
sensors

Article

Modified A-Star Algorithm for Efficient Coverage
Path Planning in Tetris Inspired Self-Reconfigurable
Robot with Integrated Laser Sensor

Anh Vu Le 1,2 ID , Veerajagadheswar Prabakaran 1, Vinu Sivanantham 1 and
Rajesh Elara Mohan 1,*

1 Engineering Product Development, Singapore University of Technology and Design, Singapore 487372,
Singapore; leanhvu@tdt.edu.vn (A.V.L.); prabakaran@sutd.edu.sg (V.P.); vnu.619@gmail.com (V.S.)

2 Optoelectronics Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Ho Chi Minh City 7000000, Vietnam

* Correspondence: rajeshelara@sutd.edu.sg; Tel.: +65-8416-1832

Received: 16 May 2018; Accepted: 13 July 2018; Published: 7 August 2018
����������
�������

Abstract: Advancing an efficient coverage path planning in robots set up for application such as
cleaning, painting and mining are becoming more crucial. Such drive in the coverage path planning
field proposes numerous techniques over the past few decades. However, the proposed approaches
were only applied and tested with a fixed morphological robot in which the coverage performance was
significantly degraded in a complex environment. To this end, an A-star based zigzag global planner
for a novel self-reconfigurable Tetris inspired cleaning robot (hTetro) presented in this paper. Unlike
the traditional A-star algorithm, the presented approach can generate waypoints in order to cover
the narrow spaces while assuming appropriate morphology of the hTtero robot with the objective of
maximizing the coverage area. We validated the efficiency of the proposed planning approach in
the Robot Operation System (ROS) Based simulated environment and tested with the hTetro robot in
real-time under the controlled scenarios. Our experiments demonstrate the efficiency of the proposed
coverage path planning approach resulting in superior area coverage performance in all considered
experimental scenarios.

Keywords: reconfigurable mechanism; floor cleaning robot; area coverage; path planning; feature
mapping

1. Introduction

Robots are fast becoming an integral component of our everyday life and being deployed towards
a number of processes over a wide range of applications. Such robots are required to find safe and
feasible routes to navigate effectively in the environment. This need is particularly crucial when these
robots are navigating in complex and uncertain settings. In order to achieve efficient navigation, a robot
must be equipped with necessary control units, sensor systems and the effective coverage path planning
intelligence. Path planning is a method that regulates the robot’s path that passes over all parts of
an area while avoiding obstacles. Path planning becomes an essential ingredient for many robotic
applications, such as cleaning, painting, inspection and mining in order to amplify their performances.
Over last few decades, different path planning methods have been proposed and demonstrated on
robots with various applications. One of the most frequently used path planning methods is cellular
decomposition which breaks the obstacle-free places into a non-overlapping region. These regions are
called cells which is easy to cover and require simple motions (for instance Zigzag) to sweep the whole
area. In literature [1–3], the authors documented the generation of simple motions using the cellular

Sensors 2018, 18, 2585; doi:10.3390/s18082585 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4804-7540
http://dx.doi.org/10.3390/s18082585
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/8/2585?type=check_update&version=2

Sensors 2018, 18, 2585 2 of 27

decomposition method. A simple decomposition method was proposed by Timo Oksanen and Arto
Visala [4]—called the trapezoidal decomposition—to solve the path planning problem in agricultural
machines. In this work, they used a top-down approach and split the complex agricultural fields
into simple regions (cells) to navigate with elementary motions in order to cover the filed effectively.
In Reference [5], Howie Choset and Philippe Pignon proposed a new approach called boustrophedon
cellular decomposition which works similarly to other decomposition methods. However, the proposed
method reduced the number of cellular cells compared to trapezoidal algorithm hence, the robot’s
shorter coverage path is obtained. Ercan U. Acar presented a novel cellular decomposition method in
Reference [6], wherein they used Morse function in order to indicate the location of the cell boundaries.
In this study, the authors change the Morse function that modifies the path pattern of the robot to
cover its free space. As an extension of this study, authors also presented a sensor-based coverage
algorithm that uses cellular decomposition in terms of critical points of Morse function in Reference [7].
In this work, they identify the features of the proposed algorithm to eliminate the error sensor data
in unstructured environments beyond performing sensor data processing. Galceran and Carreras
presented a coverage path plan method based on the Morse decomposition function for an underwater
surface robot [8]. This work aims to determine the best sweep orientation for each separated cell and
the inter-lap spacing in the generated path on a lap by lap basis with respect to the ocean depth. Also,
they validated the proposed algorithm in simulation experiments with real-time bathymetric data sheet.
Similarly, H. Choset et al. [9] implemented a novel Morse cellular decomposition function combined
with GVD (General Voronoi Diagram) algorithm in a space inspection robot. The presented work
introduces a method to generate robot’s path in the three-dimensional space that reduces its fuel cost
to navigate from one point to another. An alternative algorithm for the Morse decomposition method
was proposed in Reference [10]. In this work, the author presents a landmark-based topological
coverage in which the natural landmarks are added as nodes in the mapped space. In addition, they
benchmarked their proposed path planning approach with the Morse based method and demonstrated
higher coverage performance with the proposed scheme.

Utilization of grid-based methods for coverage path planning opens a lot of opportunity for
research and development in the field of robot navigation. There are numerous such algorithms were
proposed for efficient path plan for mobile robots. For Instance, Reference [11] presented a novel
grid-based coverage approach where they considered time and energy as critical parameters to reduce
directional constraints on path generation. The proposed approach was validated by benchmarking its
performance to a conventional coverage scheme with respect to energy and time. In another grid-based
coverage work, Joon Seop Oh et al. [12] proposed a novel grid pattern where they used triangular
cells instead of rectangular cells for efficient and faster navigation in cleaning robots. The efficiency of
the proposed algorithm was validated through simulated experiments. Coverage task with multi-robot
scenarios have a higher advantage by utilizing coverage path planning algorithm. For multi-robot
coverage, Pooyan Fazli et al. proposed multi-robot area coverage approach for a scenario in which a
map is known with the minimum visibility range [13]. In this work, author initially locates the beacons
in a known map to create a graph then they convert the generated graph into a forest of partial spanning
tree (PST). The converted PST is then built as cycles which is then assigned to each robot for coverage.
In an another multi-robot coverage work, Chaomin Luo and S.X. Yang proposed a bio-inspired
neural network approach for robots operating in a time-varying and unstructured environment [14].
The prosed model will generate the shunting neural equation which provides the path for each robot
through dynamic activity landscape for efficient coverage. Author claims the proposed method is
computationally efficient than traditional methods. Although numerous methods in coverage path
planning have been proposed and demonstrates its significant in area coverage task, they are largely
tested with fixed morphological robots. None of the previous works in coverage path planning was
applied or proposed specifically for robots with shapeshifting capability.

The reconfigurable mechanism is well studied and were actively applied to robotics platforms
since 1980. Such efforts later translated to a number of reconfigurable robotic platforms that has been

Sensors 2018, 18, 2585 3 of 27

proposed. So far in the field of reconfigurable robots, three different architectures were proposed,
namely, intra-reconfiguration, inter-reconfiguration and nested reconfiguration. Intra-reconfiguration
deals with a single robotic system that could change its morphology by its own without any external
supports. For instance, a versatile robot that could change its morphology from amphibious and
terrestrial gait mechanism [15], a reconfigurable Janson mechanic robot that could generate a variety
of gait patterns [16] and a bio-inspired crawling, rolling, climbing reconfigurable robot. Robots that
was proposed under the inter-reconfigurable principle are basically modular robots that could possess
different morphologies by undergoing assembling and disassembling process. One such example is
Sambot [17], which can assume morphologies by attaching and detaching with multiple similar robots.
CEBOT, Poly Bot, Crystalline, M-TRAN, ATRON, Molecube and CKBot are other relevant examples
of inter-reconfigurable robots. The third architecture category in reconfigurable systems is Nest
reconfiguration which is capable of performing both inter and intra reconfigurations. Hinged Tetro
present in Reference [18], is the only such nested reconfigurable robot which is capable of switching
between forms and could change its morphology by undergoing assembling and disassembling with
peer robots. In spite of the fact that numerous studies in the literature address reconfigurable robotics,
they are primarily limited to mechanism design and were never implemented to an area coverage
task like floor cleaning. Also, none of the previous work in reconfigurable robot was validated with
coverage path planning technique.

To this end, in our previous work, we presented a novel reconfigurable floor cleaning robot
called hTetro that can able to change its morphology to any of the one-sided Tetris pieces [19,20].
The developed hTetro robot applies polyominoes tiling theory [21] as an autonomous coverage
path planning strategy. The polyominoes tiling theory deals with the problem of partitioning or
filling of a geometrical region using same or multiple polyominoes pieces under a particular case.
The hTetro platform can automatically generate a global tiling set required to cover a defined space
while leveraging on the polyominoes tiling theory. In that work, we validated the hTetro robot with
respect to area coverage by benchmarking its performance with a fixed morphology robot. The results
indicated that hTetro robot could achieve superior coverage performance through its shapeshifting
ability. However, the validation was done by passing manual commands through an android app and
there were no autonomous strategies applied. The main contributions of this paper are threefold. First,
we extend our previous works by integrating the onboard LiDAR sensing modules and manipulations
modules with the Tetris inspired hTetro on ROS environment that enables the robot to generate the path
and shape plan to navigate autonomously. Second, the proposed method uses characteristics of
the map built by ROS to find the different types of waypoints including boundary waypoints, obstacle
waypoints autonomously. Then the A-star [22] based zigzag scanning pattern connects waypoints to
cover the maximum free space areas and avoid the obstacle autonomously. Third, we demonstrated
the transformation ability of hTetro between by switching back and forth I and O shapes to cover
the auto-detected narrow areas such as spaces under tables, chair, corner, which is one of the significant
challenges among the fixed morphology robots. The presented planning technique could automatically
generate waypoints in order to cover the narrow spaces while assuming appropriate morphology of
the hTtero robot with the objective of maximizing the coverage area. This paper includes an outline
of the hTetro robot’s architecture design, onboard Simultaneous Localization and Mapping (SLAM)
system and the challenges that encountered during the translation of theoretical design to realization of
the proposed technique in real time. Moreover, this paper also summarizes the experimental setup to
validate the proposed method with hTetro robot and concluded with the results that show the superior
area coverage performance of the same.

2. On-Board-LIDAR-Sensor hTetro Hardware Architecture Configuration

The Figure 1 describes the hardware parts of the hTetro robot. The hinges between each block
hold up together and are responsible for shape transformation during reconfiguration. The perception
component of hTetro is one rpLidar mounted on block 2. The connections of hTetro hardware

Sensors 2018, 18, 2585 4 of 27

architecture are described in Figure 2. Making the robot stable during the locomotion was one
of the primary objectives while designing hTetro robot. In detail, for more stable and balanced
locomotion each box is mounted with four geared dc motors. A strong acrylic sheet of 4 mm thickness
is used as the base of each block to allocate all the dc motors with other peripheral devices. The dc
motor used in the hTetro for locomotion operates with a voltage rating of 7.4 V. Each of the 16 dc
motors are programmed to work differently based on the transformation of the robot. When it comes
to the transformation of the robot the smart servos mounted to the hinges that drive the blocks
linked to the servo motors. The servo motors require a voltage of about 14.8 volt in order to perform
effectively. Each servo motor has a stall torque of 77 kg.cm which is enough to drive the blocks during
transformation and lock the position of the blocks after the self-reconfiguration. Two of the three servo
motors are placed in block 2 and the remaining one set in block 4 connects block 3. The dimensions
of all the four boxes are the same as given in the Figure 3a. Based on hardware components, hTetro
can transform to seven different morphologies described in Figure 3b and named as O, Z, L, T, J, S,
I shapes.

Sensors 2018, 18, x FOR PEER REVIEW 4 of 26

motor used in the hTetro for locomotion operates with a voltage rating of 7.4 V. Each of the 16 dc
motors are programmed to work differently based on the transformation of the robot. When it comes
to the transformation of the robot the smart servos mounted to the hinges that drive the blocks linked
to the servo motors. The servo motors require a voltage of about 14.8 volt in order to perform
effectively. Each servo motor has a stall torque of 77 kg.cm which is enough to drive the blocks during
transformation and lock the position of the blocks after the self-reconfiguration. Two of the three
servo motors are placed in block 2 and the remaining one set in block 4 connects block 3. The
dimensions of all the four boxes are the same as given in the Figure 3a. Based on hardware
components, hTetro can transform to seven different morphologies described in Figure 3b and named
as O, Z, L, T, J, S, I shapes.

Figure 1. hTetro 5.6_Components List. Figure 1. hTetro 5.6_Components List.

Sensors 2018, 18, 2585 5 of 27

Sensors 2018, 18, x FOR PEER REVIEW 5 of 26

Figure 2. hTetro Hardware Architecture.

Figure 3. hTetro Single Block Dimension and morphologies. (a) Single Block Dimension, (b) seven
hTetro morphologies, (c) I shape in vertical moving direction, (d) I shape in horizontal moving
direction, (e) O shape.

3. On-Board-LiDAR-Sensor hTetro ROS Based System

The proposed system is built on the ROS platform [23]. ROS provides the infrastructure and
mechanism for ROS modules playing the roles as ROS nodes to communicate and control the hTetro
hardware modules by ROS topics, ROS messages and ROS services. The ROS-based block diagram
of the system is shown in Figure 4. The ROS master installed on Intel computer stick monitors the
entire ROS system. Based on /scan topics of LiDAR sensor node and prebuilt/map topics of map server
node, path and shape planning node generates the /plan topics. Using this /plan topics, a navigation
node was created to achieve the smooth locomotion inside the prebuilt map. This ROS node will
create plan commands denoted as /plan_cmd and sends to Arduino controller. After receiving

Figure 2. hTetro Hardware Architecture.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 26

Figure 2. hTetro Hardware Architecture.

Figure 3. hTetro Single Block Dimension and morphologies. (a) Single Block Dimension, (b) seven
hTetro morphologies, (c) I shape in vertical moving direction, (d) I shape in horizontal moving
direction, (e) O shape.

3. On-Board-LiDAR-Sensor hTetro ROS Based System

The proposed system is built on the ROS platform [23]. ROS provides the infrastructure and
mechanism for ROS modules playing the roles as ROS nodes to communicate and control the hTetro
hardware modules by ROS topics, ROS messages and ROS services. The ROS-based block diagram
of the system is shown in Figure 4. The ROS master installed on Intel computer stick monitors the
entire ROS system. Based on /scan topics of LiDAR sensor node and prebuilt/map topics of map server
node, path and shape planning node generates the /plan topics. Using this /plan topics, a navigation
node was created to achieve the smooth locomotion inside the prebuilt map. This ROS node will
create plan commands denoted as /plan_cmd and sends to Arduino controller. After receiving

Figure 3. hTetro Single Block Dimension and morphologies. (a) Single Block Dimension, (b) seven
hTetro morphologies, (c) I shape in vertical moving direction, (d) I shape in horizontal moving direction,
(e) O shape.

3. On-Board-LiDAR-Sensor hTetro ROS Based System

The proposed system is built on the ROS platform [23]. ROS provides the infrastructure and
mechanism for ROS modules playing the roles as ROS nodes to communicate and control the hTetro
hardware modules by ROS topics, ROS messages and ROS services. The ROS-based block diagram of
the system is shown in Figure 4. The ROS master installed on Intel computer stick monitors the entire
ROS system. Based on /scan topics of LiDAR sensor node and prebuilt/map topics of map server
node, path and shape planning node generates the /plan topics. Using this /plan topics, a navigation

Sensors 2018, 18, 2585 6 of 27

node was created to achieve the smooth locomotion inside the prebuilt map. This ROS node will create
plan commands denoted as /plan_cmd and sends to Arduino controller. After receiving /plan_cmd,
Arduino controls motor driver node by /motor_control topics. The hTetro moving and morphology
reconfiguration is based on /path_plan and /shape_plan topics, respectively.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 26

/plan_cmd, Arduino controls motor driver node by /motor_control topics. The hTetro moving and
morphology reconfiguration is based on /path_plan and /shape_plan topics, respectively.

Figure 4. ROS based system of hTetro.

To navigate autonomously in ROS system, a map of the robot environment should be built.
SLAM algorithm can do the mapping processes as Figure 5. Many SLAM methods have been
proposed to achieve the purpose of building the map of robot environment. The first approach is
based on monitoring the real-time position of the robot which is placed at any location of the
environment during the map building process. The most commonly used method for this approach
is the use of Gmapping [24,25]. Odometry values that estimate the position of the robot can be
obtained either by using data provided by the combination of a good sensor and a good
computational algorithm or by the fusion of multiple sensors such as IMU, GPS or Encoders used in
the motors. In most of the cases the robot pose in the Odometry frame gets drifted over the long run
this is because of hardware defects and sensor noise, so it is not always advised to rely on the single
sensor to estimate the robot pose. A filter algorithm such as adaptive Monte Carlo localization
(AMCL) [26] can refine the Odometry information and maintain the relationship between the
coordinates of global map and local map, Odometry, base link and robot block module frames in ROS
systems. AMCL is the technique that uses particle filter in real-time filter out the noise in Odometry
to estimate a more accurate position of the robot in the environment. In many robot platforms, the
Odometry information is often difficult to compute accurately if it relies on the data provided by the
wheel encoder because of the wheel slippage issues. To overcome this challenge, another approach
that uses the high-speed and large range of view sensors to estimate and maintain the robot pose by
matching the features of the positions derived from sensor data when the robot moves around the
unknown area. The information about the translation, rotation and velocity of Odometry can be
derived by using the feature detection and matching techniques. This approach is very similar to the
construction of a panoramic view where multiple partially overlapping view images are assembled
to produce a large field of view image. One advantage of this method is that the real-time position
information of the robot can be estimated from the matching features of visual sensor data without
even depending on wheel encoders or imu sensors that often shows errors due to wheel slippage or

Ros master

/plan_cmd

/scan

/motor_ control

/plan

LiDAR
sensor
node

Path and
shape

planning node

Navigation
node

Move-base client

Perception client

hTetro Motors
(moving)

hTetro Motors
(Morphology

reconfiguration)

/shape_plan/path_plan

Map server
node

/m ap

Micro-
controller node

(Arduino)

Motors driver
node

Figure 4. ROS based system of hTetro.

To navigate autonomously in ROS system, a map of the robot environment should be built. SLAM
algorithm can do the mapping processes as Figure 5. Many SLAM methods have been proposed
to achieve the purpose of building the map of robot environment. The first approach is based on
monitoring the real-time position of the robot which is placed at any location of the environment
during the map building process. The most commonly used method for this approach is the use of
Gmapping [24,25]. Odometry values that estimate the position of the robot can be obtained either by
using data provided by the combination of a good sensor and a good computational algorithm or by
the fusion of multiple sensors such as IMU, GPS or Encoders used in the motors. In most of the cases
the robot pose in the Odometry frame gets drifted over the long run this is because of hardware defects
and sensor noise, so it is not always advised to rely on the single sensor to estimate the robot pose.
A filter algorithm such as adaptive Monte Carlo localization (AMCL) [26] can refine the Odometry
information and maintain the relationship between the coordinates of global map and local map,
Odometry, base link and robot block module frames in ROS systems. AMCL is the technique that
uses particle filter in real-time filter out the noise in Odometry to estimate a more accurate position of
the robot in the environment. In many robot platforms, the Odometry information is often difficult
to compute accurately if it relies on the data provided by the wheel encoder because of the wheel
slippage issues. To overcome this challenge, another approach that uses the high-speed and large
range of view sensors to estimate and maintain the robot pose by matching the features of the positions
derived from sensor data when the robot moves around the unknown area. The information about
the translation, rotation and velocity of Odometry can be derived by using the feature detection and
matching techniques. This approach is very similar to the construction of a panoramic view where

Sensors 2018, 18, 2585 7 of 27

multiple partially overlapping view images are assembled to produce a large field of view image.
One advantage of this method is that the real-time position information of the robot can be estimated
from the matching features of visual sensor data without even depending on wheel encoders or imu
sensors that often shows errors due to wheel slippage or interference in the external magnetic field.
The disadvantage of this approach is that it requires a good quality laser sensor and the sophisticated
real-time processes to detect the similarities between frames. Recently, laser sensors with the high
scanning rate wide field of view LIDAR and robust feature matching techniques make this approach
more simple and effective in robot pose estimation. It is worth to note that the hTetro has the ability
of self-configuring to other morphologies and changing the moving direction to opposite direction
without the need for pivot turn as other robots. Determining the odometry data of hTetro by computing
the values from the wheel encoder is more complicated because of the fusion of data from all the 16
wheels and thus the probability of getting an error value is almost 16 times to the normal two-wheeled
robots. The complication level increases more when the robot does the reconfiguration. In this paper,
we use the rpLidar laser sensor to scan and built the map of the robot environment as in Figure 5.
Hector mapping [27] and laser scan matcher [28,29] techniques are used to compute the odometry
of the robot. These methods use the concept of finding the similarities between the new frame and
the previous frames that the robot has passed to estimate robot Odometry information. After applying
an AMCL to refine the location, the ROS transformation package will maintain the relationship between
positions of the four hTetro blocks frames, laser_scan frame, local base_link frame, local Odometry
frame and global map frame. The transformation frames (TF) tree of the system is shown in Figure 6.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 26

interference in the external magnetic field. The disadvantage of this approach is that it requires a
good quality laser sensor and the sophisticated real-time processes to detect the similarities between
frames. Recently, laser sensors with the high scanning rate wide field of view LIDAR and robust
feature matching techniques make this approach more simple and effective in robot pose estimation.
It is worth to note that the hTetro has the ability of self-configuring to other morphologies and
changing the moving direction to opposite direction without the need for pivot turn as other robots.
Determining the odometry data of hTetro by computing the values from the wheel encoder is more
complicated because of the fusion of data from all the 16 wheels and thus the probability of getting
an error value is almost 16 times to the normal two-wheeled robots. The complication level increases
more when the robot does the reconfiguration. In this paper, we use the rpLidar laser sensor to scan
and built the map of the robot environment as in Figure 5. Hector mapping [27] and laser scan
matcher [28,29] techniques are used to compute the odometry of the robot. These methods use the
concept of finding the similarities between the new frame and the previous frames that the robot has
passed to estimate robot Odometry information. After applying an AMCL to refine the location, the
ROS transformation package will maintain the relationship between positions of the four hTetro
blocks frames, laser_scan frame, local base_link frame, local Odometry frame and global map frame.
The transformation frames (TF) tree of the system is shown in Figure 6.

Figure 5. Mapping processes.

Figure 6. Transformation frame (TF) transformation tree.

After building the map of the robot environment by using the hector mapping, the maps are
saved by using the map server service of ROS to leverage the ability of the autonomous navigation.
The saved map includes two files, an image file with Pym format and a configuration file with XML
format. The image file defines the pixel values corresponding to the specific elements in the real
environment. The space pixel is defined based on the map resolution in ROS system. ROS considers
the prebuild map as an image. Pixels resolution equals to grid resolution in this paper. In particular,
for each pixel location (,)x y in the prebuild map, the pixel value (,) 0M x y = corresponds to the
free space pixel, (,) 100M x y = represents for obstacle pixel or the boundary of the room pixel and

(,) 1M x y = − corresponds to the undefined pixel where the laser cannot be scanned (Figure 4). The
information in the configuration file describes the origin (,)o ox y position, map scale sM , map width

map

odom

base_link

laser_san hTetro
block3

hTetro
block4

hTetro
block2

hTetro
block1

/amcl

/pub_odom

/base_fame_laser /rob_st_pub/rob_st_pub/rob_st_pub /rob_st_pub

Figure 5. Mapping processes.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 26

interference in the external magnetic field. The disadvantage of this approach is that it requires a
good quality laser sensor and the sophisticated real-time processes to detect the similarities between
frames. Recently, laser sensors with the high scanning rate wide field of view LIDAR and robust
feature matching techniques make this approach more simple and effective in robot pose estimation.
It is worth to note that the hTetro has the ability of self-configuring to other morphologies and
changing the moving direction to opposite direction without the need for pivot turn as other robots.
Determining the odometry data of hTetro by computing the values from the wheel encoder is more
complicated because of the fusion of data from all the 16 wheels and thus the probability of getting
an error value is almost 16 times to the normal two-wheeled robots. The complication level increases
more when the robot does the reconfiguration. In this paper, we use the rpLidar laser sensor to scan
and built the map of the robot environment as in Figure 5. Hector mapping [27] and laser scan
matcher [28,29] techniques are used to compute the odometry of the robot. These methods use the
concept of finding the similarities between the new frame and the previous frames that the robot has
passed to estimate robot Odometry information. After applying an AMCL to refine the location, the
ROS transformation package will maintain the relationship between positions of the four hTetro
blocks frames, laser_scan frame, local base_link frame, local Odometry frame and global map frame.
The transformation frames (TF) tree of the system is shown in Figure 6.

Figure 5. Mapping processes.

Figure 6. Transformation frame (TF) transformation tree.

After building the map of the robot environment by using the hector mapping, the maps are
saved by using the map server service of ROS to leverage the ability of the autonomous navigation.
The saved map includes two files, an image file with Pym format and a configuration file with XML
format. The image file defines the pixel values corresponding to the specific elements in the real
environment. The space pixel is defined based on the map resolution in ROS system. ROS considers
the prebuild map as an image. Pixels resolution equals to grid resolution in this paper. In particular,
for each pixel location (,)x y in the prebuild map, the pixel value (,) 0M x y = corresponds to the
free space pixel, (,) 100M x y = represents for obstacle pixel or the boundary of the room pixel and

(,) 1M x y = − corresponds to the undefined pixel where the laser cannot be scanned (Figure 4). The
information in the configuration file describes the origin (,)o ox y position, map scale sM , map width

map

odom

base_link

laser_san hTetro
block3

hTetro
block4

hTetro
block2

hTetro
block1

/amcl

/pub_odom

/base_fame_laser /rob_st_pub/rob_st_pub/rob_st_pub /rob_st_pub

Figure 6. Transformation frame (TF) transformation tree.

After building the map of the robot environment by using the hector mapping, the maps are
saved by using the map server service of ROS to leverage the ability of the autonomous navigation.
The saved map includes two files, an image file with Pym format and a configuration file with XML
format. The image file defines the pixel values corresponding to the specific elements in the real
environment. The space pixel is defined based on the map resolution in ROS system. ROS considers

Sensors 2018, 18, 2585 8 of 27

the prebuild map as an image. Pixels resolution equals to grid resolution in this paper. In particular, for
each pixel location (x, y) in the prebuild map, the pixel value M(x, y) = 0 corresponds to the free space
pixel, M(x, y) = 100 represents for obstacle pixel or the boundary of the room pixel and M(x, y) = −1
corresponds to the undefined pixel where the laser cannot be scanned (Figure 4). The information
in the configuration file describes the origin (xo, yo) position, map scale Ms, map width Mw and
map height Mh. The x-axis and y-axis go along the width and height of the map, respectively. From
the information in the configuration file, Equations (1) and (2) are used to switch between the pixel
location (x, y) on the image file and its coordinate (Cx,Cy) in the real environment.

Cx = x0 + (x−Mw/2)Ms, (1)

Cy = y0 + (y−Mh/2)Ms, (2)

The pre-built map is subdivided into a grid of predefined size of 0.1 m squares. One square unit
consists of its location at (x, y) and its length. The conversion of pixel coordinates to the actual position
coordinates in m will be done using Equations (1) and (2). The distance between two adjacent cells is
the minimum distance of the robot moving step in this paper.

4. Proposed Path and Shape Planning Method

4.1. A-Star Based-Zigzag Planning

The final goal of solving area coverage problems is to cover the free space areas defined in
the prebuilt map by navigating automatically and following the predefined path created by the global
planner. To this end, numerous methods have been proposed. The conventional offline methods select
the waypoints manually with the knowledge of maps shapes and sizes as well as obstacles shapes
and positions to create the area coverage path. Besides, several cleaning robots use bump sensors
to detect and follow the obstacle boundaries to form area coverage path. A-star algorithm [22] is
the most popular and widely used method to compute and plan the path for the robot to navigate
autonomously by avoiding the obstacles. The main idea of this algorithm is to find the shortest path
between the starting point and the destination point based on the cost function. A-star algorithm is
based on a grid map. The grid cells are categorized into source cell, destination cell, free space cells and
obstacle cells. Figure 7a describes one such example of the algorithm to find the shortest path from cell
14th to cell 35th. There are eight neighboring cells around the cell in grid map as Figure 7b. In the first
step of A-star, each neighboring free space cell around the source cells is assigned a corresponding cost
such as horizontal and vertical neighboring cells have the cost of 10 while the diagonal neighboring
cells have the cost of 14. The neighboring obstacle cells do not have any cost. Then the cost of these free
space neighbors will be accumulated until the destination cell is reached. The shortest path is selected
by tracing back to find the cells with the smallest value from destination cell to source cell. In the case of
maximizing area coverage with the ability to avoid obstacles, zigzag scanning-based A-star approach
can be used, by defining a set of waypoints locations at the boundary as in the zigzag pattern, then
letting the A-star to compute the shortest path to clear these waypoints. To cover the entire area defined
by the boundary of the room on the map, the trajectory is a zigzag line which is made up of evenly
spaced segments. The end point of each segment is connected to the starting point of the next segment.
The conventional algorithm A-star has the limitations of not covering the free space cells in the defined
range and revisiting free space cells that have been already covered. Assuming that the robot width
equals the length of 2 cells, the drawbacks of the A-star algorithms are depicted in Figure 8a–c. It can
be observed in Figure 8a that the diagonal moving feature of A-star making the shorter path from
source to destination is triggered with which some cells around the diagonal trajectory will not be
covered. In Figure 8b, if an obstacle appears on the path connecting two waypoints, there are two
options to choose the path in order to avoid obstacles by going up or going down. If A-star algorithm
opts to move upon reaching the obstacle cells as in Figure 8b, some cells below the obstacle remain

Sensors 2018, 18, 2585 9 of 27

uncovered and the covered cells above the obstacles will be revisited to find the way connecting from
right to left boundary waypoint. Similarly, the upper cells will not be covered and the under cells
are revisited if A-star decides to go down on reaching obstacle cells. Moreover, the A-star algorithm
selects a path that goes around free space defined as narrow space pixels as depicted in Figure 8c.Sensors 2018, 18, x FOR PEER REVIEW 9 of 26

Figure 7. A-star shortest path searching. (a) Estimating A-star path, (b) neighboring cells.

Figure 8. Drawbacks of conventional A-star based methods for area coverage. (a) A-star with the
diagonal movement, (b) A-star for area coverage, (c) uncovered narrow space by fix morphology, (d)
subareas A-star based area coverage [8].

The modified A-star based-zigzag scanning method for the area coverage problem has been
proposed in the research of [30]. In this method, the map is divided into the sub-maps bordered by
obstacle boundary. Then these subareas are covered by zigzag planning. After finishing each sub-
area, the algorithm chooses the next uncovered area yielding the shortest distance with the current
covered one. A-Star algorithm will be used to find the path to this uncovered area; this path is called
way-out path as in Figure 8d. However, there are some limitations in this algorithm. Firstly, the
algorithm is considered for the obstacles with relatively simple shapes. Secondly, when moving to
the next uncovered sub-map, if the last covered cell of a sub-map is located at a place where there are
no neighboring cells from the next uncovered sub-map some cells of current subarea needs to be
revisited to reach the uncovered subarea. The paths are represented by blue arrows in Figure 8d.
Finally, the problem of covering the narrow space constrains is not solved in this method. This
problem is inevitable for the fixed morphology robots which cannot change its morphology.

In this paper, a modified A-star based zigzag scanning is proposed to plan trajectory including
a set of intermediate waypoints for a Tetris inspired self-reconfigurable robot hTetro. Specifically, the
shapes and dimensions of the maps generated by SLAM algorithm in ROS environment can be set
randomly or acquired dynamically in real time. Consequently, the areas needed to be covered and
obstacle characteristics such as shapes and locations as well as map border are not known before
creating the coverage paths. The proposed method uses features of the maps to determine the

1
24

2
20

3
24

4
28

5
38

6
48

7
14

8
10

9
14

10
24

11
34

12
44

13
10

14 15
10 16 17

38
18

48

19
14

20
10

21
14

22
24

23
34

24
44

25
24 26 27

24 28 29
38

30
48

31
34

32
38

33
34 34 35 36

52

7
14

8
10

9
14

13
10

14 15
10

19
14

20
10

21
14

Obstacle ce ll

source ce ll

Destination ce ll

Free space cell

vertical
ne ighbor ce ll

Diagonal
ne ighbor ce ll

Horizontal
ne ighbor ce ll

path

(a) (b)

Figure 7. A-star shortest path searching. (a) Estimating A-star path, (b) neighboring cells.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 26

Figure 7. A-star shortest path searching. (a) Estimating A-star path, (b) neighboring cells.

Figure 8. Drawbacks of conventional A-star based methods for area coverage. (a) A-star with the
diagonal movement, (b) A-star for area coverage, (c) uncovered narrow space by fix morphology, (d)
subareas A-star based area coverage [8].

The modified A-star based-zigzag scanning method for the area coverage problem has been
proposed in the research of [30]. In this method, the map is divided into the sub-maps bordered by
obstacle boundary. Then these subareas are covered by zigzag planning. After finishing each sub-
area, the algorithm chooses the next uncovered area yielding the shortest distance with the current
covered one. A-Star algorithm will be used to find the path to this uncovered area; this path is called
way-out path as in Figure 8d. However, there are some limitations in this algorithm. Firstly, the
algorithm is considered for the obstacles with relatively simple shapes. Secondly, when moving to
the next uncovered sub-map, if the last covered cell of a sub-map is located at a place where there are
no neighboring cells from the next uncovered sub-map some cells of current subarea needs to be
revisited to reach the uncovered subarea. The paths are represented by blue arrows in Figure 8d.
Finally, the problem of covering the narrow space constrains is not solved in this method. This
problem is inevitable for the fixed morphology robots which cannot change its morphology.

In this paper, a modified A-star based zigzag scanning is proposed to plan trajectory including
a set of intermediate waypoints for a Tetris inspired self-reconfigurable robot hTetro. Specifically, the
shapes and dimensions of the maps generated by SLAM algorithm in ROS environment can be set
randomly or acquired dynamically in real time. Consequently, the areas needed to be covered and
obstacle characteristics such as shapes and locations as well as map border are not known before
creating the coverage paths. The proposed method uses features of the maps to determine the

1
24

2
20

3
24

4
28

5
38

6
48

7
14

8
10

9
14

10
24

11
34

12
44

13
10

14 15
10 16 17

38
18

48

19
14

20
10

21
14

22
24

23
34

24
44

25
24 26 27

24 28 29
38

30
48

31
34

32
38

33
34 34 35 36

52

7
14

8
10

9
14

13
10

14 15
10

19
14

20
10

21
14

Obstacle ce ll

source ce ll

Destination ce ll

Free space cell

vertical
ne ighbor ce ll

Diagonal
ne ighbor ce ll

Horizontal
ne ighbor ce ll

path

(a) (b)

Figure 8. Drawbacks of conventional A-star based methods for area coverage. (a) A-star with
the diagonal movement, (b) A-star for area coverage, (c) uncovered narrow space by fix morphology,
(d) subareas A-star based area coverage [8].

The modified A-star based-zigzag scanning method for the area coverage problem has been
proposed in the research of [30]. In this method, the map is divided into the sub-maps bordered by
obstacle boundary. Then these subareas are covered by zigzag planning. After finishing each sub-area,
the algorithm chooses the next uncovered area yielding the shortest distance with the current covered
one. A-Star algorithm will be used to find the path to this uncovered area; this path is called way-out
path as in Figure 8d. However, there are some limitations in this algorithm. Firstly, the algorithm
is considered for the obstacles with relatively simple shapes. Secondly, when moving to the next
uncovered sub-map, if the last covered cell of a sub-map is located at a place where there are no
neighboring cells from the next uncovered sub-map some cells of current subarea needs to be revisited
to reach the uncovered subarea. The paths are represented by blue arrows in Figure 8d. Finally,
the problem of covering the narrow space constrains is not solved in this method. This problem is
inevitable for the fixed morphology robots which cannot change its morphology.

Sensors 2018, 18, 2585 10 of 27

In this paper, a modified A-star based zigzag scanning is proposed to plan trajectory including
a set of intermediate waypoints for a Tetris inspired self-reconfigurable robot hTetro. Specifically,
the shapes and dimensions of the maps generated by SLAM algorithm in ROS environment can be
set randomly or acquired dynamically in real time. Consequently, the areas needed to be covered
and obstacle characteristics such as shapes and locations as well as map border are not known before
creating the coverage paths. The proposed method uses features of the maps to determine the different
types of waypoints including boundary waypoints, obstacle waypoints autonomously, Furthermore,
unlike the traditional path planning defies only waypoints locations, the waypoints in the proposed
method include both accurate locations and appropriate morphology in hTetro robot. As per the results
the final objective of covering maximum areas, minimizing the issue of revisiting the areas that have
been covered and the ability to navigate through narrow space constraints of the maps built on ROS
system can be accomplished efficiently. The process of creating a zigzag path planning for a map is
depicted in Figure 9. The trajectory represented in Figure 9 is set to start at the first waypoint and then
follows the yellow path towards the last waypoint. The first waypoint is defined as the origin point
located at the bottom left corner. Note that the x-axis is denoted green and the y-axis is denoted red.
Since the obstacles locating randomly in the map have the arbitrary shapes and the map are segmented
into grids, the grid-based A-star algorithm is used to find the shortest path to avoid the obstacles
and connect each pair of auto-generated waypoints. Movement in diagonal direction in the A-star
algorithm is disabled to ensure the maximum area coverage.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 26

different types of waypoints including boundary waypoints, obstacle waypoints autonomously,
Furthermore, unlike the traditional path planning defies only waypoints locations, the waypoints in
the proposed method include both accurate locations and appropriate morphology in hTetro robot.
As per the results the final objective of covering maximum areas, minimizing the issue of revisiting
the areas that have been covered and the ability to navigate through narrow space constraints of the
maps built on ROS system can be accomplished efficiently. The process of creating a zigzag path
planning for a map is depicted in Figure 9. The trajectory represented in Figure 9 is set to start at the
first waypoint and then follows the yellow path towards the last waypoint. The first waypoint is
defined as the origin point located at the bottom left corner. Note that the x-axis is denoted green and
the y-axis is denoted red. Since the obstacles locating randomly in the map have the arbitrary shapes
and the map are segmented into grids, the grid-based A-star algorithm is used to find the shortest
path to avoid the obstacles and connect each pair of auto-generated waypoints. Movement in
diagonal direction in the A-star algorithm is disabled to ensure the maximum area coverage.

Figure 9. Boundary waypoints and obstacle waypoints.

The boundary waypoints marked as the green and obstacle waypoints marked as and red cells
in Figure 9. Boundary waypoints and obstacles waypoints staying near the border of the map and
obstacles respectively are the locations where zigzag scanning segments are terminated. The
procedures of determining in a random map these waypoints are detailed in next sections. After the
global shape and path planner has autonomously defined the waypoints, the hTetro will follow the
path and perform shapeshifting that are necessary to avoid obstacles, pass through the narrow spaces
and clear the waypoint. The flowchart depicted in Figure 10 describes the algorithm to identify the
locations and the morphologies at intermediate waypoints to adapt to particular situations.

New zigzag scanning pattern is proposed to enable the global planner in finding the paths that
cover maximum free space area of the prebuild maps and reduce the issue of revisiting the already
covered cells. Specifically, the global planning algorithm defines a range of {{ (){(,), }}k k k

n n n nW k x y mo
and { {(,), }}i i i i

n n n nW x y mo , where a set of { ()}nW k is the boundary or obstacle waypoints and a set of
free space waypoints { }inW with value i starting from number 1 is used to connect a set of { ()}nW k .
The n represents the horizontal line ny y= on map frame coordinate where the waypoints stay on.
The successive waypoints i

nW that the distance between two adjacent waypoints on the horizontal
or vertical direction has the distance of one grid square will route the waypoints ()nW k to create the
complete path trajectory of unbroken zigzag line. The components of one ()nW k include waypoint

Figure 9. Boundary waypoints and obstacle waypoints.

The boundary waypoints marked as the green and obstacle waypoints marked as and red cells
in Figure 9. Boundary waypoints and obstacles waypoints staying near the border of the map and
obstacles respectively are the locations where zigzag scanning segments are terminated. The procedures
of determining in a random map these waypoints are detailed in next sections. After the global shape
and path planner has autonomously defined the waypoints, the hTetro will follow the path and
perform shapeshifting that are necessary to avoid obstacles, pass through the narrow spaces and clear
the waypoint. The flowchart depicted in Figure 10 describes the algorithm to identify the locations
and the morphologies at intermediate waypoints to adapt to particular situations.

Sensors 2018, 18, 2585 11 of 27

Sensors 2018, 18, x FOR PEER REVIEW 11 of 26

location (,)k k
n nx y and waypoint morphology plan k

nmo . Note that { , , , }i ik bl br ol or= where
, , ,i i
l r l rb b o o are boundary waypoint on the left side of map border, boundary waypoint on the right

side of map border, waypoint on the left side of obstacle number i, waypoint on the right side of
obstacle number i respectively on the horizontal line ,ny y= . For each morphology k

nm with the
robot size in pixel unit defined as m mw h× (or m ml d× in meter unit after being converted by
Equations (1) and (2)), the dimension which is perpendicular to the heading direction of the robot is
defined as mw and the mh is the remaining dimension. As shown in Figure 3c,d for the same I
configuration but mw is defined differently for horizontal and vertical moving directions. Unlike fix
morphology robot, the width size of hTetro can be reduced by haft by changing the morphology such
as from O to I during vertical moving or from I to O during horizontal moving. The length of cells
which are occupied by a specific k

nm of robot, width is defined as same as mw . In this paper, the
default morphology is O shape with lm = 0.5 m and dm = 0.5 m The I shape has the lm = 0.25 m and dm =
1 m The first waypoint 0 ()W bl is the origin of the map. The process of finding intermediate
waypoints will start from the first waypoint 0 ()W bl . Note that, (,)k k

n nx yΜ is the pixel value of the
location (,)k k

n nx y .

Figure 10. Global path and shape planner flowchart.

4.2. Boundary Waypoints Detection

The following Algorithm 1 will be used to find waypoints autonomously at the boundary of a
pre-built map with random sizes and dimensions. Assuming the next step of the algorithm is to
determine the waypoint ()nW br staying on the right side of the known waypoint ()nW bl . Since they
are on the same horizontal line, these two waypoints locate on ny y= and bl br

n n ny y y= = . A filter
mask Φ of 1 m× with a width of 1 pixel, the length of m pixels and the value of pixels equal to 1 is
created as Figure 11. The free space pixel at (,)bl bl

n nx r y+ on the map, where (,) 0bl bl
n nM x r y+ = and r

is random integer value such as 0 bl
n wx r M≤ + ≤ is selected. The first pixel (1,1)Φ of the mask is set

at this pixel location. The mask slides with the step of one pixel from this location to the right and
filters each visited pixel (,)bl bl

n nx r i y+ + on the line bl
ny y= of the map as Figure 11. At each location,

the Equation (3) is used to calculate the filtered value (,)bl bl
w n nf x r i y+ + of the mask with a same mask

size partition on the map. It is worth to note that in a map created by ROS, the pixels on the right side
of the map right boundary pixel have the same value of −1. Similarly, all the pixels on the left side of
the map left boundary pixel have the same value of −1. As the results, the (,)bl bl

w n nf x r i y+ + will equal
-m if the partition at to-be-filtered pixel stays entirely on the undefined areas of the map. If the value

ˆ(,) 100 1bl bl
w n nf x r i y th m+ + = − − , where value î can be found by Equation (4) and th is the parameter

Define Boundary
waypoints

Load prebuilt map

Define obstacle
waypoints

Define the narrow
space pixe ls

Plan paths and shapes
by proposed A* based
zigzag scanning and

morphology
reconfiguration

Publish plan as ROS
topics

Figure 10. Global path and shape planner flowchart.

New zigzag scanning pattern is proposed to enable the global planner in finding the paths that
cover maximum free space area of the prebuild maps and reduce the issue of revisiting the already
covered cells. Specifically, the global planning algorithm defines a range of {

{
Wn(k)

{
(xk

n, yk
n), mok

n

}}
and

{
Wi

n
{
(xi

n, yi
n), moi

n
}}

, where a set of {Wn(k)} is the boundary or obstacle waypoints and a set of
free space waypoints

{
Wi

n
}

with value i starting from number 1 is used to connect a set of {Wn(k)}.
The n represents the horizontal line y = yn on map frame coordinate where the waypoints stay on.
The successive waypoints Wi

n that the distance between two adjacent waypoints on the horizontal
or vertical direction has the distance of one grid square will route the waypoints Wn(k) to create
the complete path trajectory of unbroken zigzag line. The components of one Wn(k) include waypoint
location (xk

n, yk
n) and waypoint morphology plan mok

n. Note that k = {bl, br, oli, ori} where bl , br, oi
l , oi

r
are boundary waypoint on the left side of map border, boundary waypoint on the right side of map
border, waypoint on the left side of obstacle number i, waypoint on the right side of obstacle number
i respectively on the horizontal line y = yn,. For each morphology mk

n with the robot size in pixel
unit defined as wm × hm (or lm × dm in meter unit after being converted by Equations (1) and (2)),
the dimension which is perpendicular to the heading direction of the robot is defined as wm and the hm

is the remaining dimension. As shown in Figure 3c,d for the same I configuration but wm is defined
differently for horizontal and vertical moving directions. Unlike fix morphology robot, the width size
of hTetro can be reduced by haft by changing the morphology such as from O to I during vertical
moving or from I to O during horizontal moving. The length of cells which are occupied by a specific
mk

n of robot, width is defined as same as wm. In this paper, the default morphology is O shape with
lm = 0.5 m and dm = 0.5 m The I shape has the lm = 0.25 m and dm = 1 m The first waypoint W0(bl) is
the origin of the map. The process of finding intermediate waypoints will start from the first waypoint
W0(bl). Note that, M(xk

n, yk
n) is the pixel value of the location (xk

n, yk
n).

4.2. Boundary Waypoints Detection

The following Algorithm 1 will be used to find waypoints autonomously at the boundary of
a pre-built map with random sizes and dimensions. Assuming the next step of the algorithm is to
determine the waypoint Wn(br) staying on the right side of the known waypoint Wn(bl). Since they
are on the same horizontal line, these two waypoints locate on y = yn and yn = ybl

n = ybr
n . A filter

mask Φ of 1×m with a width of 1 pixel, the length of m pixels and the value of pixels equal to 1 is
created as Figure 11. The free space pixel at (xbl

n + r, ybl
n) on the map, where M(xbl

n + r, ybl
n) = 0 and

r is random integer value such as 0 ≤ xbl
n + r ≤ Mw is selected. The first pixel Φ(1, 1) of the mask is

set at this pixel location. The mask slides with the step of one pixel from this location to the right and

Sensors 2018, 18, 2585 12 of 27

filters each visited pixel (xbl
n + r + i, ybl

n) on the line y = ybl
n of the map as Figure 11. At each location,

the Equation (3) is used to calculate the filtered value fw(xbl
n + r + i, ybl

n) of the mask with a same mask
size partition on the map. It is worth to note that in a map created by ROS, the pixels on the right
side of the map right boundary pixel have the same value of −1. Similarly, all the pixels on the left
side of the map left boundary pixel have the same value of −1. As the results, the fw(xbl

n + r + i, ybl
n)

will equal -m if the partition at to-be-filtered pixel stays entirely on the undefined areas of the map.
If the value fw(xbl

n + r + î, ybl
n) = 100th − m − 1, where value î can be found by Equation (4) and

th is the parameter representing the pixel thickness of the border of the map (th equals 3 pixels in
this paper), then the location (xbl

n + r + î, ybl
n) in the range [(xbl

n + r), Mw] will correspond to the right
boundary pixel on the line y = ybl

n of the map. The value of m is chosen so that the length of the mask
is sufficiently larger than the biggest value of the lengths of the obstacles because the empty spaces
inside the objects boundaries where the Lidar scan is blocked are also undefined spaces and have
a value of −1. In this paper, m is set to 100 pixels. The right boundary waypoint on Wn(br) will
have the coordinate (xbr

n , ybr
n), where xbr

n = xbl
n + r + î− wm/2, ybl

n = ybr
n . Since the rpLidar is fixed at

the block 2 of hTetro, the value wm/2 where wm is the robot width in pixel is added to make the safety
distance with border. The processes are the same for the case where the mask slides from right to left
for determining the pixel boundary on the right side.

fw(xbl
n + r + i, ybl

n) = ∑
1≤q≤m

M(xbl
n + r + i(sig)q, ybl

n)Φ(1, q), (3)

where sig = 1 to find the boundary pixel on left sig = −1 to find the boundary pixel on the right

î = i
∣∣∣0 ≤ i ≤ Mw − xbl

n − r and fw(xbl
n + r + i, ybl

n) = 100th− 1−m, (4)

Algorithm 1 Determination of boundary waypoints

1: function GetLeftBoundayWaypoints(map M the origin (xo, yo), threshold th, m, hTetro width wm)
2: initial xbl

n = xo, ybl
n = yo, select random pixel (xbl

n + r, ybl
n), r: random value

3: while pixel (xbl
n + r, ybl

n) is the free space pixels M(xbl
n + r, ybl

n) = 0 do
4: i← 0
5: filter the pixel (xbl

n + r + i, ybl
n) with the filter mask Φ length m, value = 1

6: while number of undefined pixels in range [(xbl
n + r + i, ybl

n), (xbl
n + r + m + i, ybl

n)] ≤ m− 1− th do
7: i← i− 1
8: the right boundary waypoint Wn(bl)← (xbl

n + r + i + wr/2, ybl
n)

9: end while
10: function GetRightBoundayWaypoints(map M, left boundary waypoint (xbl

n , ybl
n), threshold th, m, hTetro

width wm)
11: initial xbr

n ← xbl
n , ybr

n ← ybl
n , select random pixel (xbr

n + r, ybr
n), r: random value

12: while pixel (xbr
n + r, ybr

n) is the free space pixels M(xbr
n + r, ybr

n) = 0 do
13: i←0
14: filter the pixel (xbr

n + r + i, ybr
n) with the filter mask Φ length m, value = 1

15: while number of undefined pixels in range [(xbr
n + r + i, ybr

n), (xbr
n + r + m + i, ybr

n)] ≤ m− 1− th
do
16: i← i + 1
17: the left boundary waypoint Wn(br)← (xbr

n + r + i− wr/2, ybr
n)

18: end while
19: end while
20: end functionGetRightBoundayWaypoints
21: increase the y coordinate ybl

n ← ybl
n + wm

22: end while
23: return left boundary waypoints, right boundary waypoint
24: end functionGetLeftBoundayWaypoints

Sensors 2018, 18, 2585 13 of 27

Once the right and left boundary waypoints on the y = yl
n line have been determined,

the Algorithm 1 will continue to identify the two similar boundary waypoints on the line y = ybl
n + wm.

The same mechanism described in the previous section is applied to find the left and right boundary
waypoints on this line. After increasing the value y of the current boundary waypoint, if it is impossible
to select any random point having the pixel value M(xbl

n + r, ybl
n) = 0 on the line y = yn of the map,

the process of searching boundary waypoints will stop. If this condition happens, the previous
boundary waypoint stays at the uppermost boundary of the map and it is identified as the last
boundary waypoint to complete the zigzag trajectory as Figure 9.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 26

Once the right and left boundary waypoints on the l
ny y= line have been determined, the

Algorithm 1 will continue to identify the two similar boundary waypoints on the line bl
n my y w= + .

The same mechanism described in the previous section is applied to find the left and right boundary
waypoints on this line. After increasing the value y of the current boundary waypoint, if it is
impossible to select any random point having the pixel value (,) 0bl bl

n nM x r y+ = on the line ny y=
of the map, the process of searching boundary waypoints will stop. If this condition happens, the
previous boundary waypoint stays at the uppermost boundary of the map and it is identified as the
last boundary waypoint to complete the zigzag trajectory as Figure 9.

Figure 11. Left and right boundary waypoints estimating.

4.3. Obstacle Waypoints Detection

After defining boundary waypoints, the global planner will auto-define the waypoints near the
obstacles in map according to Algorithm 2. Note that the obstacles locating randomly in the map have
the arbitrary shapes. Specifically, on the horizontal line bl

ny y= which connects bl
nW and br

nW the
location from the first free space pixel on the left side of obstacle pixel with a distance of / 2mw will
be selected as the location of left obstacle waypoint ()n iW ol and the location from the first free space
pixel on the right side of obstacles with a distance of / 2mw will be defined as the location of right
obstacle waypoint ()n iW ol .

Algorithm 2 Determination of obstacle waypoints
1: function GetLeftObstacleWaypoints(map M, boundary waypoints)
2: if there is no right obstacle waypoint on line bl

ny y= then
3: initial () (,)ol ol

n i ni niW ol x y← , ol bl
ni nx x← , ol bl

ni ny y← , 0i ←
4: else
5: initial () (,)ol ol

n i ni niW ol x y← , (1)
ol or
ni n ix x −← , (1)

ol or
ni n iy y −← , 0i ←

6: end if
7: while pixel (,)ol ol

ni nix i y+ is the free space pixel (,) 0ol ol
ni niM x y = do

8: 1i i← +
9: end while
10: if ol

nix i+ < br
nx then

11: the left obstacle waypoint () (/ 2,)ol ol
n i ni r niW ol x i w y+ −←

12: elseif there is no right obstacle waypoint on line bl
ny y= then

13: no left obstacle waypoint on line bl
ny y=

14: end elseif
15: end if

Figure 11. Left and right boundary waypoints estimating.

4.3. Obstacle Waypoints Detection

After defining boundary waypoints, the global planner will auto-define the waypoints near
the obstacles in map according to Algorithm 2. Note that the obstacles locating randomly in the map
have the arbitrary shapes. Specifically, on the horizontal line y = ybl

n which connects Wbl
n and Wbr

n
the location from the first free space pixel on the left side of obstacle pixel with a distance of wm/2
will be selected as the location of left obstacle waypoint Wn(oli) and the location from the first free
space pixel on the right side of obstacles with a distance of wm/2 will be defined as the location of
right obstacle waypoint Wn(oli).

Sensors 2018, 18, 2585 14 of 27

Algorithm 2 Determination of obstacle waypoints

1: function GetLeftObstacleWaypoints(map M, boundary waypoints)
2: if there is no right obstacle waypoint on line y = ybl

n then
3: initial Wn(oli)← (xol

ni, yol
ni) , xol

ni ← xbl
n , yol

ni ← ybl
n , i← 0

4: else
5: initial Wn(oli)← (xol

ni, yol
ni) , xol

ni ← xor
n(i−1) , yol

ni ← yor
n(i−1) , i← 0

6: end if
7: while pixel (xol

ni + i, yol
ni) is the free space pixel M(xol

ni, yol
ni) = 0 do

8: i← i + 1
9: end while
10: if xol

ni + i < xbr
n then

11: the left obstacle waypoint Wn(oli)← (xol
ni + i− wr/2, yol

ni)

12: elseif there is no right obstacle waypoint on line y = ybl
n then

13: no left obstacle waypoint on line y = ybl
n

14: end elseif
15: end if
16: function GetRightObstacleWaypoints(map M, boundary waypoints, left obstacle waypoint Wn(oli))
17: initial Wn(ori)← (xor

ni , yor
ni) , xor

ni ← xol
ni + wr/2 , yor

ni ← ybl
n , i← 0

18: while pixel (xor
ni + i, yor

ni) is the obstacle pixel M(xol
ni, xor

ni) = 100 or obstacle pixel M(xol
ni, xor

ni) = −1 do
19: i← i + 1
20: end while
21: if xor

ni + i < xbr
n then

22: the right obstacle waypoint Wn(ori)← (xor
ni + i + wr/2, yor

ni)

23: elseif there is no left obstacle waypoint on line y = ybl
n then

24: no right obstacle waypoint on line y = ybl
n

25: end elseif
26: end if
27: end function GetRightObstacleWaypoints
28: return left obstacle waypoints, right obstacle waypoints
29: end function GetLeftObstacleWaypoints

4.4. Proposed A-Starbased Path Planning Strategy

Each segment of the zigzag pattern of the path will be created by adding a set of Wi
n to connect

any two, boundary and obstacle waypoints with these two waypoints are the start and end points of
this segment. In particular, if there is no any obstacle waypoint on the line y = ybl

n connecting two
boundary waypoints Wn(bl) and Wn(br) as cells marked 1, 5, 6, 7 in Figure 12a the global planner
adds set of cells Wi along the line y = ybl

n and generating by A-star path searching to connect these
two waypoints. The path generated by A-star is same as zigzag scanning. In the cases of existing
obstacle between waypoints at cells 2, 3, 4 in Figure 12a, firstly the path planning creates zigzag
lines to cover the left boundary waypoints and the left obstacle waypoints. Specially, assuming
that at present, zigzag trajectory moves from left to right and meet the first obstacle, the height of
the obstacle is estimated by the following condition. From the obstacle pixel, the set of obstacle
pixels of this obstacle object in a known map can be found by finding the linking neighboring pixels,
which have the pixel value of 100. The value corresponding to the highest y value denoted as yh

o
is set to the height of this obstacle object. The range of left and right boundary waypoints having
y value in a range [0 : Mw, ybl

n : yh
o + wm] denoted at [Wn(bl) :Wn+o(bl)] and [Wn(br):Wn+o(br)].

The range of left and the right obstacle waypoints having the y coordinate value in the range of
[0 : Mw, ybl

n : yh
o + wm] are also identified and denoted as [Wn(oli) : Wn+o(oli)] and [Wn(ori):Wn+o(ori)]

with s is the obstacle number i. The wm is added to make the safety distance which ensures the planned
path can avoid the obstacle. After the range of obstacle waypoints have been indented, instead of
going to boundary waypoints Wn(br) from the boundary waypoint Wn(bl) by the conventional A-star

Sensors 2018, 18, 2585 15 of 27

algorithm, the zigzag scanning technique will be applied to clear the area defined by waypoints
[Wn(bl):Wn+o(bl)] and [Wn(ol1) : Wn+o−1(ol1)]. The scanning order by A-star path searching will
execute from left waypoint to right waypoint then move to upper right waypoint to scan left waypoint
on the same line until the last waypoint has been cleared as in Figure 12a. After creating zigzag lines to
clear left boundary waypoints and left obstacle waypoints, then the shortest trajectory including grid
cells with red arrows as in Figure 12a generated by A-star connects the leftmost boundary waypoint
Wn+o(bl) marked as a green cell with number 4 to the first right obstacle waypoint Wn(or1) marked
a blue cell with number 2. As one can observe, the shortest path by A-star will follow the obstacle
boundary cells. If there is another Wnoli+1 of obstacle number i + 1 located on the right side of Wnori,
the same zigzag scanning strategy will clear the area defined by waypoints [Wn(ori) : Wn+o−1(ori)]

and [Wn(oli+1) : Wn+o−1(oli+1)]. In case if there is no Wnoli+1, the final segment defined by waypoints
[Wn(ori) : Wn+o(ori)] and [Wn(br) : Wn+o(br)] will be covered by the same zigzag scanning strategy
as Figure 12a. Note that, to reduce the problem of revisiting the cells at the right side of obstacle
boundary when zigzag scanning moves from left to right, the right obstacle waypoint from Wn+1(or1)

to Wn+o(or1) is shifted to the right by the number of cells equal to robot width wm by assuming
the width between obstacle i and obstacle i + 1 is larger than 2×wm. The right waypoint is shifted and
then marked as blue cells with number 3 in Figure 12a. A similar mechanism is applied in the case
of zigzag scanning that moves from the right to left, the left obstacle waypoint from Wn+1(ol1) to
Wn+o(ol1) is shifted to the left by the number of cells equal to robot width wm.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 26

[() : ()]n i n o iW or W or+ and [() : ()]n n oW br W br+ will be covered by the same zigzag scanning strategy as
Figure 12a. Note that, to reduce the problem of revisiting the cells at the right side of obstacle
boundary when zigzag scanning moves from left to right, the right obstacle waypoint from 1 1()nW or+
to 1()n oW or+ is shifted to the right by the number of cells equal to robot width mw by assuming the
width between obstacle i and obstacle i + 1 is larger than 2 mw× . The right waypoint is shifted and
then marked as blue cells with number 3 in Figure 12a. A similar mechanism is applied in the case of
zigzag scanning that moves from the right to left, the left obstacle waypoint from 1 1()nW ol+ to

1()n oW ol+ is shifted to the left by the number of cells equal to robot width mw .
The Figure 12b presents zigzag scanning for a case where the obstacles have the same size and

stay on the same horizontal lines. The Figure 12c–f describes the cases where obstacles have different
size and stay on different horizontal lines. As one can see the path generated by global planer cover
all cells and does not have any revisited cells in cases of Figure 12a–d and revisit several cells marked
as white color and number 7 in cases of Figure 12e,f.

Figure 12. Proposed zigzag scanning method. (a) the single obstacle, (b) obstacles with the same size
and locate on same lines, (c–f) obstacles with different sizes and locate on different lines between left
and right boundary waypoints.

4.5. Narrow Spaces Detection and Covering

Covering the narrow spaces involves significant challenges for the robots with fixed
morphology. When this scenario come to hTetro, it can move through narrow spaces effectively by
changing its morphology. The I and O shapes of hTetro are used to demonstrate the transformation
ability of hTetro to cover the narrow space and build the path planning. The narrow space is defined
so that its width is smaller than current hTetro morphology width mw . Note that the fix morphology
robots consider the narrow spaces are the parts the solid obstacles that make it impossible to cover
areas over narrow spaces. By identifying narrow spaces in random map, if the current location of the
zigzag path offsets the distance of the current robot width mw with the nearest narrow space, the

Figure 12. Proposed zigzag scanning method. (a) the single obstacle, (b) obstacles with the same size
and locate on same lines, (c–f) obstacles with different sizes and locate on different lines between left
and right boundary waypoints.

Sensors 2018, 18, 2585 16 of 27

The Figure 12b presents zigzag scanning for a case where the obstacles have the same size and
stay on the same horizontal lines. The Figure 12c–f describes the cases where obstacles have different
size and stay on different horizontal lines. As one can see the path generated by global planer cover all
cells and does not have any revisited cells in cases of Figure 12a–d and revisit several cells marked as
white color and number 7 in cases of Figure 12e,f.

4.5. Narrow Spaces Detection and Covering

Covering the narrow spaces involves significant challenges for the robots with fixed morphology.
When this scenario come to hTetro, it can move through narrow spaces effectively by changing its
morphology. The I and O shapes of hTetro are used to demonstrate the transformation ability of
hTetro to cover the narrow space and build the path planning. The narrow space is defined so that
its width is smaller than current hTetro morphology width wm. Note that the fix morphology robots
consider the narrow spaces are the parts the solid obstacles that make it impossible to cover areas over
narrow spaces. By identifying narrow spaces in random map, if the current location of the zigzag
path offsets the distance of the current robot width wm with the nearest narrow space, the hTetro
morphology with the width size smaller than narrow space width is assigned to the shape plan. After
changing to morphology with the smaller width, hTetro will consider the narrow space is the typical
free space. Then the path created by A-star is added to path planner will guide the robot to cover over
the narrow space.

To navigate through narrow space constraints, the global shape planner must possess a
capability of identifying narrow areas in the map for each specific robot configuration as Figure 13.
An Algorithm 3 for determining the narrow space areas in the entire prebuilt map is presented as
follows. Specifically, to find the narrow space pixels on the vertical direction, considering one free space
pixel (x, y) with value M(x, y) = 0 on the map, the locations of the first obstacle pixel with value = 100
on the left and the first obstacle pixel with value = 100 on the right this free space pixel is defined
and denoted as (x + vl , y) and (x− vl , y) respectively. If the value of vl + vr is lower than a narrow
space threshold nthm and larger than 0.5× nthm with m representing a specific hTetro morphology as
in Equation (5), this free space pixel is set to belong in a narrow space area. The value nthm is chosen
so that it is smaller than the width wm of the robot. In this paper, we set nthm = 0.8wm. The similar
algorithm as in Equation (6) can be applied to find the narrow space pixel on the horizontal direction
where, ha is the offset value on the above side and hb is the offset value on the below side. The narrow
pixel is denoted as (xns, yns) and the narrow space pixel values M(xns, yns) will be assigned a value of
200 to distinguish them from other pixels of the map.

0.5× nthm < vl + vr < nthm,
where M(x, y) = 0, M(x + vl , y) = 100, M(x− vl , y) = 100

(5)

0.5× nthm < ha + hb < nthm,
where M(x, y) = 0, M(x, y + ha) = 100, M(x, y− hb) = 100

(6)

Sensors 2018, 18, 2585 17 of 27

Sensors 2018, 18, x FOR PEER REVIEW 16 of 26

hTetro morphology with the width size smaller than narrow space width is assigned to the shape
plan. After changing to morphology with the smaller width, hTetro will consider the narrow space is
the typical free space. Then the path created by A-star is added to path planner will guide the robot
to cover over the narrow space.

To navigate through narrow space constraints, the global shape planner must possess a
capability of identifying narrow areas in the map for each specific robot configuration as Figure 13.
An Algorithm 3 for determining the narrow space areas in the entire prebuilt map is presented as
follows. Specifically, to find the narrow space pixels on the vertical direction, considering one free
space pixel (,)x y with value (,) 0M x y = on the map, the locations of the first obstacle pixel with
value = 100 on the left and the first obstacle pixel with value = 100 on the right this free space pixel is
defined and denoted as (,)lx v y+ and (,)lx v y− respectively. If the value of l rv v+ is lower than a
narrow space threshold mnth and larger than 0.5 mnth× with m representing a specific hTetro
morphology as in Equation (5), this free space pixel is set to belong in a narrow space area. The value

mnth is chosen so that it is smaller than the width mw of the robot. In this paper, we set 0.8m mnth w=

. The similar algorithm as in Equation (6) can be applied to find the narrow space pixel on the
horizontal direction where, ah is the offset value on the above side and bh is the offset value on the
below side. The narrow pixel is denoted as (,)ns nsx y and the narrow space pixel values (,)ns nsM x y
will be assigned a value of 200 to distinguish them from other pixels of the map.

0.5 ,
(,) 0, (,) 100, (,) 100

m l r m

l l

nth v v nth
where M x y M x v y M x v y

× < + <
= + = − =

 (5)

0.5 ,
(,) 0, (,) 100, (,) 100

m a b m

a b

nth h h nth
where M x y M x y h M x y h

× < + <
= + = − =

 (6)

Figure 13. Narrow space pixels estimation. (a) Defining horizontal vertical narrow pixel, (b) defining
horizontal narrow pixel.

Algorithm 3 Determination of narrow space areas
1: function GetVerticalNarrowSpace(map M, threshold mnth)
2: For all pixel (,)x y in map M do
3: if the pixel (,)x y is the free space pixel (,) 0M x y = then

4: 0lv ← , 0rv ←
5: while pixels (,)lx v y− , (,)rx v y+ are the free space pixel do

6: 1, 1l l r rv v v v← ←+ +
7: end while

Figure 13. Narrow space pixels estimation. (a) Defining horizontal vertical narrow pixel, (b) defining
horizontal narrow pixel.

Algorithm 3 Determination of narrow space areas

1: function GetVerticalNarrowSpace(map M, threshold nthm)
2: For all pixel (x, y) in map M do
3: if the pixel (x, y) is the free space pixel M(x, y) = 0 then
4: vl ← 0 , vr ← 0
5: while pixels (x− vl , y), (x + vr, y) are the free space pixel do
6: vl ← vl + 1, vr ← vr + 1
7: end while
8: if 0.5× nthm < vl + vr < nthm then
9: narrow pixel (xns, yns) with xns ← x, yns ← y
10: M(xns, yns)← 200
11: end if
12: end if
13: function GetHorizontalNarrowSpace(map M, threshold nthm)
14: for all pixel (x, y) in map M do
15: if the pixel (x, y) is the free space pixel M(x, y) = 0 then
16: ha ← 0 , hb ← 0
17: while pixels (x, y− hb), (x, y + ha) are the free space pixel do
18: ha ← ha + 1, hb ← hb + 1
19: end while
20: if 0.5× nthm < ha + hb < nthm then
21: narrow pixel (xns, yns) with xns ← x, yns ← y
22: M(xns, yns)← 200
23: end if
24: end if
25: end function GetHorizontalNarrowSpace
26: return narrow pixels
27: end function GetVerticalNarrowSpace

Once the narrow space pixels have been determined, the global planner will start its process
of finding the intermediate Wi

n waypoints passing through the narrow spaces connecting between
boundary waypoint Wn(bl) and boundary waypoint Wn(br). The path planning algorithm will decide
the path by finding the nearest narrow pixel with the current waypoint Wi

n. In order to archive it,
the narrow space pixel in a window Ω with its center at Wi

n and size of 2× wm and yields shortest

Sensors 2018, 18, 2585 18 of 27

distance to the current location Wi
n is defined. The window Ω size is selected to ensure the safety

distance to prevent the robot from colliding with the obstacles. The nearest narrow pixel (x̂ns, ŷns)

corresponding with Wi
n can be found by using Equation (7).

(x̂ns, ŷns) = argmin
(xns, yns) ∈ Ω
M(xns, yns) = 200

(

√
(xi

n − xns)
2
+ (yi

n − yns)
2, (7)

(x̂ns, ŷns) = argmin
(xns, yns) ∈ Ω
M(xns, yns) = 100

(

√
(xi

n − xns)
2
+ (yi

n − yns)
2, (8)

Assuming that global path and shape planner is now sliding from left to right connecting Wn(bl)
and Wn(br), the nearest narrow pixel (x̂ns, ŷns) within a window area Ω having the center at Wi

n is
already defined by the above algorithm. If there is no obstacle pixel in a range (xi

n : xbr
n , yi

n−wr/2 : yi
n +

wr/2), the path and shape are planned as follows. Global shape planner will change the morphology
plan of Wi

n to the morphology having wr smaller than vl + vr. Then the global path planner will use
A-star to traverse narrow space. When path Wi

n reaches the last pixel point on the narrow space in
front of boundary waypoint, the global shape planner is signaled that it is out of the narrow area.
The shape plan at Wi

n whose location offsets with wr to the right from the last narrow space is reshaped
to the shape before entering the narrow area to keep the default morphology of hTetro. Then global
path planner makes a path to connect the boundary waypoint as Figure 14a.

Sensors 2018, 18, x FOR PEER REVIEW 18 of 26

planner location i
nW as follows. The position of the nearest obstacle pixel ˆ ˆ(,)no nox y can be found by

Equation 8. After changing the shape at the position in front of the narrow space of distance mw , the
global planner will find the path by traversing the narrow area to the point ˆ ˆ(/ 2,)−no m nox w y then
returning to the point where the shape has changed and transform back to the default state. Since the
path planning are based on the zigzag pattern, to simplify the zigzag pattern where each zigzag
segment have the predefined width of O shape width, hTetro are transformed to default O shape after
cover the narrow space. Moreover, transform from line I into a square O to avoid the collision during
the pivot turn since square shape has the half-length comparing to the length of I shape. Then, to
complete the trajectory from this point to boundary waypoint, the path plan will be calculated by
using A-star as Figure 14b. The same mechanism can be applied for the case of moving from right to
left.

Note that when moving into the narrow area, the proposed A-star based zigzag scanning
algorithm described above can be applied to cover the entire space such as a scenario where a robot
passes through narrow gate to new space.

Figure 14. Covering narrow space constrains the proposed method. (a) Proposed method without
obstacle from narrow space to waypoint, (b) proposed method with obstacle from narrow space to
the waypoint.

5. Testbed Environment Setups

To evaluate the preformation of the proposed global path and shape planner to cover the
predefined areas, experimental environments are set up as Figure 15. The shape and size of the
experimental environments are changed to create different maps. The small testbed map with simple
shape obstacles has the size 4.5 m × 2.5 m. The large tested maps with moderate obstacles shapes and
complicated obstacles shapes have the size 4.5 m × 4.8 m.

Figure 15. Testbed environment setups. (a) Real testbed environment, (b) small map with simple
obstacles, (c) large map with moderate obstacles, (d) large maps with complicated obstacles.

Figure 14. Covering narrow space constrains the proposed method. (a) Proposed method without
obstacle from narrow space to waypoint, (b) proposed method with obstacle from narrow space to
the waypoint.

In the case of existing any obstacle pixel in range (xi
n : xbr

n , yi
n − wm/2 : yi

n + wm/2) as Figure 14b,
the global planner will define waypoints based on the nearest obstacle within Ω with current global
planner location Wi

n as follows. The position of the nearest obstacle pixel (x̂no, ŷno) can be found by
Equation (8). After changing the shape at the position in front of the narrow space of distance wm,
the global planner will find the path by traversing the narrow area to the point (x̂no − wm/2, ŷno) then
returning to the point where the shape has changed and transform back to the default state. Since
the path planning are based on the zigzag pattern, to simplify the zigzag pattern where each zigzag
segment have the predefined width of O shape width, hTetro are transformed to default O shape after
cover the narrow space. Moreover, transform from line I into a square O to avoid the collision during
the pivot turn since square shape has the half-length comparing to the length of I shape. Then, to

Sensors 2018, 18, 2585 19 of 27

complete the trajectory from this point to boundary waypoint, the path plan will be calculated by
using A-star as Figure 14b. The same mechanism can be applied for the case of moving from right
to left.

Note that when moving into the narrow area, the proposed A-star based zigzag scanning
algorithm described above can be applied to cover the entire space such as a scenario where a robot
passes through narrow gate to new space.

5. Testbed Environment Setups

To evaluate the preformation of the proposed global path and shape planner to cover
the predefined areas, experimental environments are set up as Figure 15. The shape and size of
the experimental environments are changed to create different maps. The small testbed map with
simple shape obstacles has the size 4.5 m × 2.5 m. The large tested maps with moderate obstacles
shapes and complicated obstacles shapes have the size 4.5 m × 4.8 m.

Sensors 2018, 18, x FOR PEER REVIEW 18 of 26

planner location i
nW as follows. The position of the nearest obstacle pixel ˆ ˆ(,)no nox y can be found by

Equation 8. After changing the shape at the position in front of the narrow space of distance mw , the
global planner will find the path by traversing the narrow area to the point ˆ ˆ(/ 2,)−no m nox w y then
returning to the point where the shape has changed and transform back to the default state. Since the
path planning are based on the zigzag pattern, to simplify the zigzag pattern where each zigzag
segment have the predefined width of O shape width, hTetro are transformed to default O shape after
cover the narrow space. Moreover, transform from line I into a square O to avoid the collision during
the pivot turn since square shape has the half-length comparing to the length of I shape. Then, to
complete the trajectory from this point to boundary waypoint, the path plan will be calculated by
using A-star as Figure 14b. The same mechanism can be applied for the case of moving from right to
left.

Note that when moving into the narrow area, the proposed A-star based zigzag scanning
algorithm described above can be applied to cover the entire space such as a scenario where a robot
passes through narrow gate to new space.

Figure 14. Covering narrow space constrains the proposed method. (a) Proposed method without
obstacle from narrow space to waypoint, (b) proposed method with obstacle from narrow space to
the waypoint.

5. Testbed Environment Setups

To evaluate the preformation of the proposed global path and shape planner to cover the
predefined areas, experimental environments are set up as Figure 15. The shape and size of the
experimental environments are changed to create different maps. The small testbed map with simple
shape obstacles has the size 4.5 m × 2.5 m. The large tested maps with moderate obstacles shapes and
complicated obstacles shapes have the size 4.5 m × 4.8 m.

Figure 15. Testbed environment setups. (a) Real testbed environment, (b) small map with simple
obstacles, (c) large map with moderate obstacles, (d) large maps with complicated obstacles.

Figure 15. Testbed environment setups. (a) Real testbed environment, (b) small map with simple
obstacles, (c) large map with moderate obstacles, (d) large maps with complicated obstacles.

Static obstacles are placed arbitrarily in the testbed maps to create some narrow spaces.
The scenarios with the dynamic obstacles are not taken in to account in this paper. The Hector
mapping-based SLAM method is used to build maps for ROS navigation. The proposed method with
the components of both the path plan and the shape plan was compared with the traditional A-star
algorithm of ROS navigation and A-star based method [29]. The method A-star ROS navigation can be
considered as heuristic approaches where A-star are used to find the shortest path to connect the left
and right boundary waypoints staying on the same horizontal lines. In the future, more heuristic
approaches will be taken in to account when considering the dynamic obstacles.

Waypoints are defined to create the roadmap by applying these methods before hTetro performs
the navigation to clear the planned waypoints. During the hTetro navigation, the position of the robot
after being finely tuned with AMCL was recorded to compute the area covered by the robot. To measure
the covered areas, while the robot navigates, the path of the robot is widened to the size that
corresponds to the actual width wr and marked in green color. Once the robot has completed
the navigation of each test, the ratio Ar between the covered areas and the need-to-be-covered areas
and the ratio Rr between the revisited areas and the covered areas will be calculated as Equations (9)
and (10) respectively. Specifically, the areas covered by the robot during navigation are measured by
the number of blue pixels (excluding blue pixels generated by the robot positions noise overlapped
with obstacles, map borders and unidentified areas). The need-to-be-covered areas are the number
of pixels corresponding to the free space areas with the value = 0 in the map on the ROS map server.
The revisited areas are the overlapped areas of robot location during navigation. Since the percentage
of the covered area showed differences between the tested methods, total path lengths can be evaluated
through revisited areas. The higher the value of Ar, the better the tested method. The smaller Rr,

Sensors 2018, 18, 2585 20 of 27

the better the tested method. The processes are conducted ten times for each of these tested methods
on each testbed map. The Ar and Rr ratios of all tested times are averaged to compare.

Ar =
Nunber o f covered pixels

Nunber o f f ree space pixels
× 100% (9)

Rr =
Nunber o f covered pixels

Nunber o f f ree space pixels
× 100% (10)

6. Experimental Results and Discussion

The results of forming the global path and shape plan of the proposed method are shown in
Figure 16. The positions corresponding to boundary waypoints and narrow spaces are correctly
defined. The planned trajectory is marked as yellow color; the narrow space areas are marked as
red arrows. The green track in Figure 16 is the path that records the actual locations of the hTetro
during the navigation to cover a map, given the path and shape planning. During the real-time
implementation, the robot will follow the generated waypoints including both path and shape plans.
Shape plan indicates the specific robot morphology at locations derived from the corresponding
path plan. When the shape plan of the next waypoint indicates the change from one morphology
to other, robot will perform the complete transformation to required morphology before navigating
to next waypoint in path plan. It can be seen that hTetro with an onboard rpLidiar laser sensor and
reconfiguration abilities can keep track and follow the global plan sufficiently with mirror errors.Sensors 2018, 18, x FOR PEER REVIEW 20 of 26

Figure 16. Global path planner and robot pose during navigation.

The Figure 17 provides visual views on how the robot follows the plan set by the global planner
to cover the free space areas. From the Figure 17a–d, the free spaces including the narrow space areas
are gradually covered by hTetro. The transformation steps of hTetro from O shape to horizontal I
shape and from O shape to vertical I shape during autonomous navigation are provided on RVIZ a
graphical monitoring tool of ROS in Figures 18 and 19, respectively. The real pictures of hTetro
reconfiguration steps to adapt with narrow spaces in the real environment can be observed in Figure
20. As per the results, the robot responds appropriately to morphology and path plan has been
designed to cover almost all areas of narrow space. On the other hand, the robot cannot cover these
spaces if it does not change its shape to suitable morphology.

Figure 17. Areas coverage by the proposed method. (a) global path planning, (b) reconfiguration form
O shape to horizontal I shape to cover narrow spaces, (c) reconfiguration form O shape to vertical I
shape to cover narrow spaces, (d) total covered areas.

Figure 16. Global path planner and robot pose during navigation.

The Figure 17 provides visual views on how the robot follows the plan set by the global planner
to cover the free space areas. From the Figure 17a–d, the free spaces including the narrow space areas
are gradually covered by hTetro. The transformation steps of hTetro from O shape to horizontal I
shape and from O shape to vertical I shape during autonomous navigation are provided on RVIZ
a graphical monitoring tool of ROS in Figures 18 and 19, respectively. The real pictures of hTetro
reconfiguration steps to adapt with narrow spaces in the real environment can be observed in Figure 20.
As per the results, the robot responds appropriately to morphology and path plan has been designed
to cover almost all areas of narrow space. On the other hand, the robot cannot cover these spaces if it
does not change its shape to suitable morphology.

Sensors 2018, 18, 2585 21 of 27

Sensors 2018, 18, x FOR PEER REVIEW 20 of 26

Figure 16. Global path planner and robot pose during navigation.

The Figure 17 provides visual views on how the robot follows the plan set by the global planner
to cover the free space areas. From the Figure 17a–d, the free spaces including the narrow space areas
are gradually covered by hTetro. The transformation steps of hTetro from O shape to horizontal I
shape and from O shape to vertical I shape during autonomous navigation are provided on RVIZ a
graphical monitoring tool of ROS in Figures 18 and 19, respectively. The real pictures of hTetro
reconfiguration steps to adapt with narrow spaces in the real environment can be observed in Figure
20. As per the results, the robot responds appropriately to morphology and path plan has been
designed to cover almost all areas of narrow space. On the other hand, the robot cannot cover these
spaces if it does not change its shape to suitable morphology.

Figure 17. Areas coverage by the proposed method. (a) global path planning, (b) reconfiguration form
O shape to horizontal I shape to cover narrow spaces, (c) reconfiguration form O shape to vertical I
shape to cover narrow spaces, (d) total covered areas.

Figure 17. Areas coverage by the proposed method. (a) global path planning, (b) reconfiguration form
O shape to horizontal I shape to cover narrow spaces, (c) reconfiguration form O shape to vertical I
shape to cover narrow spaces, (d) total covered areas.Sensors 2018, 18, x FOR PEER REVIEW 21 of 26

Figure 18. Morphology reconfigurations from O shape to horizontal I shape to navigate through the
narrow spaces constraints on RVIZ. (a) Detected narrow spaces as red arrows, (b) the position before
reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating with horizontal I
shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep navigating with O
shape.

Figure 19. Morphology reconfigurations from O shape to vertical I shape to navigate through the
narrow spaces constraints on RVIZ. (a) Detected narrow spaces as red arrows, (b) the position before
reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating with vertical I
shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep navigating with O
shape.

The area coverage results of the proposed method for different map setups are presented in
Figure 21. The results show the adaptive ability of the global planner with the diversity of settings
from the small map with simple obstacle Figure 21a to moderate obstacle Figure 21b and complicated
obstacle Figure 21c. Based on the generated plan, the hTetro can cover the free space areas almost
completely.

Figure 18. Morphology reconfigurations from O shape to horizontal I shape to navigate through
the narrow spaces constraints on RVIZ. (a) Detected narrow spaces as red arrows, (b) the position before
reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating with horizontal I
shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep navigating with O shape.

Sensors 2018, 18, 2585 22 of 27

Sensors 2018, 18, x FOR PEER REVIEW 21 of 26

Figure 18. Morphology reconfigurations from O shape to horizontal I shape to navigate through the
narrow spaces constraints on RVIZ. (a) Detected narrow spaces as red arrows, (b) the position before
reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating with horizontal I
shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep navigating with O
shape.

Figure 19. Morphology reconfigurations from O shape to vertical I shape to navigate through the
narrow spaces constraints on RVIZ. (a) Detected narrow spaces as red arrows, (b) the position before
reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating with vertical I
shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep navigating with O
shape.

The area coverage results of the proposed method for different map setups are presented in
Figure 21. The results show the adaptive ability of the global planner with the diversity of settings
from the small map with simple obstacle Figure 21a to moderate obstacle Figure 21b and complicated
obstacle Figure 21c. Based on the generated plan, the hTetro can cover the free space areas almost
completely.

Figure 19. Morphology reconfigurations from O shape to vertical I shape to navigate through
the narrow spaces constraints on RVIZ. (a) Detected narrow spaces as red arrows, (b) the position
before reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating with vertical
I shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep navigating with
O shape.Sensors 2018, 18, x FOR PEER REVIEW 22 of 26

Figure 20. Morphology reconfigurations from O shape to vertical I shape to navigate through the
narrow spaces constraints on real environment. (a) Detected narrow spaces as red arrows, (b) the
position before reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating
with vertical I shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep
navigating with O shape.

Figure 21. Areas coverage of the proposed method for different tested bed maps. (a,d) path planning
and covered areas a small map with simple obstacles, (b,e) path planning and covered areas for a
large map with moderate obstacles, (c,f) path planning and covered areas of for a large map with
complicated obstacles.

The effectiveness of area coverage for tested methods is provided in Figure 22 for visual
comparisons and in Tables 1 and 2 for numerical comparisons. Covered areas by hTetro during
navigation are marked as green color and the revisited areas which have been covered are marked as
red color. Because of optimal the path planning enhanced by shape planning, the proposed method

Figure 20. Morphology reconfigurations from O shape to vertical I shape to navigate through
the narrow spaces constraints on real environment. (a) Detected narrow spaces as red arrows,
(b) the position before reconfiguring morphology, (c) starting morphology reconfiguration,
(d) navigating with vertical I shape, (e) Morphology reshapes to O after going out of narrow space,
(f) keep navigating with O shape.

The area coverage results of the proposed method for different map setups are presented
in Figure 21. The results show the adaptive ability of the global planner with the diversity of
settings from the small map with simple obstacle Figure 21a to moderate obstacle Figure 21b and

Sensors 2018, 18, 2585 23 of 27

complicated obstacle Figure 21c. Based on the generated plan, the hTetro can cover the free space areas
almost completely.

Sensors 2018, 18, x FOR PEER REVIEW 22 of 26

Figure 20. Morphology reconfigurations from O shape to vertical I shape to navigate through the
narrow spaces constraints on real environment. (a) Detected narrow spaces as red arrows, (b) the
position before reconfiguring morphology, (c) starting morphology reconfiguration, (d) navigating
with vertical I shape, (e) Morphology reshapes to O after going out of narrow space, (f) keep
navigating with O shape.

Figure 21. Areas coverage of the proposed method for different tested bed maps. (a,d) path planning
and covered areas a small map with simple obstacles, (b,e) path planning and covered areas for a
large map with moderate obstacles, (c,f) path planning and covered areas of for a large map with
complicated obstacles.

The effectiveness of area coverage for tested methods is provided in Figure 22 for visual
comparisons and in Tables 1 and 2 for numerical comparisons. Covered areas by hTetro during
navigation are marked as green color and the revisited areas which have been covered are marked as
red color. Because of optimal the path planning enhanced by shape planning, the proposed method

Figure 21. Areas coverage of the proposed method for different tested bed maps. (a,d) path planning
and covered areas a small map with simple obstacles, (b,e) path planning and covered areas for a
large map with moderate obstacles, (c,f) path planning and covered areas of for a large map with
complicated obstacles.

The effectiveness of area coverage for tested methods is provided in Figure 22 for visual
comparisons and in Tables 1 and 2 for numerical comparisons. Covered areas by hTetro during
navigation are marked as green color and the revisited areas which have been covered are marked as
red color. Because of optimal the path planning enhanced by shape planning, the proposed method
can achieve maximum area coverage and especially cover the area marked by red arrows in Figure 16.
The ROS A-star based method and method in Reference [29] uncover some free space regions and
revisit some covered areas. According to the Table 1, the coverage ratio of the proposed method
archives the highest of 92.55%, while the method in Reference [29] without changing shape yield
the second with a performance of 86.15% and the traditional A-star method only covers 72.63% of
the total area and significantly lower than the proposed method.

Based on Table 2, the ratio of revisiting the area using the conventional A-star method degrades
the robot performance by just achieving an average value of 21.72%. Since this method does not
have any mechanism to avoid revisiting the covered cells while planning the shortest path by A-star.
The segments of trajectory plan have a high probability of being overlapped in the cases of complicated
obstacle shapes. While the method [29] which uses A-star for moving to the uncovered sub region
have the similar issue of revisiting the covered cells, since the way-out from the last covered cell to
first uncovered cell of another uncovered subarea requires the revisiting the covered cells. As per
the results, the revisiting rate of this method was 12.26% and it is significantly higher than the proposed
method. On the other hand, using modified A-star based zigzag scanning strategy to clear predefined
the boundary waypoint and obstacle waypoints, the proposed method archives the lowest revisiting
ratio of 5.25%.

Sensors 2018, 18, 2585 24 of 27

Sensors 2018, 18, x FOR PEER REVIEW 23 of 26

can achieve maximum area coverage and especially cover the area marked by red arrows in Figure
16. The ROS A-star based method and method in Reference [29] uncover some free space regions and
revisit some covered areas. According to the Table 1, the coverage ratio of the proposed method
archives the highest of 92.55%, while the method in Reference [29] without changing shape yield the
second with a performance of 86.15% and the traditional A-star method only covers 72.63% of the
total area and significantly lower than the proposed method.

Based on Table 2, the ratio of revisiting the area using the conventional A-star method degrades
the robot performance by just achieving an average value of 21.72%. Since this method does not have
any mechanism to avoid revisiting the covered cells while planning the shortest path by A-star. The
segments of trajectory plan have a high probability of being overlapped in the cases of complicated
obstacle shapes. While the method [29] which uses A-star for moving to the uncovered sub region
have the similar issue of revisiting the covered cells, since the way-out from the last covered cell to
first uncovered cell of another uncovered subarea requires the revisiting the covered cells. As per the
results, the revisiting rate of this method was 12.26% and it is significantly higher than the proposed
method. On the other hand, using modified A-star based zigzag scanning strategy to clear predefined
the boundary waypoint and obstacle waypoints, the proposed method archives the lowest revisiting
ratio of 5.25%.

Figure 22. The area coverage comparisons. (a,d) path planning and covered areas of conventional A-
star, (b,e) path planning and covered areas method [29], (c,f) path planning and covered areas of the
proposed method with global path and shape planning.

Table 1. The covered area ratio comparisons (%).

 A-Star ROS
Navigation

Method [29] Proposed Method with Path and
Shape Planning

Small map with simple obstacles 80.12 90.23 95.32
Large map with moderate obstacles 72.21 85.68 93.12

Large map complicated obstacles 65.56 82.54 89.22
Average 72.63 86.15 92.55

Figure 22. The area coverage comparisons. (a,d) path planning and covered areas of conventional
A-star, (b,e) path planning and covered areas method [29], (c,f) path planning and covered areas of
the proposed method with global path and shape planning.

Table 1. The covered area ratio comparisons (%).

A-Star ROSNavigation Method [29] Proposed Method with Path
and Shape Planning

Small map with simple obstacles 80.12 90.23 95.32
Large map with moderate obstacles 72.21 85.68 93.12

Large map complicated obstacles 65.56 82.54 89.22
Average 72.63 86.15 92.55

Table 2. The revisited areas ratio comparisons (%).

A-Star ROS Navigation Method [29] Proposed Method with Path
and Shape Planning

Small map with simple obstacles 19.28 10.39 4.12
Large map with moderate obstacles 20.65 12.28 5.40

Large map complicated obstacles 25.24 14.12 6.22
Average 21.72 12.26 5.25

The comparison of computing time to cover testbed environments with different space complexity
between different algorithms are added in Table 3. Despite expensing extra time to complete
the shapeshifting and to cover the narrow spaces, the computation time of proposed method yields
just slightly higher than others do. The optimal path and shape plan for maximizing the area covering
and reducing the revisited areas contributes to this result. Table 4 provides time consumption to
generate the plan for different testbed maps. The proposed approach takes about 0.16 s on an average
to generate the plan, which is feasible for real-time applications. Since we have validated the efficiency
of the proposed method in three different scenarios, the average value in Tables 1–4 was calculated for
each tested method in order to normalize the performance metrics.

Sensors 2018, 18, 2585 25 of 27

Table 3. The running comparisons of areas coverage (s).

A-Star ROS Navigation Method [29] Proposed Method with Path
and Shape Planning

Small map with simple obstacles 120.12 150.33 162.12
Large map with moderate obstacles 182.29 215.61 223.22

Large map complicated obstacles 215.56 262.54 269.16
Average 172.66 209.50 218.17

Table 4. The running comparisons of plan generating (s).

A-Star ROS Navigation Method [29] Proposed Method with Path
and Shape Planning

Small map with simple obstacles 0.11 0.13 0.15
Large map with moderate obstacles 0.13 0.15 0.16

Large map complicated obstacles 1.5 0.16 0.18
Average 0.13 0.15 0.16

7. Conclusions

The novel proposed method of exploiting the Tetris inspired self-reconfigurable robot hTetro
for optimizing area covering has proved its performance. The A-star zigzag scanning based global
plan including path plan and shape plan showed the best results among the tested methods in
terms of maximizing covered areas and reducing the revisiting of covered areas. The issues of
covering the narrow space constrains are solved efficiently with the shape transformation of hTetro.
The effectiveness of proposed method was demonstrated for the scenarios of static obstacles. The local
path and shape planning to deal with both static and dynamic obstacles scenarios will be considered
in the next researches.

Author Contributions: Conceptualization, A.V.L. and V.P.; Data curation, A.V.L. and V.S.; Formal analysis, A.V.L.;
Investigation, A.V.L. and V.P.; Methodology, A.V.L.; Project administration, R.E.M.; Supervision, R.E.M.; Validation,
R.E.M.; Writing—original draft, A.V.L. and V.S.; Writing—review & editing, V.P. and R.E.M.

Funding: This research was funded by the National Robotics R&D Program Office, Singapore, under the Grant
No. RGAST1702, the Singapore University of Technology and Design (SUTD) which are gratefully acknowledged
to conduct this research work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lumelsky, V.J.; Mukhopadhyay, S.; Sun, K. Dynamic path planning in sensor-based terrain acquisition.
IEEE Trans. Robot. Autom. 1990, 6, 462–472. [CrossRef]

2. Choset, H.; Pignon, P. Coverage Path Planning: The Boustrophedon Cellular Decomposition. In Field and
Service Robotics; Springer: London, UK, 1998; pp. 203–209, ISBN 978-1-4471-1275-4.

3. Acar, E.U.; Choset, H.; Rizzi, A.A.; Atkar, P.N.; Hull, D. Morse Decompositions for Coverage Tasks. Int. J.
Robot. Res. 2002, 21, 331–344. [CrossRef]

4. Oksanen, T.; Visala, A. Coverage path planning algorithms for agricultural field machines. J. Field Robot.
2009, 26, 651–668. [CrossRef]

5. Choset, H.; Acar, E.; Rizzi, A.A.; Luntz, J. Exact cellular decompositions in terms of critical points of Morse
functions. In Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, 24–28
April 2000; Volume 3, pp. 2270–2277.

6. Acar, E.U.; Choset, H. Robust sensor-based coverage of unstructured environments. In Proceedings of
the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role
of Robotics in the the Next Millennium (Cat. No.01CH37180), Maui, HI, USA, 29 October–3 November 2001;
Volume 1, pp. 61–68.

http://dx.doi.org/10.1109/70.59357
http://dx.doi.org/10.1177/027836402320556359
http://dx.doi.org/10.1002/rob.20300

Sensors 2018, 18, 2585 26 of 27

7. Acar, E.U.; Choset, H. Sensor-based Coverage of Unknown Environments: Incremental Construction of
Morse Decompositions. Int. J. Robot. Res. 2002, 21, 345–366. [CrossRef]

8. Galceran, E.; Carreras, M. Efficient seabed coverage path planning for ASVs and AUVs. In Proceedings of
the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12
October 2012; pp. 88–93.

9. Choset, H.; Burdick, J. Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph. Int. J.
Robot. Res. 2000, 19, 96–125. [CrossRef]

10. Wong, S.C.; MacDonald, B.A. A topological coverage algorithm for mobile robots. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
Las Vegas, NV, USA, 27–31 October 2003; Volume 2, pp. 1685–1690.

11. Lee, T.-K.; Baek, S.-H.; Choi, Y.-H.; Oh, S.-Y. Smooth coverage path planning and control of mobile robots
based on high-resolution grid map representation. Robot. Auton. Syst. 2011, 59, 801–812. [CrossRef]

12. Oh, J.S.; Choi, Y.H.; Park, J.B.; Zheng, Y.F. Complete coverage navigation of cleaning robots using
triangular-cell-based map. IEEE Trans. Ind. Electron. 2004, 51, 718–726. [CrossRef]

13. Fazli, P.; Davoodi, A.; Pasquier, P.; Mackworth, A.K. Complete and robust cooperative robot area coverage
with limited range. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Taipei, Taiwan, 18–22 October 2010; pp. 5577–5582.

14. Luo, C.; Yang, S.X. A real-time cooperative sweeping strategy for multiple cleaning robots. In Proceedings
of the IEEE Internatinal Symposium on Intelligent Control, Vancouver, BC, Canada, 30 October 2002;
pp. 660–665.

15. Sun, Y.; Ma, S. ePaddle mechanism: Towards the development of a versatile amphibious locomotion
mechanism. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5035–5040.

16. Nansai, S.; Rojas, N.; Elara, M.R.; Sosa, R. Exploration of adaptive gait patterns with a reconfigurable
linkage mechanism. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Tokyo, Japan, 3–7 November 2013; pp. 4661–4668.

17. Wei, H.; Cai, Y.; Li, H.; Li, D.; Wang, T. Sambot: A self-assembly modular robot for swarm robot.
In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK,
USA, 3–7 May 2010; pp. 66–71.

18. Kee, V.; Rojas, N.; Elara, M.R.; Sosa, R. Hinged-Tetro: A self-reconfigurable module for nested reconfiguration.
In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Besacon, France, 8–11 July 2014; pp. 1539–1546.

19. Prabakaran, V.; Elara, M.R.; Pathmakumar, T.; Nansai, S. hTetro: A tetris inspired shape shifting floor
cleaning robot. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation
(ICRA), Singapore, 29 May–3 June 2017; pp. 6105–6112.

20. Prabakaran, V.; Elara, M.R.; Pathmakumar, T.; Nansai, S. Floor cleaning robot with reconfigurable mechanism.
Autom. Constr. 2018, 91, 155–165. [CrossRef]

21. Jelliss, G.P. Chessics: The Journal of Generalised Chess, Special Issue on Chessboard Dis-sections. G.P. Jelliss. 1986.
Available online: https://books.google.com.hk/books/about/Chessics.html?id=luC0ngEACAAJ&hl=en&
output=html_text&redir_esc=y (accessed on 17 July 2018).

22. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified a
Star Algorithm for a Mobile Robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

23. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J. ROS: An open-source Robot Operating System. In Proceedings of
the Open-Source Software. Workshop of the International Conference on Robotics and Automation (ICRA),
Kobe, Japan, 12–17 May 2009.

24. Grisettiyz, G.; Stachniss, C.; Burgard, W. Improving Grid-based SLAM with Rao-Blackwellized Particle
Filters by Adaptive Proposals and Selective Resampling. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2432–2437.

25. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized
Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]

http://dx.doi.org/10.1177/027836402320556368
http://dx.doi.org/10.1177/02783640022066770
http://dx.doi.org/10.1016/j.robot.2011.06.002
http://dx.doi.org/10.1109/TIE.2004.825197
http://dx.doi.org/10.1016/j.autcon.2018.03.015
https://books.google.com.hk/books/about/Chessics.html?id=luC0ngEACAAJ&hl=en&output=html_text&redir_esc=y
https://books.google.com.hk/books/about/Chessics.html?id=luC0ngEACAAJ&hl=en&output=html_text&redir_esc=y
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.1109/TRO.2006.889486

Sensors 2018, 18, 2585 27 of 27

26. Fox, D.; Burgard, W.; Dellaert, F.; Thrun, S. Monte Carlo Localization: Efficient Position Estimation
for Mobile Robots. In Proceedings of the Sixteenth National Conference on Artificial Intelligence and
the Eleventh Innovative Applications of Artificial Intelligence Conference Innovative Applications of Artificial
Intelligence; AAAI ’99/IAAI ’99; American Association for Artificial Intelligence: Menlo Park, CA, USA,
1999; pp. 343–349.

27. Kohlbrecher, S.; Meyer, J.; Graber, T.; Petersen, K.; Klingauf, U.; von Stryk, O. Hector Open Source Modules
for Autonomous Mapping and Navigation with Rescue Robots. In RoboCup 2013: Robot World Cup XVII;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 624–631.

28. Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the 2008 IEEE International
Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25.

29. Smith, M.; Baldwin, I.; Churchill, W.; Paul, R.; Newman, P. The New College Vision and Laser Data Set. Int. J.
Robot. Res. 2009, 28, 595–599. [CrossRef]

30. Viet, H.H.; Dang, V.-H.; Laskar, M.N.U.; Chung, T. BA-star: An online complete coverage algorithm for
cleaning robots. Appl. Intell. 2013, 39, 217–235. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364909103911
http://dx.doi.org/10.1007/s10489-012-0406-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	On-Board-LIDAR-Sensor hTetro Hardware Architecture Configuration
	On-Board-LiDAR-Sensor hTetro ROS Based System
	Proposed Path and Shape Planning Method
	A-Star Based-Zigzag Planning
	Boundary Waypoints Detection
	Obstacle Waypoints Detection
	Proposed A-Starbased Path Planning Strategy
	Narrow Spaces Detection and Covering

	Testbed Environment Setups
	Experimental Results and Discussion
	Conclusions
	References

