all samples. Each of these methods has
one (or more) tuning parameters which can be used to
make results match very closely for any individual sample
between the three different methods. It is the agreement
across methods for all the samples that is of importance. For
method I (manual gating) the operator created a polygon
gate using as many vertices placed in whatever locations
were deemed appropriate. For method II and III, the various
tuning parameters were selected so as to provide results close
to those obtained with method I. It should be noted that the
results for methods II and III are by design subsets of the
results obtained by method I.

Figure 2 shows the gates obtained by the three methods
for two of the blood samples. These two cases bracket the
range of observed agreement between gates; very good for
sample H03, and poorer for sample B10. For every gate, the
response of the cells in that gate as measured by their mean
P-p38 levels was computed (the level of response for each
sample is driven primarily by the TNF-α stimulation level).
Comparison of response measures between the three gating
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Figure 2: Gates for the monocyte population as produced by the three gating procedures applied to two of the 96 whole blood samples.
The distribution of the cells is indicated by the blue shading with darker blue corresponding to regions containing higher numbers of cells.
Regions where a probability density function fit to the data was calculated to have significant curvature are indicated in black, except where
they lie within the manual gate and are colored red. Gating methods I, II, and III are shown in green, yellow, and red, respectively. The
regions were colored in order of largest to smallest for visual display because the gates overlap with each other.
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Figure 3: Comparison of the monocyte P-p38 mean fluorescent intensity as determined by the different gating methods for the 96 samples
of whole blood. The apparent P-p38 response in any particular sample may be affected by the donor, the person running the assay, and the
amount of TNF-α stimulation applied to the cells. The points corresponding to the two samples shown in Figure 2 are labeled in red.

methods is shown in Figure 3. It is clear that method I and
method II agree very closely, while method III is moderately
different from the first two methods. These simple graphs
illustrate both a bias and variance between methods that
should be taken into consideration in evaluating the strength
of any conclusions drawn. Thus we have obtained an
indication of the level of uncertainty due to gating strategy
and can readily identify cases in which further investigation
is warranted. Conversely, of course, we may decide one of the
gating methodologies performs poorly and remove it from
use for a particular application.

It is also important to look at the homogeneity of the
cells within a gate. In some cases the monocyte population
of the samples examined in this experiment was actually
composed of two populations of cells as distinguished by
different P-p38 expression. This difference was not apparent
when examining the cells in the SSC versus CD3/CD14
domain. These two populations have offset centers in SSC
versus CD3/CD14 space which causes a gradient in mean P-
p38 expression across the manually drawn gate. Such mixed
populations might be observed, for example, through use of
3 dimensional viewing tools. Alternatively one might color
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each point within a gate as a function of its distance in all
measured parameters from the center of the gate, thereby
providing a simple visual measure of cell homogeneity within
a gate. Another approach is to divide the gate up into
a number of subsets and compute the desired summary
statistic for each subset. The variability across these subsets
provides an assurance of the strength of the assumption of
homogeneity within the gate. These types of visualizations
and analyses are readily explored when the data is available
in the R statistical programming environment.

The P-p38 heterogeneity of some of the samples illus-
trates the strengths and weaknesses of the three gating meth-
ods depending on the nature of the question being asked. If
the goal is to further subdivide a population, it is important
to be as inclusive as possible because the subtypes in other
gating parameters may not be uniformly scattered across the
parent gate. If the goal is to perform a dose-response assay
by measuring, for example, the phosphorylation state of an
internal signaling protein, a more restricted population such
as the bivariate normal gate (method II) might be more
appropriate. The curvature gradient approach (method III)
is particularly sensitive to the distribution of cells within a
region and might be valuable in assays where detecting slight
changes in the population structure is important. The gating
method and tuning parameters chosen should be chosen
based on the question being addressed.

Finally, other aspects of the gating process may likewise
be assessed for robustness. Automated and partially auto-
mated approaches have tuning parameters that are usually
set to work well for test cases. The sensitivity of the results
in these test cases can be helpful in judging how well the
approach is going to work in a full study. To assess this
sensitivity, an approach similar to that shown above can be
used to systematically vary the tuning/controlling parameter
and assess the variability in the results as a function of the
controlling parameters.

4. Discussion and Conclusion

As the number of flow cytometry data sets grow in a
study, it becomes increasingly difficult to explore “what-if”
questions. It is common to uncover a behavior that can only
be investigated by creating new gates or adjusting existing
gates. Exploration and analysis of a data set can also reveal
problems with an initial gating strategy that can be easily
fixed computationally, but would be tedious to fix manually.
Examples of this include the case in which manual gates are
refined computationally and the case in which the robustness
of gates (drawn manually or computationally) is assessed.
We have also experienced cases in which a population that
initially appeared to be of little importance turned out to
be of substantial interest. In one case, the population had
been poorly gated, and the events at the maximum possible
intensity were included, but should not have been. Rather
than re-gating manually, it was simple to adjust each gate
computationally to exclude the boundary region.

The flowFlowJo package provides a set of methods
for extracting and organizing information from FlowJo

workspaces and the FCS files to which they refer. In its most
basic application, it allows the user to retrieve all of the gates
and spillover matrices for all of the FCS files described within
one or more FlowJo workspaces. The gates are returned as
flowCore compliant filter objects, and the spillover matrices
are returned as numeric matrices. Additional functionality
is gained by the ability of the user to effectively run all
of the compensation and gating functions described by the
workspace(s) and automatically retrieve all of the relevant
summary statistics into a concise data structure. These data
may also be easily combined with any metadata describing
the nature or source of each sample and any experimental
conditions to which they were subjected.

There has been limited involvement by the bioinfor-
matics, statistical, and machine learning communities in
the problems of flow cytometry [15]. Programmatic access
to both raw data and gates in flow cytometry allows us
to ask many questions about flow cytometry data that
traditionally were tedious or effectively impossible. The
ability to assess gate choice assumptions is expected to lead
to better assessments of the quality of our methods. In
some cases, more sophisticated approaches such as mixture
modeling may be called for when seemingly uniform cell
populations actually include two or more cell types. This is
especially important when examining cell populations for
which a subset of the cells with no known defining antibodies
respond differently to stimuli than the rest of the cells in the
population.

At the present time, flowFlowJo is known to work with
FlowJo version 7.2.5 running on the Windows operating
system. We expect FlowJo to continue to evolve and we
intend to maintain flowFlowJo in such a way that it can
handle the current FlowJo workspaces. A major change in the
FlowJo workspace structure will be the transition to FlowJo
7.5 when the use of the Gating-ML standard is expected to
replace the current XML format. The flowFlowJo package
and supporting vignette and documentation is available from
the Bioconductor web site (http://www.bioconductor.org/).
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