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Transcriptome Sequencing of 
Peripheral Blood Mononuclear Cells 
from Elite Controller-Long Term 
Non Progressors
Francisco Díez-Fuertes1,2, Humberto Erick De La Torre-Tarazona1, Esther Calonge1, 
Maria Pernas3, María del Mar Alonso-Socas4, Laura Capa1, Javier García-Pérez1, 
Anavaj Sakuntabhai   5 & José Alcamí   1,2

The elite controller (EC)-long term non-progressor (LTNP) phenotype represent a spontaneous and 
advantageous model of HIV-1 control in the absence of therapy. The transcriptome of peripheral blood 
mononuclear cells (PBMCs) collected from EC-LTNPs was sequenced by RNA-Seq and compared with 
the transcriptomes from other phenotypes of disease progression. The transcript abundance estimation 
combined with the use of supervised classification algorithms allowed the selection of 20 genes and 
pseudogenes, mainly involved in interferon-regulated antiviral mechanisms and cell machineries 
of transcription and translation, as the best predictive genes of disease progression. Differential 
expression analyses between phenotypes showed an altered calcium homeostasis in EC-LTNPs 
evidenced by the upregulation of several membrane receptors implicated in calcium-signaling cascades 
and intracellular calcium-mobilization and by the overrepresentation of NFAT1/Elk-1-binding sites in 
the promoters of the genes differentially expressed in these individuals. A coordinated upregulation 
of host genes associated with HIV-1 reverse transcription and viral transcription was also observed in 
EC-LTNPs –i.e. p21/CDKN1A, TNF, IER3 and GADD45B. We also found an upregulation of ANKRD54 
in EC-LTNPs and viremic LTNPs in comparison with typical progressors and a clear alteration of type-I 
interferon signaling as a consequence of viremia in typical progressors before and after receiving 
antiretroviral therapy.

The chronic asymptomatic phase in HIV-1 pathogenesis is extremely variable, spanning from 2 to 25 years 
depending on the individual rate of disease progression defined by the interaction of host and viral factors1,2. 
However, a median time to AIDS since seroconversion between 8 and 11 years is generally accepted3. In order to 
categorize this variability, HIV-specialists have created a classification of HIV-1 infected individuals according 
to the disease progression, mainly measured by the loss of CD4+ T cells. In this sense, an extreme phenotype 
observed in long-term non-progressors (LTNPs) represents about 2% of all HIV-1 infected individuals and is 
characterized by the preservation of CD4+ T cell levels above 500 cells per µl of blood and relative low levels of 
viremia for at least ten years in the absence of ART2. Although some studies employ shorter periods of time to 
define LTNP condition, the use of 10 years of non-progression better differentiates between “true” LTNPs from 
those with delayed progression4. In parallel, some individuals called elite controllers (ECs) have the capacity to 
maintain undetectable levels of viral RNA without therapy for at least two years5. The prevalence of LTNPs and 
ECs have been determined in a huge military cohort of 4.586 naive HIV-1 infected individuals, representing the 
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2.04% and 0.55%, respectively4. The coexistence of EC and LTNP conditions observed in EC-LTNPs would rep-
resent the most beneficial host phenotype against HIV-1 infection, because of the capacity of these individuals to 
maintain elevated levels of CD4+ T cells and undetectable VLs over time6. This fact turns EC-LTNP phenotype 
into an interesting but infrequent group of study7,8.

EC-LTNP phenotype is considered a multifactorial phenomenon governed by viral fitness9,10 and host 
immuno-genetic mechanisms, such as CCR5Δ32 heterozygosity and the presence of HLA-B57/B27 and 
CCR2-V64I alleles11–13. Pereyra et al. have described that all the SNPs in the MHC associated with EC along 
with the genetic variants in CCR5 and CCR2 only explain 23% of the observed variance of durable host control, 
evidencing that these mechanisms are far away to fully explain the EC phenotype14. The existence of additional 
mechanisms has been studied even at transcriptome level employing microarray technologies15,16. However, 
hybridization-based methods have several limitations, such as hybridization specificity, background noise, 
hybridization to more than one gene product and a limited quantification range owing to signal saturation17. In 
contrast, RNA-Seq is a relatively recent application of high throughput sequencing technologies to transcriptome 
profiling18. Using this technology, the transcriptome of peripheral blood mononuclear cells (PBMCs) collected 
from EC-LTNPs has been characterized through the comparison with viremic LTNPs (vLTNPs) and HIV-positive 
individuals with a typical pattern of disease progression before (TP) and after receiving ART (TP-ART).

A global analysis of these transcriptomes was carried out in order to detect key transcripts to enable the clas-
sification of HIV-infected patients according to their phenotype and providing clues about the molecular mecha-
nisms specifically associated with EC-LTNP phenotype through its comparison with vLTNP, TP and TP-ART. The 
understanding of viremia implications in remodeling the transcriptome machinery in patients on treatment was 
also investigated by the comparison of TP with TP-ART. The study of the genetic fingerprint exclusively found 
in EC-LTNPs would allow the molecular characterization of the most optimal immune activation against HIV-1 
infection observed in nature and provides clues for the study of candidate markers for immunomodulatory drugs 
aiming at a functional HIV cure.

Results
Patients characteristics.  A total of 23 patients were included in the study, seven patients with a typical 
pattern of disease progression and 16 patients with a LTNP phenotype as defined in materials and methods sec-
tion. Typical progressors provided two different samples for the analysis, before ART (TP) in which a CD4+ T 
cell count depletion of 50–100 cells/mm3 per year along with a detectable viral load (VL > 5,000 copies/ml) were 
observed; and two years after ART treatment in which VL was under the level of detection (<20 RNA copies/ml; 
TP-ART). LTNP were classified as EC because of their undetectable viremia or detectable viremia with VL < 2,000 
copies/ml in less than 25% of all determinations during the follow-up (EC-LTNPs). All EC-LTNPs (n = 8) showed 
a VL < 2,000 copies/ml at sampling time and three of them had undetectable viremia. The other 8 LTNPs showed 
detectable VLs < 10,000 copies/ml in more than 25% of all determinations during the follow-up and were consid-
ered as viremic LTNPs (vLTNPs). Patients’ characteristics are summarized in Table 1. No differences in gender, 
age or origin were found between groups of individuals. All LTNPs were followed for care for more than 10 years 
and all the individuals included in the study have a European ancestry and were diagnosed between 1988 and 
1999.

RNA-Seq quality control.  A total of 30 cDNA libraries coming from EC-LTNP, vLTNP, TP and TP-ART 
were analyzed. There were on average 33,689,139 single-end reads per library and a mean of 30,854,460 reads 
per library were aligned to the human genome (91.6%) (Supplementary Fig. S1). Approximately, half of mapped 
reads aligned to each strand of the genome. A median above 32 of the Phred quality score was observed across 
all bases at each position of the 100 bp reads (Supplementary Fig. S1). A quality score above 32 indicates that the 
base-calling error probability was lower than 5.01 × 10−4. No statistically significant differences were identified 
between groups of HIV-positive individuals comparing the number of total and mapped reads.

PBMC transcriptome profiling: global comparisons.  Different two by two comparisons were made 
between groups of patients. The number of differentially expressed genes (DEGs) were particularly high compar-
ing EC-LTNPs with TP (n = 142) and TP with TP-ART (n = 119), suggesting the importance of an active viral 
replication in the modification of the transcriptome (Fig. 1A). According to the Jensen-Shannon distance based 
on the expression of these genes, the distance between EC-LTNPs and vLTNPs was lower than any other compar-
ison (Fig. 1B). TP-ART are closer to EC-LTNPs than to themselves before ART (TP), supporting the hypotheses 
about the significance of the viremia in altering the expression of several genes in HIV-positive individuals. The 
effect of the viremia was measured in all the comparisons between groups of patients as the percent of DEGs 

Patient 
group

Gender

Population Viral load in sample* CD4 T cell count*Male Female

EC-LTNP 5 (62.5%) 3 (37.5%) European 393 (Und.** − 1137) 667 (514–1081)

vLTNP 7 (87.5%) 1 (12.5%) European 6021 (243–18900) 738 (492–1049)

TP 6 (85.7%) 1 (14.3%) European 164900 (7620–585000) 302 (47–624)

TP-ART 6 (85.7%) 1 (14.3%) European Und. 554 (415–720)

Table 1.  Main clinical characteristics of the patient groups included in the analysis. *Mean (interval) 
**Und. = undetectable
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observed in each condition which are coincident with the genes observed in TP versus TP-ART comparison. 
Thus, a 56%, 45% and 32% of DEGs found in vLTNP vs TP, EC-LTNP vs TP-ART and EC-LTNP vs TP compari-
sons, respectively, were also found in the TP versus TP-ART. However, only the 14% of DEGs found in EC-LTNP 
vs vLTNP were coincident with the genes found comparing TP and TP-ART (Fig. 1A).

Selection of the most predictive genes of phenotypes.  Gene expression variability was analyzed 
across the 30 samples through multi-dimensional scaling (MDS) and subsequent unbiased K-means clustering 
into four groups. Although the clustering of groups of patients was not achieved, each phenotype was preferen-
tially represented in one of the clusters. We found EC-LTNPs preferentially in cluster 1, vLTNPs in cluster 2, TP in 

Figure 1.  Comparison between phenotypes. Venn diagram showing overlapped DEGs found in several 
comparisons analyzed in the study (TP vs TP-ART, EC-LTNP vs TP-ART, EC-LTNP vs vLTNP, EC-LTNP 
vs TP and vLTNP vs TP). Only SLC37A3 were found in all the comparisons analyzed (A). Distance matrix 
showing similarities between phenotypes, calculated by the Jensen-Shannon divergence as implemented in the 
Bioconductor’s package cummerbund (B). Multidimensional scaling (MDS) plot of the 30 samples based on 
the first two principal coordinates (PC, x and y axes). Labels A, B, C and D correspond to EC-LTNP, vLTNP, 
TP and TP-ART phenotypes, respectively. Color code is based on k-means clustering results with N = 4. The 
percentage of variability explained by each PC is indicated (C). Probabilities to be correctly classified for each 
individual employing the 20 best predictive genes. A total of ten independent predictions were carried out 
with LOOCV and the distribution of these probabilities are showed. The majority of the individuals (n = 22, 
73.3%) were correctly classified and 20 of them obtained p-values > 0.5 at true class after 10 repetitions (and 
therefore p-values < 0.5 for the sum of the probabilities to be classified as any of the 3 other false classes). At 
the other extreme, some other individuals were repeatedly incorrectly classified with all the p-values < 0.2 
for the 10 models. This is the case for EC-LTNPs 4 and 6, vLTNP 2 and TP-ARTs 1, 4 and 7. EC-LTNP 4 and 
6 were classified as vLTNPs for all the repetitions whereas the vLTNP 2 was classified as EC-LTNP also in all 
the iterations. In the case of the three TP-ARTs erroneously classified (1, 4 and 7), two of them were classified 
as EC-LTNPs and the other one as vLTNP. Between these two situations, 2 individuals (vLTNPs 1 and 5) were 
ambiguously classified with p-values at true class below 0.3 and with similar p-values to be classified as EC-
LTNPs. The 10 models were able to classify correctly all the TPs with p-values close to 1 in all cases (except 1 out 
of the 10 models for TP 7 which was classified as vLTNP) (D).
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cluster 3 and TP-ART in cluster 4 (Fig. 1C). In total, 15 out of the 30 transcriptomes analyzed were correctly classi-
fied according to their corresponding phenotypes (50%). These results suggest a high level of heterogeneity within 
and between groups, complicating the finding of a common pattern of biomarkers associated to each phenotype.

New approximations such as the use of supervised classification techniques are necessary to describe new 
markers and mechanisms behind these phenotypes. Gene expression values from all the HIV-positive individ-
uals included in the study were exposed to a gene selection process using a bias-corrected hierarchical Bayesian 
classification method. The expression values of a single panel of 20 genes were selected as the most accurate 
combination of genes to describe the phenotype variability found in the present study (Supplementary Fig. S2). 
The expression of most of these 20 genes is evidently different in TP compared with the other three phenotypes. 
However the expression of other genes such as EIF3LP3 clearly distinguish phenotypes characterized by the 
control of viral replication (EC-LTNP + TP-ART) from phenotypes characterized by an active viral replication 
(vLTNP + TP) (Fig. 2). On his part, the expression of XRCC6 clearly differentiates between phenotypes charac-
terized by non-progression (EC-LTNP and vLTNP) and those characterized by a typical progression (TP and 
TP-ART) (Fig. 2).

Among the selected markers we found 13 genes, 6 pseudogenes with unknown function and a long intergenic 
non coding RNA (lincRNA) named RP11.288L9 as a negative regulator of IFI6. The functional annotation of these 
genes selected among the whole transcriptome identified several interferon-regulated genes (IRGs), including 
HERC5, PARP12, IFI44, RNF213, MX1, HELZ2, EEF1G, EEF1B2, PARP14, and IFI6. Several genes are related with 
RNA binding (HERC5, EEF1G, EEF1B2, HELZ2, XRCC6, and PARP12), response to virus (IFI44, HERC5, EEF1G 
and MX1), hydrolase activity (HELZ2, XRCC6, RNF213 and MX1), eukaryotic translation elongation (EEF1G, 
EEF1B2, and EEF1B2P3 as components of the eEF1 complex), NAD+ ADP-ribosyltransferase activity (PARP12 
and PARP14), and ribosomal activity (including the ribosomal protein pseudogenes RPL5P4, RPL4P5 and RPL4P4).

Phenotype prediction.  A classification algorithm was created in order to evaluate the capacity of this panel 
of 20 genes to distinguish each phenotype. The distribution of probabilities to be correctly classified obtained in 
this algorithm for each individual was showed in Fig. 1D. The majority of the individuals (n = 22, 73.3%) were 
correctly classified (in contrast with the 50% obtained with the unbiased K-means clustering above described). 
Simplifying the model to only two phenotypes, LTNPs (regardless of their HIV-control capacity) and typical pro-
gressors (without considering if they are on ART or not), an accuracy of 90% (n = 27) was achieved (compared to 
the 76% obtained with the clustering). In this model, only three TP-ART individuals (TP-ART-1, TP-ART-4 and 
TP-ART-7) were incorrectly classified as LTNPs (Fig. 1D), suggesting that some of these mechanisms associated 
with virus control are common between LTNPs and individuals on therapy. Interestingly, these three samples 
erroneously classified as LTNP (TP-ART-1, TP-ART-4 and TP-ART7) were the TP-ART samples with higher 
CD4+ T cell counts (720, 650 and 578 cells per mm3, respectively compared with 525, 550, 439 and 415 cells 
per mm3 found in the rest TP-ART samples). The Matthews correlation coefficient (MCC) is used in machine 
learning as a measure of the quality of binary classifications. MCC ranges from −1 (total disagreement between 
prediction and observation) and +1 (perfect prediction), including 0 (no better than random prediction). The 
MCC obtained for the classification algorithm developed in the present study was 0.81, compared with the 0.53 
obtained for the K-means clustering. These results support the use of supervised data mining classification meth-
ods combined with transcript abundance estimation as a promising approximation to characterize the transcrip-
tome profile of a heterogeneous phenotype.

Deregulation of type I interferon signaling as a consequence of viremia.  The genes differentially 
expressed between any pair of phenotypes were identified using the negative binomial distribution. The expres-
sion of 119 genes was altered as a consequence of ART in TP individuals (Fig. 3). According to interferome there 
are evidences about the regulation of type I IFN in 92 out of these 119 genes (77.3%). The functional annotation 
of these 119 genes showed an enrichment of several molecular pathways related with interferon signaling and a 
defense response to virus (Supplementary Table S1).

Fourteen genes were included in Reactome’s type I interferon signaling pathway (q = 7.45 × 10−10). The expres-
sion of all these genes was downregulated after ART (Supplementary Fig. S3). The genes with higher differences 
between TP and TP-ART were the IRG IFI27, the antisense RNA ARMCX3-AS1 and ZNF275. Five known anti-HIV 
IRGs were overexpressed in patients before ART including EIF2AK2, ISG15, APOBEC3A, MX2 and OAS1, as well 
as other members of the OAS family, such as OAS2, OAS3 and OASL. Five genes annotated as genes related to 
HIV-1 infection or resistance to AIDS were identified, including CCL2, CX3CR1, TRIM22, SIGLEC1 and TLR7.

EC-LTNP phenotype: activation of pathways leading to calcium release into the cytosol.  The 
expression of 58 genes was deregulated in EC-LTNP compared with TP-ART (Supplementary Table S2). This 
comparison was selected in order to avoid the viremia as a confounding factor, since in both phenotypes con-
trol of HIV-1 replication is achieved either by treatment or spontaneously. Gene Ontology analysis revealed an 
enrichment of several genes implicated in G-protein coupled peptide receptor activity and the positive regulation 
of leukocyte migration. All these receptors are overexpressed in EC-LTNP and are related with the stimulation of 
intracellular calcium ion mobilization (Fig. 4A).

The promotor sequence of the 58 genes deregulated in EC-LTNP compared with TP-ART were analyzed to 
identify transcription factor binding sites (TFBS). The analysis of the TFBS showed that NFAT1 binding site was 
the most frequent within the promotor of these genes (50 NFAT1-binding sites) and was predicted within the pro-
moter of 29 out of the 58 (50%) differentially expressed genes (Fig. 4B and Supplementary Table S3). Forty-three 
Elk-1 TFBS were also found in 29 out of the 58 genes (50%) (Fig. 4B). The overall genes with an NFAT1 or Elk-1 
binding site in their promoter regions are 49 (84.5%). All these results suggest that a different regulation of the 
intracellular calcium signaling is observed in EC-LTNPs compared with TP-ART.
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Molecular mechanisms involved in the control of HIV-1 replication in LTNP.  The expression of 
70 genes was altered in EC-LTNPs in comparison with vLTNPs (Supplementary Table S4). The functional anno-
tation of these genes showed no enrichment of any specific pathway or GO term. Some of these genes were key 
genes related to host mechanisms leading to modify HIV-1 replication and transcription, including the upregula-
tion of CDKN1A (encoding the cyclin dependent kinase p21), TNF and the TNF-network associated gene IER3, 

Figure 2.  Best predictor genes of disease progression according to the hierarchical Bayesian classification 
model. The boxplots were generated in R and show the first and third quartile values for the RPKM distribution 
(upper and lower limits of the box), the median (the line splitting the box into two parts), the highest and lowest 
values (lines connected to the box through dashed lines), outlier values (open circles) and the mean value 
(crosses) for each phenotype.
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and GADD45B (Fig. 5A). The expression of these four genes was highly correlated in EC-LTNP (statistically 
significant correlations), but was not in the other phenotypes (Fig. 5B).

According to the HIV-1 Human Interaction Database, there are evidences of 64 non-redundant interactions 
between these 4 proteins (CDKN1A, TNF, IER3 and GADD45B) and 13 HIV-1 proteins (Fig. 6). These results 
suggest that the expression of CDKN1A, TNF, IER3 and GADD45B are optimally coordinated in EC-LTNPs to 
regulate the expression of viral proteins.

Figure 3.  Deregulated genes in the TP/TP-ART comparison. Heatmap showing the comparison of the mean 
RPKM expression values for genes differentially expressed between TPs before and after receiving ART (the 
values for EC-LTNP and vLTNP were also showed just for the information). The RPKM expression values 
obtained for TPs, EC-LTNPs and vLTNPs are represented as a comparison with the values obtained for TPs.

Figure 4.  EC-LTNP versus TP-ART comparison. Gene Ontology terms statistically significant in the 
comparison EC-LTNP versus TP-ART (FDR corrected p-values < 0.1) (A). The promoter sequences of the 
genes differentially expressed between EC-LTNP and TP-ART were inspected to identify putative transcription 
factor binding sites using PROMO algorithm in ALGGEN server. The total number of transcriptional factor 
binding sites found and the percentage of these genes with a concrete binding site are showed (B).

https://doi.org/10.1038/s41598-019-50642-x
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Genes associated with LTNP phenotype.  Common markers to all the LTNPs (EC-LTNP and vLTNP) 
were investigated. In order to minimize the effect of an active viral replication on the transcriptome profiles, two 
independent comparisons were simultaneously carried out, EC-LTNP versus TP-ART (as previously mentioned) 
and vLTNP versus TP, comparing two phenotypes with an active viral replication. The expression of 58 genes was 
dysregulated in EC-LTNPs compared with TP-ART, whereas 63 were identified in the vLTNP versus TP analysis 
(Fig. 7). A total of 14 genes were identified in both comparisons (EC-LTNP/TP-ART and vLTNP/TP; Fig. 7). 
Among these 14 genes, 9 were identified as IRGs and only ANKRD54, IGHA2 and VWA8 were not associated 
with the viremia in the comparison of TP versus TP-ART. A downregulation of the Von Willebrand Factor A 
Domain Containing 8 (VWA8) and the constant region of the heavy chain of IgA2 (IGHA2) was observed in 
LTNPs. Of note, only ANKRD54 were found strongly upregulated in both EC-LTNP and vLTNP with respect 
typical progressors with fold changes over 25.

Discussion
As expected from the multifactorial nature of HIV disease progression, the translation of the phenotype differences 
observed in EC-LTNP, vLTNP, TP and TP-ART to transcriptome differences does not seem to be obvious. A clear 
clustering of the individuals with different patterns of disease progression was not observed, evidencing the neces-
sity to apply different approximations to define a group of biomarkers to better differentiate between groups of 
individuals. Machine learning techniques such as supervised classification are designed to analyze large amounts 
of data and infer a function from a training data set with several predictive variables (mRNA expression values) 
associated to a known output (phenotype). A mathematical model able to distinguish between LTNPs (regardless 
of their HIV-control capacity) and TPs (without considering if they are on ART or not) with an accuracy of 90% 
was obtained using hierarchical Bayesian classification algorithms combined with the selection of 20 genes as 
the best predictors of HIV disease progression. Several of these 20 genes were IRGs, pointing to the importance 
of the interferon regulation in HIV disease progression. As expected, the majority of these IRGs were downreg-
ulated in patients with low/undetectable levels of viremia. On the contrary, a particular upregulation of other 
IRGs implicated in reverse transcription and transcription of viral genes were especially observed in EC-LTNPs. 
First, an upregulation of the eukaryotic translation elongation factors of the eEF1 complex (EEF1G, EEF1B2 and 
EEF1B2P3), considered critical HIV-1 reverse transcription cofactors19. Second, an upregulation of XRCC6 which 
associates with Tat and TAR and repress the transcription of viral mRNAs20. Third, the downregulation of a lin-
cRNA located within the promotor of IFI6 gene and implicated in the negative regulation of IFI621. This methodol-
ogy represents an alternative way to associate differences in gene expression with a concrete phenotype, combining 
a solid transcript abundance estimation procedure (Tophat/Cufflinks) with machine learning approaches.

Figure 5.  Expression of GADD45B, CDKN1A, IER3 and TNF genes. RPKMs obtained for each gene in EC-
LTNPs and vLTNPS (A). The correlation of these expression values between genes is shown for each group of 
patients. The distribution of each variable is shown on the diagonal, the bivariate scatter plots of RPKMs with 
a fitted line are displayed on the bottom of the diagonal and the value of the correlation plus the significance 
level as stars on the top of the diagonal according to Pearson parametric correlation test. This plot was generated 
using “PerformanceAnalytics” R package. Statistically significant p- values indicate a significant linear 
relationship between the expression values of two genes and are displayed as follows: ***p < 0.001; **p < 0.01 
and *p < 0.05 (B).
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Deciphering the molecular mechanisms responsible for the control of HIV-1 replication for long periods of 
time observed in EC-LTNPs is absolutely crucial to mimic this spontaneous defense against the virus in HIV 
vaccinology and functional cure strategies. Different mechanisms related with reverse transcription and viral 
transcription have been specifically detected in EC-LTNP, which is consistent with the functional annotation 
obtained for the genes selected as the best predictors of disease progression. HIV-1 reverse transcription depends 
on the phosphorylation of viral reverse transcriptase by a host kinase named CDK2. Viral reverse transcriptase 
phosphorylation at a conserved threonine by CDK2 increases its efficacy and stability and enhances its viral fit-
ness22. This mechanism is regulated by the cyclin-dependent kinase inhibitor 1A (CDKN1A)-mediated inhibition 
of CDK2 and has been previously described in individuals with EC phenotype22. In this study an upregulation 
of CDKN1A in EC-LTNP individuals compared with vLTNP was observed, suggesting an inactivation of CDK2 
activity, avoiding the phosphorylation of viral reverse transcriptase and diminishing its efficacy and stability23. 
Moreover, a second mechanism related with CDKN1A has been associated with EC phenotype, describing a 
partial resistance of CD4+ T cells from these individuals to HIV-1 infection mediated by a strong and selective 
upregulation of CDKN1A, also called p2124. This mechanism seems to regulate viral mRNA elongation by inac-
tivating the enzymatic activity of CDK9, essential for the proper elongation of HIV-1 mRNA as a component of 
the P-TEFb (positive transcription elongation factor) complex25. This P-TEFb complex is formed by CDK9 and 
Cyclin T1 and is recruited after the activation of the viral LTR activity as a consequence of HIV-1 Tat protein 
binding to the trans-activation response (TAR) RNA structure. This mechanism is responsible for Tat-activated 
transcriptional elongation of viral transcripts26.

Aside from CDKN1A, other genes related with HIV-1 mRNA elongation were upregulated in EC-LTNP com-
pared with vLTNP, including TNF, immediate early response 3 (IER3) and growth arrest and DNA damage 45 
(GADD45B). GADD45B contribute to apoptosis and regulate HIV transcription27. GADD45B inhibits HIV-1 
gene expression independent of CDKN1A, apparently without the need of the TAR, NF-κB, NRE and SP1 sites27. 
IER3 inhibits the most important family of Ser/Thr phosphatases, the protein phosphatase 2 A (PP2A), which in 

Figure 6.  Protein-protein interaction network of CDKN1A, TNF, IER3 and GADD45B with viral proteins. The 
whole HIV-1 human interaction database was downloaded and all the interactions of CDKN1A, TNF, IER3 and 
GADD45B with viral proteins were mapped. 
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turn induces basal but not the Tat-activated HIV-1 transcription28. The functional implication of TNF in HIV-1 
transcription is linked to its role in regulating IER3 gene expression29. One important finding in our work is the 
high correlation of the expression of CDKN1A, IER3, GADD45B and TNF found in EC-LTNPs compared with 
the other phenotypes. These results along with the analysis of the human protein interaction network with viral 
proteins suggest that these genes are coordinately and optimally regulated in these individuals to modulate basal 
and Tat-activated HIV-1 transcription.

We have also found evidences of an altered regulation of calcium-dependent signaling cascades in EC-LTNP 
compared with TP-ART, which is consistent with the capacity of these individuals to control viral transcription30. 
First, an enrichment in EC-LTNP of cell surface receptors involved in the stimulation of intracellular calcium 
mobilization directly (FPR1, CCR2) or by the activation of a phosphatidylinositol-calcium second messenger 
system (NTSR1). Second, a strong upregulation of inositol triphosphate (IP3) receptor isoform 3 (ITPR3) which 
mediates the mobilization of calcium ions into the cytosol in response to IP3. Third, an overrepresentation of the 
nuclear factor of activated T cells (NFAT1) and Elk-1 binding sites in the promotors of the genes differentially 
expressed. NFAT1 is present in the cytosol and are dephosphorylated by the Ca2+/calmodulin-dependent phos-
phatase calcineurin as a response to increased concentrations of intracellular Ca2+, causing a conformational 
change that results in its translocation from the cytoplasm to the nucleus and the activation of the transcription of 
NFAT1 target genes31. The stimulation of calcium-sensing receptors has also been associated with the activation 
of the transcription factor Elk-1 and the subsequent regulation of gene transcription32. Four, the increased expres-
sion in EC-LTNPs of several genes implicated in the positive regulation of the cytosolic calcium ion concentration 
including CXCL10, CCR9, ITPR3 and S1PR3, suggesting an additive effect on EC-LTNP over vLTNP.

Acute HIV-1 infection is characterized by a compartmentalized CD4+ T cell depletion and constant viral 
replication, counteracted by a broad antiviral effect of the innate immune response. Type I IFNs play a lead-
ing role in this process through the activation of hundreds of IRGs. Little is known about the transcriptome 
changes experienced by HIV-1 infected individuals before and after receiving ART. The experimental design 
of the present study has allowed the identification of deregulated genes as a consequence of viremia, detecting 
altered mRNA levels of 119 genes, mostly regulated by interferon. The upregulation of these IRGs in patients with 
detectable HIV-1 replication and a typical rate of disease progression demonstrates the tight relationship between 
the pathogenesis of HIV infection and the chronic IFN stimulation33,34. These genes are mainly involved in the 
general immune response against viral infections such as OAS and MX genes35. Of note, some of these genes have 
been directly related with HIV pathogenesis, including IFI27, IFITM3 and TRIM2236–38. The higher difference 
found comparing HIV-infected individuals before and after the treatment was the mRNA levels of the interferon 
alpha-inducible protein IFI27.

Figure 7.  Genes associated with LTNP condition. The figure shows DEGs in the EC-LTNP versus TP-ART and 
vLTNP versus TP comparisons. Framed genes represent the intersection between both comparisons. Green 
and red boxes show upregulated and downregulated DEGs, respectively. Genes regulated by interferon are 
underlined whereas genes associated with an active viral replication (identified by the comparison of TP with 
TP-ART) are designated by an asterisk. DEGs found in other transcriptomic profiling studies of HIV-positive 
individuals with different degrees of disease progression were searched for a curated dataset collection54. The 
DEGs found in other datasets are in bold, indicating their Gene Expression Omnibus (GEO) accession numbers 
in parenthesis. Only datasets generated from blood cells and with a fold change of at least 2.0 were included 
in this figure. The included datasets and the phenotypes compared were: GSE14278 (HIV resistent vs HIV 
high-risk negative), GSE16363 (aviremic vs viremic), GSE23879 (elite controller vs HIV-negative), GSE24081 
(controller vs progressor), GSE28128 (CD4 rapid progressors vs CD8 rapid progressors), GSE29429 (healthy 
vs HIV-positive), GSE4124 (HIV− vs HIV+ transmitter), GSE42058 (uninfected vs HIV infected), GSE50011 
(CD4 count >500 vs CD4 count <500), GSE5220 (aviremic vs viremic), GSE6740 (CD4 uninfected vs CD4 
non-progressor) and GSE6740 (CD8 non-progressor vs CD8 acute).
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Comparing EC-LTNP vs TP-ART and vLTNP vs TP, several genes were found in both comparisons associated 
to both LTNP phenotypes –i.e. EC-LTNPs and vLTNPs, but only three DEGs were not affected by the viremia 
according to the TP versus TP-ART comparison. Thus, similar levels of these three genes (ANKRD54, IGHA2 
and VWA8) were found in all LTNPs (EC-LTNPs and vLTNPs). Neither were regulated by interferon. ANKRD54 
encodes an ankyrin repeat containing protein upregulated in LTNPs. Some proteins containing this type of 
ankyrin repeats interact with HIV-1 proteins such as Vpr39. Artificial ankyrins have been designed targeting the 
capsid domain of the HIV-1 Gag polyprotein, showing an antiviral effect at post-integration steps and inhibiting 
the virus assembly and egress pathway40. The role of this potential molecular marker of disease progression natu-
rally overexpressed in LTNPs should be further investigated.

One limitation of the current study is that transcriptome was determined in total PBMCs and was not in 
specific lymphoid subpopulations. Nevertheless, these samples reflect different immune environments, such as 
possible differences in the relative proportions of cell types implicated in the immunopathogenesis of HIV-1 
infection, i.e. resting CD4+ T cells. This information is complementary and compatible with the study of specific 
subpopulations. However, the characterization of the transcriptome of a single cell can be achieved thanks to the 
advance in second and third generation sequencing technologies along with the relatively recent establishment of 
procedures to synthesize double-stranded cDNA from the extremely low quantities of mRNA present in a single 
cell, or even in a single nucleus41. Single cell RNA-Seq analyses will allow a deeper and definitive characterization 
of the immune response against HIV-1 infection observed in EC-LTNPs, identifying unequivocally which cell 
types are responsible for the expression of which host restriction factors. The present study exposes the changes 
in the transcriptome associated with different patterns of disease progression observed in HIV-positive individu-
als. Specifically, the analysis of EC-LTNPs as the most beneficial phenotype of immune activation against HIV-1 
infection has allowed the identification of deregulated expression levels of several molecules in these patients. We 
propose that the coordinated upregulation of CDKN1A, IER3, GADD45B and TNF as well as the positive regu-
lation of calcium-dependent signaling could be involved in the mechanisms leading to the slower progression to 
AIDS and HIV control concomitantly observed in EC-LTNPs.

Material and Methods
Study population.  Samples from patients were kindly provided by the HIV BioBank integrated in the 
Spanish Research Network (RIS). Samples were processed following current procedures and frozen at −80 °C 
immediately after their reception. All patients participating in the study gave their informed consent and pro-
tocols were approved by Institutional Ethical Committees (Instituto de Salud Carlos III. CEI PI 10_2011v3). A 
total of 30 cDNA libraries were analyzed, including those coming from 16 HIV-positive individuals who have 
been classified as LTNPs within the Spanish LTNP-RIS cohort, 7 HIV-positive patients with a typical pattern 
of disease progression before ART (TPs) and the same 7 individuals after receiving ART (TPs-ART) from the 
Spanish CoRIS cohort. All the LTNP individuals maintain CD4+ T cell counts over 500 cells per mm3 and a VL 
under 10,000 copies per ml of blood in all the VL determinations during the first 10 years from infection/HIV+ 
diagnosis. All experiments were performed in accordance with relevant guidelines and regulations.

RNA extraction, mRNA library preparation and sequencing.  Total RNA from all the HIV-infected 
individuals was extracted from 107 peripheral blood mononuclear cells (PBMCs) with mRNeasy Mini Kit 
(Qiagen) obtaining 5–20 µg of total RNA. The quality of the RNA was measured in a 2100 Bioanalyzer (Agilent 
Technologies), obtaining a mean RNA integrity number (RIN) value of 9.2, with RIN values greater than 8 for all 
samples. The cDNA libraries from total RNA samples were prepared by an Illumina TruSeq RNA sample prep kit 
(Illumina, San Diego, CA) and were clustered onto a TruSeq single-end flow cell using a TruSeq SR Cluster Kit 
v3-cBot-HS (Illumina, San Diego, CA), after quantification by PicoGreen dsDNA assay kit (Life Technologies) 
and pooling in equimolar mixtures. Finally, the DNA sequence of each cluster on flow cells was determined 
employing 100 cycles of Sequencing-By-Synthesis (SBS) technology (TruSeq SBS Kit v3-HS kit) on an Illumina’s 
HiSeq2000 Sequencing System.

Analysis of sequencing data.  A first quality assessment was performed with FastQC and reads were 
trimmed with the java tool Trimmomatic with default paramenters in order to remove sequences of primers and 
adapters employed during library preparation from the ends of sequences. The adapters and Illumina-specific 
primers from the reads were removed, allowing two mismatches, requiring a minimum of 30 matches in pal-
indromic mode and a minimum of ten matches for nonpalindromic mode between the read sequence and the 
adapters/primers. A sliding window of 4 nucleotides were analyzed for each read and were trimmed once the 
average Phred quality falls below 30. The end bases below a quality score of 3 were cut. Sequences trimmed to 
shorter than 60 bases were removed.

Filtered reads were aligned to the human genome assembly GRCh37 using Bowtie2/Tophat242,43 and the tran-
script assembly was reconstructed with Cufflinks44,45. Differential expression analysis was carried out with Cuffdiff 
package based on the negative binomial distribution. Cuffdiff transforms these gene counts to units of reads 
per kilobase of transcript length per million mapped reads (RPKMs) and infers probabilities before (p-values) 
and after FDR correction (q-values) to identify differentially expressed genes among groups of individuals 
(q-values < 0.05). The similarities between phenotypes were analyzed through the calculation of Jensen-Shannon 
distance with the Bioconductor package cummeRbund. The variability found between transcriptome profiles was 
explored in R software through K means clustering and dimensionality reduction by MDS based on the Pearson 
correlation using “stats” and “gplots” packages.

The genes differentially expressed between EC-LTNPs, vLTNPs, TPs and TP-ARTs were identified for each 
possible dual comparison between any pair of the above mentioned phenotypes (6 comparisons in total). This 
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type of analysis identified genes differentially expressed in individuals exhibiting an active HIV-1 replication 
(vLTNPs and TPs) compared with individuals with a controlled viremia (EC-LTNPs and TP-ARTs). This approx-
imation also analyze the distinguishing factors between EC-LTNPs and vLTNPs and the identification of the main 
alterations at the transcriptome level as a consequence of ART administration through the comparison of the 
same individuals before and after receiving anti-HIV therapy.

Predictive genes of disease progression by data mining techniques.  The predictive model of 
disease progression was created combining the transcript abundance estimation obtained from Cuffdiff with a 
bias-corrected feature selection procedure and a hierarchical Bayesian classification46,47. The RPKMs obtained for 
every single gene and for all the individuals were subjected to a wrapper feature selection process and a subse-
quent supervised classification by a hierarchical Bayesian classification. During this process, the more informa-
tive combination of transcripts to define the progression phenotype were selected. Genes with expression values 
with near zero variance were eliminated prior modeling with the default parameters of nearZeroVar function 
included in “caret” Bioconductor package. The feature selection process of the remaining genes included the same 
algorithm used for classification to evaluate the importance of each gene through 10 repetitions of leave one out 
cross-validation (LOOCV), setting up random seeds for each repetition46. Two criteria were employed to evaluate 
the optimal selection of predictive genes, including ER and AMLP (which evaluate the classification models more 
accurately by taking into account low predictive probabilities at the true class labels47). The smaller subset of genes 
reaching the lower ER and AMLP in this process was selected for the final classification model. The probability 
for each individual to be classified as EC-LTNP, vLTNP, TP or TP-ART were calculated by the classification model 
using the estimated expression values of selected transcipts. The RPKMs values obtained for each individual were 
obtained from the output of Cuffdiff tool (genes.read_group_tracking file) and the Bioconductor packages “caret” 
and “BCBCSF” were employed for pre-processing, feature selection and classification processes47.

Functional annotation.  The identification of enriched biological pathways, diseases or gene ontology terms 
associated with differentially expressed genes between groups of patients was carried out with KOBAS 2.0 tool48. 
This software integrates searches against the main biological databases, including Gene Ontology (GO), KEGG, 
PID, Reactome, PANTHER, GO, IMIM, FunDO, GAD and NHGRI GWAS Catalog. Interferome v2.01 was used 
to find evidences about interferon regulation of genes deregulated in any of the comparisons carried out in the 
present study49.

Identification of putative transcription factor binding sites.  A 1500 base pairs sequence upstream 
of the start codon of the genes was retrieved from GRCh38 using Ensembl50. These sequences were inspected to 
identify putative transcription factor binding sites included in TRANSFAC database using PROMO algorithm 
in ALGGEN server51. The reliability of this methodology was calculated through the expectation of finding each 
binding site in a random sequence of 1000 nucleotides, considering a model with exactly the same nucleotide 
frequency as the query sequence (E-value). A very conservative cutoff was used to predict the transcription factor 
binding sites (TFBS) and only TFBS with an E-value < 0.05 and with a similarity to the matrix >95% were con-
sidered as true binding sites.

Interactions of human proteins with HIV-1 proteins.  We downloaded the whole database of HIV-1 
and human protein interactions52. The HIV-human protein interaction network was visualized in Cytoscape_
v3.1.153. We mapped all the interactions of CDKN1A, IER3, GADD45B and TNF with viral proteins, distinguish-
ing the type of interaction (mainly upregulation, activation, enhancement, downregulation and inhibition).

Data Availability
The access to the raw reads for use by the scientific community can be done upon request to the authors and after 
approval of every single request by the Data Protection Officer of the Instituto de Salud Carlos III.
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