
Non-Equilibrium Casimir Force between Vibrating Plates
Andreas Hanke*

Department of Physics, University of Texas at Brownsville, Brownsville, Texas, United States of America

Abstract

We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out
of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we
calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this
force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force,
one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the
dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force
are discussed.
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Introduction

A fundamental advance in the understanding of nature was the

insight that physical forces between bodies, instead of operating at

a distance, are generated by fields; the latter obeying their own

dynamics, implying a finite speed of propagation of signals and

causality [1]. Moreover, time-varying fields can sustain themselves

in otherwise empty space to produce disembodied waves;

exemplified by electromagnetic fields and waves, and gravitational

fields. Gravitational waves are believed to be detected in the near

future [2].

Another force seemingly operating at a distance is the Casimir

force. This force was first predicted by Casimir in 1948 for two

parallel conducting plates in vacuum, separated by a distance L,

for which he found an attractive force per unit area

F=A~{p2�hc=(240L4) [3]. It can be understood as resulting

from the modification of quantum-mechanical zero-point fluctu-

ations of the electromagnetic field due to confining boundaries [4–

7]. In the last decade, high-precision measurements of the Casimir

force have become available which confirm Casimir’s prediction

within a few per cent [8–11]; recent experiments demonstrate the

possibility of using the Casimir force as an actuation force for

movable elements in nanomechanical systems [10–12]. The

thermal Casimir force, generated by thermal rather than quantum

fluctuations of the electromagnetic field, has recently been

confirmed [13]. This development goes along with significant

advances in calculating the Casimir force for complex geometries

and materials [7,14–21]. A force analogous to the electromagnetic

Casimir force occurs if the fluctuations of the confined medium are

of thermal instead of quantum origin [5,22,23]. The thermal

analog of the Casimir effect, referred to as critical Casimir effect,

was first predicted by Fisher and de Gennes for the concentration

fluctuations of a binary liquid mixture close to its critical demixing

point confined by boundaries [24]; recently, the critical Casimir

effect was quantitatively confirmed for this very system [25]. (For

computational methods concerning the calculation of critical

Casimir forces, see, e.g., Refs. [26–28].)

The vast majority of work done on the Casimir effect, and

fluctuation-induced forces in general, pertain to the equilibrium

case. That is, the system is in its quantal ground state in case of the

electromagnetic Casimir effect, or in thermodynamic equilibrium

in case of the thermal analog. A number of recent experiments

probe the Casimir force between moving components in

nanomechanical systems [10–12], and effects generated by moving

boundaries have been studied, e.g., for Casimir force driven

ratchets [29]; however, the data are usually compared with

predictions for the Casimir force obtained for systems at rest,

corresponding to a quasi-static approximation.

Distinct new effects occur if the fluctuating medium is driven

out of equilibrium. In this case the observed effects become

sensitive to the dynamics governing the fluctuating medium, which

may lead to a better understanding of these systems and may

provide new control parameters to manipulate them [30–40]. The

generalization of the electromagnetic Casimir effect to systems

with moving boundaries, referred to as dynamic Casimir effect,

exhibits friction of moving mirrors in vacuum and the creation of

photons [41–44]. Related effects due to oscillating media [45], and

nonequilibrium Casimir-Polder forces on moving atoms [46], have

also been considered. Interesting effects occur if each body

immersed in the fluctuating electromagnetic field is at a different

temperature [47,48]. The associated nonequilibrium Casimir

forces and heat transfer between the bodies lead to observable

effects [49,50]. For the thermal analog, fluctuation-induced forces

in non-equilibrium systems have been studied in the context of the

Soret effect, which occurs in the presence of an external

temperature gradient [31]. Effects of temperature changes in

classical free scalar field theories and thermal drag forces have

been studied in [32–35]; however, recently it was argued that the

method presented in [32–35] is invalid to obtain the fluctuation-

induced force exerted on an inclusion or plate embedded in the

medium, whereas the stress tensor method, as used in the present
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work, yields the correct force [40]. Fluctuation-induced forces

have also been obtained for macroscopic bodies immersed in

mechanically driven systems [30], granular fluids [36], and

reaction-diffusion systems [37]. Recently it was shown that non-

equilibrium fluctuations can induce self-forces on single, asym-

metric objects, and may lead to a violation of the action-reaction

principle between two objects [38].

In this work we consider a correlated fluid driven out of

equilibrium mechanically by a vibrating plate, and study the

resulting fluctuation-induced, time-dependent force F (t) on a

second plate at rest. We wish to study the time-dependence of this

force in view of the finite speed of diffusion of perturbations in the

fluctuating medium, and causality. We consider the simplest

possible dynamics of the medium between the plates, namely the

purely relaxational dynamics of model A. Specifically, we consider

two infinitely extended plates parallel to the xy-plane, where plate

1 is at rest while plate 2 is vibrating parallel to the z-direction by

some external driving, resulting in a time-dependent separation

(see Fig. 1)

L(t)~L0za cos(v0t) ð1Þ

with amplitude a and driving frequency v0. The fluctuating

medium is described by a non-conserved scalar order parameter

field w(r,t), corresponding to the critical dynamics of model A

[51,52], subject to Dirichlet boundary conditions w~0 at the

plates. The field w may describe the order parameter of a fluid

thermodynamically close to a critical point, or a massless

Goldstone mode arising from the breaking of a continuous

symmetry such as in nematic liquid crystals or superfluid 4He

[5,22]. Our results hold in Gaussian approximation right at the

critical point Tc for which the bulk correlation length j diverges.

For T=Tc the fluctuation-induced force also depends on the finite

correlation length j. Moreover, for near-critical fluids and binary

liquid mixtures the boundary conditions at confining walls

correspond to the so-called normal rather than Dirichlet surface

universality class [22]. However, it should be noted that dynamic

critical behavior is less universal than equilibrium critical behavior.

For example, for the liquid-gas transition and the demixing

transition in a binary liquid mixture a conserved order parameter

convects with the conserved transverse momentum current of the

fluid, resulting in critical dynamics referred to as model H [53];

conversely, the superfluid transition of 4He corresponds to critical

dynamics of model F [54]. In addition, critical dynamics of real

fluids may be modified by effects due to gravity and the coupling of

the order parameter to secondary densities, which further

complicates a quantitative comparison of theory and experiment

(see [51,52] for reviews). Strictly speaking, purely relaxational

dynamics of a non-conserved scalar order parameter correspond-

ing to model A only applies to uniaxial magnetic systems and

simple lattice gases. However, the results and conclusions derived

here for model A dynamics yield new insight in non-equilibrium

behavior and may serve as a starting point for more realistic

models.

Our results for the time-dependent force F (t) on plate 1 hold to

first order in a (cf. Eq. (1)). As shown in Fig. 1, F (t) is the sum of

forces Fz(t) and F{ acting on opposite sides of the plate; Fz(t)
being the force acting on plate 1 from the side of the cavity, and

F{ the (time-independent) force on the boundary surface of a

semi-infinite half-space filled with the fluctuating medium. The net

force F (t)~Fz(t)zF{ is expected to be finite and overall

attractive, i.e., directed towards plate 2.

Results

Relaxational Dynamics
In traditional studies of the fluctuation-induced force between

two plates, both plates are assumed to be at rest at constant

separation L0 (see Fig. 1). The system is in thermal equilibrium

and the fluctuations of the order parameter w are described by the

statistical Boltzmann weight e{bH with Gaussian Hamiltonian

bHfwg~ 1

2

ð
d3r(+w)2, ð2Þ

where b~1=(kBT) with the Boltzmann constant kB and the

temperature T (assumed to be constant). The fluctuation-induced

force F0 on plate 1 per unit area A is found to be [5,22,23]

F0

A
~{

f(3)

8p

kBT

L3
0

, ð3Þ

where the minus sign indicates that the force is attractive.

Equation (3) is a universal result, independent of the underlying

dynamics of the fluctuating medium, as long as the equilibrium is

described by Eq. (2).

We now turn to the case where plate 2 is vibrating parallel to

the z-direction, resulting in a time-dependent separation L(t)
between the plates (see Eq. (1) and Fig. 1). The time-dependent

boundary conditions for the order parameter w(r,t) in the medium

between the plates now drive the system out of equilibrium.

Locally, the order parameter will relax back to equilibrium

according to the dynamics of the medium; in this work, we

consider a purely relaxational dynamics described by the Langevin

equation (see, e.g., Chapter 8 in Ref. [55], and references cited

therein)

c
L
Lt

w(r,t)~+2w(r,t)zg(r,t) ð4Þ

where c is the friction coefficient. The random force g(r,t) is

assumed to have zero mean and to obey the fluctuation-dissipation

relation

Sg(r,t)g(r0,t’)T~2ckBTd(3)(r{r0)d(t{t’) ð5Þ

where the brackets S T denote a local, stochastic average and d(3)

is the delta function in 3 dimensions.

Figure 1. Geometry of two parallel plates separated by a
varying distance L(t). Plate 1 is at rest while plate 2 is vibrating
parallel to the z-direction. The plates are immersed in a fluctuating
medium with purely relaxational dynamics described by a non-
conserved scalar order parameter w(r,t). The fluctuation-induced,
time-dependent net force F (t) on plate 1 is the sum of forces Fz(t)
and F{ acting on opposite sides of the plate.
doi:10.1371/journal.pone.0053228.g001
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Non-Equilibrium Casimir Force
The force per unit area acting on plate 1 from the side of the

cavity can be expressed as Fz(t)=A~ lim
z?0

STzz(rE,z,t)T where

rE~(x,y) are the components of r parallel to the plate and

Tzz~
1
2

Lzwð Þ2{ 1
2

Lxwð Þ2z Lyw
� �2

h i
is the zz-component of the

stress tensor [6,56] (see text below Eq. (104) in Ref. [56] for a

discussion of the stress tensor in connection with critical dynamics).

Similarly, the force per unit area acting on the other side of plate 1

is given by F{=A~{ lim
z?0

STzz(rE,z,t)TL~? where Tzz is again

evaluated in the cavity between the plates but for the limit L??
(see Fig. 1). The net force per unit area on plate 1 yields as

F (t)

A
~ lim

z?0
STzz(rE,z,t)T{ lim

z?0
STzz(rE,z,t)TL~?: ð6Þ

Using the Dirichlet boundary condition w~0 at the plates we

obtain

lim
z?0

STzz(rE,z,t)T~
1

2
lim

z,z’?0
LzLz’Sw(rE,z,t)w(rE,z’,t)T: ð7Þ

To calculate the two-point correlation function of w on the right-

hand side of Eq. (7) we note that the solution w(r,t) of Eq. (4) can

be expressed as

w(r,t)~

ð?

{?

dt’
ð

V (t’)

d3r’G(r,t; r0,t’)g(r0,t’) ð8Þ

where V (t’)~A:L(t’) is the volume of the cavity at time t’ and the

Green’s function G(r,t; r0,t’) is defined as the solution of

c
L
Lt

{+2
r

� �
G(r,t; r0,t’)~d(3)(r{r0)d(t{t’) ð9Þ

subject to the boundary condition G(r,t; r0,t’)~0 whenever r or r0

is located on the surface of one of the plates (note that G(r,t; r0,t’) is

symmetric in r and r0). In addition, G(r,t; r0,t’)~0 for t’wt by

causality. Thus, w(r,t) can be expressed as a linear superposition of

contributions from the source g(r0,t’) at times t’vt and positions

r0[V (t’), carried forward in time by the propagator G(r,t; r0,t’).
Using Eqs. (8) and (5) one finds the two-point correlation function

Sw(r,t)w(r0,t’)T~2ckBT

ð?

{?

ds

ð
V (s)

d3xG(r,t; x,s)G(r0,t’; x,s): ð10Þ

In the present set-up, the system is translationally invariant in xy-

direction at any time t, whereas translation invariance in time is

broken due to the varying separation L(t) between the plates.

Thus, introducing the partial Fourier transform g of G as

G(rE,z,t; r0E,z’,t’)~
ð

d2p

(2p)2
e

ip:(rE{r0E)
ð?

{?

dv

2p
e{iv(t{t’)g(z,z’; v,p,t’),

ð11Þ

the function g depends explicitly on one of the time coordinates in

G, say, t’. Using Eqs. (10), (11) we find for the expression in Eq. (7)

(the star symbol indicates the complex conjugate for real-valued

argument v)

lim
z?0

STzz(rE,z,t)T~ckBT

ð
d2p

(2p)2

ð?

{?

dv

2p

ðL(t)

0

dfu(f,v,p,t)u�(f,v,p,t)

ð12Þ

where

u(f,v,p,t)~
L
Lz

g(z,f; v,p,t)Dz~0: ð13Þ

For given propagator G, hence function u, F (t)=A is obtained

using Eqs. (6) and (12) (cf. Methods).

Diffusion of Stress and Resonant Dissipation
The ratio F (t)=F0 of the fluctuation-induced, time-dependent

force F (t) on plate 1 due to the vibrating plate 2 and the

corresponding static force F0 is a universal (cutoff-independent)

function of a=L0 (geometry), v0t (time-dependence of the driving),

and the dimensionless parameter

V~v0cL2
0 ð14Þ

(see Eqs. (1), (3), (4), and Fig. 1). Our results for F (t)=F0

correspond to an expansion to first order in a=L0%1 and can be

cast in the form

F (t)

F0

~1{
3a

L0

f (v0t,V)zO (a=L0)2
� �

ð15aÞ

where the dimensionless function f (v0t,V) is normalized such that

f ~1 for v0~0. For v0w0 the function f (v0t,V) can be

represented as

f (v0t,V)~W(V)cos v0t{Q(V)½ � ð15bÞ

in terms of an amplitude W(V) and a phase shift Q(V).

The amplitude W(V) is shown in Fig. 2. For V~0, i.e., v0~0,

the normalization f (0,0)~1 in conjunction with Q(0)~0 (see

below) implies W(0)~1. For Vw0, i.e., v0w0, the length

l~(v0c){1=2 is a measure of the distance over which a

perturbation diffuses during an oscillation. For increasing

V~L2
0=l2 a variation of stress generated at the vibrating plate 2

is more and more attenuated, i.e., washed out, due to the diffusive

nature of the medium before it reaches plate 1; thus W(V) is

monotonically decreasing for increasing V (Fig. 2, black line).

The force F (t) in Eq. (15) has contributions of different physical

origin related to diffusion of stress (dif) and resonant dissipation

(res) in the medium between the plates, i.e.,

F (t)~Fdif (t)zFres(t): ð16Þ

The contributions Fdif (t) and Fres(t) are related to real and

imaginary poles in the complex-frequency plane occurring in the

calculation of F (t), respectively (see Eqs. (35) and (37)). Both

Fdif (t) and Fres(t) may be expanded as in Eq. (15):

Fdif (t)

F0
~1{

3a

L0
fdif (v0t,V)zO (a=L0)2

� �
, ð17aÞ

fdif (v0t,V)~Wdif (V) cos v0t{Qdif (V)½ �, ð17bÞ

Non-Equilibrium Casimir Force
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and

Fres(t)

F0
~1{

3a

L0
fres(v0t,V)zO (a=L0)2

� �
, ð18aÞ

fres(v0t,V)~Wres(V) cos v0t{Qres(V)½ �: ð18bÞ

The amplitude Wdif (V) is shown as the red line in Fig. 2. For

V~0, i.e., v0~0, there is no contribution from resonant

dissipation, thus Wres(0)~0 and Wdif (0)~W(0)~1 (however,

W(V)=Wdif (V)zWres(V) for Vw0 because Qdif (V)=Qres(V)).
For Vw0 the amplitude Wdif (V) is attenuated due to the diffusive

nature of the medium as discussed in relation to W(V) above; thus

Wdif (V)~1 is monotonically decreasing for increasing V (Fig. 2,

red line). Finally, the amplitude Wres(V) due to resonant dissipation

is shown as the green line in Fig. 2. Resonant dissipation is absent

in the static case v0~0, i.e., V~0, which implies Wres(0)~0. For

large V the amplitude Wres(V) is attenuated due to the diffusive

nature of the medium as discussed in relation to W(V) above; thus

Wres(V) starts at Wres(0)~0, is increasing for small V and

monotonically decreasing for large V (Fig. 2, green line).

Figure 3 shows the phase shift Q(V) of the function f (v0t,V) in

Eq. (15b) in terms of the variable t(V)~Q(V)=V. Thus, using Eq.

(14), Q(V)~Vt(V):v0tl(V), where the lag time tl(V)~cL2
0t(V)

is a measure of the time a variation of stress generated at the

vibrating plate 2 takes to diffuse through the medium to reach

plate 1. For illustration, for v0~2ps{1 and V~10 we obtain

tl~t(V)V=v0^0:15s. tl(V) is fairly constant over a wide range of

V and approaches a finite value tl(0) for V?0 (Fig. 3a, black line);

thus tl*L2
0 as expected for the present diffusive dynamics in the

medium between the plates. In the limit V?0 the relation

Q(V)~Vt(V) with finite t(0) implies Q(V)?0. A qualitatively

similar behavior occurs for the phase shift Qdif (V) of the function

fdif (v0t,V) in Eq. (17b) (Fig. 3a, red line). Finally, Fig. 3b shows

the phase shift Qres(V) of the function fres(v0t,V) in Eq. (18b); in

this case, Qres(V) itself is approximately constant and approaches a

finite value for V?0 (in contrast to Q(V), for which Q(V)=V is

approximately constant, see above). This implies that the

corresponding lag time tl,res(V)~cL2
0Qres(V)=V formally diverges

for V?0, i.e., v0?0, which reflects the fact that resonant

dissipation is absent in the static case v0~0. However, the

divergence of tl,res(V) for V?0 is suppressed in the net force F (t)
since the amplitude Wres(V) in Eq. (18b) vanishes for V?0, so that

the lag time tl(V) of F (t) stays finite for V?0 (see Eq. (15) and

Fig. 3a).

Discussion

We have studied the fluctuation-induced, time-dependent force

F (t) between two plates confining a fluid which is driven out of

equilibrium mechanically by harmonic oscillations of one of the

plates, assuming purely relaxational dynamics of the fluid

(corresponding to the critical dynamics of model A [51,52]) (see

Fig. 1). Our main results for F (t), valid to first order in the

amplitude a of the oscillations, are summarized in Figs. 2 and 3.

We find two distinct contributions to F (t) related to diffusion of

stress in the fluid and resonant dissipation, respectively. Resonant

dissipation has been studied for the dynamic Casimir effect of the

electromagnetic field, where it is a result of enhanced creation of

photons if the driving frequency corresponds to a resonance

frequency of the cavity [41–44]. In the present case, dissipation is

generated by the viscosity of the fluid described by the friction

parameter c in the Langevin equation (4).

Fluctuation-induced forces may be observed, e.g., by means of

atomic force microscopy (AFM). To avoid the experimental

difficulty of keeping two flat plates parallel one usually employs

geometries in which one of the surfaces is curved; for example, by

measuring the force between a sphere attached to the tip of an

AFM cantilever and a flat plate. The force Fs(L0) on a sphere of

radius R separated by a distance L0 surface-to-surface from a flat

plate is related to the energy of interaction per surface area e(L0)
between two flat plates by the proximity force rule

Fs(L0)~2pRe(L0). For example, the static force per unit area

F0=A in Eq. (3) yields Fs(L0)~{f(3)RkBT=(8L2
0)~{6:2 PT for

T~300 K, R~100mm, L0~100 nm, which is readily accessible

by AFM.

Fluctuation-induced forces between moving objects are expect-

ed to occur for any medium exhibiting long-ranged correlations.

However, as mentioned in the Introduction, for real fluids the

model needs to be modified to take into account conservation of

the order parameter and its convection with the transverse

momentum current of the fluid, thus treating Casimir and

hydrodynamic interactions on the same footing (corresponding

to the critical dynamics of model H [53]); these effects are

important and will modify the result for F (t) in Eq. (15) obtained

for the purely relaxational dynamics of model A (see [51,52] for

reviews on dynamic critical behavior and its comparison with

experiments). However, the time-dependent force F(t) predicted

in Eq. (15) may be observable by means of computer simulations of

the ferromagnetic Ising model (or corresponding lattice gas

models) confined between two plates, one of which is vibrating

at small amplitude.

A much-studied subject related to the present study are

hydrodynamic interactions of microscopic objects in viscous fluids

since they are relevant, e.g., to the motility and locomotion of

swimming microorganisms [57]. Recently, motivated by devices

such as the AFM, the drag experienced by a cylindrical object

(modeling an AFM cantilever) and a sphere oscillating at small

amplitude near a flat surface were studied in detail [58,59];

however, few results are available concerning the hydrodynamic

force generated by an oscillating object on a different object nearby.

Thus, it would be interesting to probe effective hydrodynamic

interactions between different, moving objects immersed in a

viscous fluid, and how these interactions are modified by the

Casimir force when correlations in the fluid become long-ranged.

The fluctuation-induced, time-dependent force F (t) on plate 1

due to the vibrating plate 2 is universal in the sense that it is largely

Figure 2. Amplitude of the non-equilibrium Casimir force.
Amplitude W(V) of f (v0t,V) as a function of V~v0cL2

0 (see Eq. (15))
(black line). Also shown are the amplitudes Wdif (V) of fdif (v0t,V) (dif,
red line) and Wres(V) of fres(v0t,V) (res, green line) describing
contributions to F (t) due to diffusion of stress and resonant dissipation,
respectively (see Eqs. (17), (18)).
doi:10.1371/journal.pone.0053228.g002
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independent of microscopic details of the system. The force ratio

F (t)=F0, where F0 is the force at fixed separation L0, only depends

on the dimensionless variables a=L0 (geometry), v0t (time-

dependence of the driving), and V~v0cL2
0 characterizing the

viscosity of the fluid. It would be interesting to generalize our

approach to the electromagnetic field to study the analogous, time-

dependent Casimir force F (t) for the dynamic Casimir effect of the

electromagnetic field.

Methods

The Propagator G
The calculation of the non-equilibrium Casimir force F (t) by

Eqs. (6) and (12) requires the propagator G(r,t; r0,t’) solving Eq. (9)

subject to the time-dependent boundary conditions due to the

vibrating plate 2. This problem can be solved, for general

modulations of the plate(s) in space and time, by the method

developed in Refs. [60,61]. For the present set-up, we find for the

partial Fourier transform G(z,t; z’,t’; p) of G (i.e., transforming the

spatial coordinates rE, r0E parallel to the plates as in Eq. (11) but

keeping the time coordinates t, t’; in what follows, we omit the

argument p for ease of notation) [60,61]

G(z,t; z’,t’)~G(z,t; z’,t’){
ð?

{?

dt

ð?

{?

ds

G½z,t; L(t),t�M(t,s)G½L(s),s; z’,t’�

ð19Þ

where G is the propagator in the half-space zw0 bounded by a

Dirichlet surface at z~0 (that is, the function G itself is

independent of the vibrating plate 2; the dependence of G on

plate 2 in Eq. (19) only enters through the arguments L(t), L(s) in

G, and the kernel M(t,s)). The kernel M is defined by

ð?

{?

dsM(t,s)G½L(s),s; L(t),t�~d(t{t): ð20Þ

In this work, we consider small variations of the separation

between the plates about a mean separation L0, i.e.,

L(t)~L0zh(t): ð21Þ

Our results hold to first order in h. To this end, we insert Eq. (21)

in Eq. (19) and expand everything to first order in h (note that

L(t)~L0zh(t) also enters the upper boundary of the integration

over f in Eq. (12)). This results in expansions g~g0zg1zO(h2)

and u~u0zu1zO(h2) of the functions g and u from Eqs. (11),

(13) in powers of h. Equations (6), (12) then yield the corresponding

contributions to F (t)=A.

Let us first consider the leading order, i.e., h~0 and L(t)~L0.

Using Eq. (19) and transforming to v-space as in Eq. (11) we find

(omitting the arguments p and v for ease of notation)

g0(z,z’)~�gg(z,z’){�gg(z,L0)M0 �gg(L0,z’) ð22Þ

where �gg(z,z’)~ e{QDz{z’D{e{Q(zzz’)
� �

=(2Q) with Q~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2{icv

p
from Eq. (26) below and M0~½�gg(L0,L0)�{1

~2Q=½1{exp
({2QL0)�. Thus,

g0(z,z’)~
sinh(Qz)sinh½Q(L0{z’)�

Q sinh(QL0)
, zvz’, ð23Þ

and, using Eq. (13),

u0(f)~
L
Lz

g0(z,f)Dz~0~
sinh½Q(L0{f)�

sinh(QL0)
: ð24Þ

Using Eqs. (6), (12), (24) we thus obtain to leading order [31]

F0

A
~{

kBT

2

ð
d2p

(2p)2

ð?

{?

dv

2pi

1

vzie

Q coth(QL0){1½ �{P coth(PL0){1½ �ð Þ

ð25aÞ

~{
kBT

2

ð
d2p

(2p)2
p coth(pL0){1½ �: ð25bÞ

The integral in Eq. (25b) is finite and yields Eq. (3). In Eq. (25a) we

use

Q(v,p)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2{icv

p
,P(v,p)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2zicv

p
, ð26Þ

so that P~Q� if v is real. Integrations over v as in Eq. (25a) are

readily computed by contour integration in the complex v-plane.

In Eq. (25a) and throughout this work we use the convention that

in v-integrations we integrate above the pole in v; this can be

Figure 3. Phase shift of the non-equilibrium Casimir force. (a) Phase shift Q(V) of f (v0t,V) in terms of t(V)~Q(V)=V (see Eq. (15)) (black line).
Also shown is the phase shift Qdif (V) of fdif (v0t,V) describing the contribution to F (t) due to diffusion of stress (dif, red line) (see Eq. (17)). (b) Phase
shift Qres(V) of fres(v0t,V) describing the contribution to F (t) due to resonant dissipation (res) (see Eq. (18)).
doi:10.1371/journal.pone.0053228.g003
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accomplished by the replacement v?vzie in the denominator of

the integrand in Eq. (25a). The limit e?0 in final results is always

understood. Note that this prescription introduces a positive time

direction and ensures causality. Q(v) has a branch cut along the

negative imaginary axis cv~{i(p2zr), r§0, whereas P(v) has

a branch cut along the positive imaginary axis cv~i(p2zr), r§0.

The integral over v in Eq. (25a) has two contributions. For the

contribution involving Q coth(QL0){1½ �, the contour integral can

be closed in the upper complex v-plane (thus avoiding the branch

cut of Q), where this term has no poles, so that the contribution

from this term vanishes. Likewise, for the contribution involving

P coth(PL0){1½ �, the contour integral can be closed in the lower

complex v-plane (avoiding the branch cut of P), where, in turn,

this term has no poles. The single pole at v~{ie in the lower

complex v-plane then yields the expression in Eq. (25b); cp. Fig. 4a

with v0~0.

We now turn to the contribution to F (t)=A to first order in h.

Using the expansion

u(f; v,p,t)~u0(f; v,p)zu1(f; v,p,t)zO h2
� �

ð27Þ

in Eq. (12), with u from Eq. (13) and u0 from Eq. (24), we find for

general h(t)

F1(t)

A
~

kBT

2

ð
d2p

(2p)2

ð?

{?

dv

2p
f (v,p,t)zf �(v,p,t)½ � ð28Þ

where

f (v,p,t)~
Q

sinh(QL0)
0h

1

iv

Q

sinh(QL0)
{

P

sinh(PL0)

	 

: ð29Þ

The symbol 0h denotes a convolution of two functions âa(v), b̂b(v)

involving an insertion of h(t)~

ð?
{?

dv

2p
exp({ivt)ĥh(v):

(âa 0h b̂b)(v,t’)~âa(v)

ð?

{?

dv’
2p

e{i(v{v’)t’ĥh(v{v’)b̂b(v’): ð30Þ

For functions a(t,t’), b(t,t’), the expression (âa 0h b̂b)(v,t’) is the

representation in v-space of c(t,t’) : ~

ð?
{?

dsa(t,s)h(s)b(s,t’);

i.e., c(t,t’)~
ð?

{?

dv

2p
exp½{iv(t{t’)�(âa 0h b̂b)(v,t’). The functions

âa(v), b̂b(v) are the representations in v-space of a(t,s), b(s,t’),
respectively. Equations (28), (29) are obtained by using Eq. (19)

with L(t)~L0zh(t), expanding everything to first order in h, and

using Eq. (30) for the resulting insertions of h(t). The contribution

of M to first order in h is determined by Eq. (20), resulting in

M1~{M0 �gg1M0 where the subscripts 0 and 1 indicate the order

in h; M0 is given below Eq. (22).

For the special case that plate 2 is vibrating with harmonic

oscillations of amplitude a and frequency v0 (see Eqs. (1), (21)),

i.e.,

h(t)~a cos(v0t), ð31Þ

we obtain ĥh(v)~ap d(v{v0)zd(vzv0)½ �. The integralÐ?
{?

dv
2p(f zf �) in Eq. (28) decays into two contributions corre-

sponding to the terms in square brackets on the right-hand side of

Eq. (29):

ð?

{?

dv

2p
f (v,p,t)zf �(v,p,t)½ �~WQQ(p,t)zWQP(p,t), ð32Þ

where the subscripts QQ and QP indicate the contributions from

the first and second term in square brackets of Eq. (29),

respectively. In what follows we show that these two terms yield

distinct contributions to F (t) corresponding to real-valued and

imaginary poles in the complex v-plane.

Real-Valued Frequency Poles: Diffusion of Stress and
Finite Lag Time

For the first contribution in Eq. (32) we find (the c:c: symbol

indicates the complex conjugate of the preceding expression;

regarding the replacement v?vzie in the denominator of the

integrand, see the discussion below Eq. (26))

Figure 4. Contour integration in the complex v-plane. (a) Contour integration for the second term in square brackets in Eq. (33). The only
contribution from this term is from the pole at v~{v0{ie indicated by the red star. The blue lines indicate branch cuts of v(v)v(vzv0). (b)
Contour integration in Eq. (36). The blue lines indicate branch cuts of of u(v)v(v{v0). The contributions from the poles at v~v0{ie and v~{ie
cancel (see text).
doi:10.1371/journal.pone.0053228.g004
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WQQ(p,t)~
a

2
e{iv0t

ð?

{?

dv

2pi

u(v)u(v{v0)

v{v0zie
{

v(v)v(vzv0)

vzv0zie

	 

zc:c:

ð33Þ
where

u(v)~
Q

sinh(QL0)
,v(v)~

P

sinh(PL0)
, ð34Þ

with Q, P from Eq. (26). Computing the right-hand side of Eq. (33)

by contour integration in the complex v-plane, the contributions

from the two terms in square brackets in the integrand are analyzed

along similar lines as discussed below Eq. (26). Thus, for the first term

in square brackets, the contour integral can be closed in the upper

complex v-plane, where u(v) has no poles, so that the contribution

from this term vanishes. For the second term in square brackets, the

contour integral can be closed in the lower complex v-plane, where

v(v) has no poles. The only contribution from this term is from the

single pole at v~{v0{ie; see Fig. 4a. Thus, including the

contribution from the complex conjugate in Eq. (33), we obtain

WQQ(p,t)~
ap

2 sinh(pL0)
eiv0tv(v0)ze{iv0tu(v0)
� �

: ð35Þ

The corresponding contribution to F1(t)=A is given by

kBT

2

ð
d2p

(2p)2
WQQ(p,t) (see Eqs. (28) and (32)). In the static case,

where v0~0 and h(t)~a in Eq. (1), this result can also be obtained

directly from Eq. (25b) by replacing L0 with L0za and expanding to

first order in a. For finite v0, Eq. (35) emerges from the static case by a

shift from v0~0 to a finite value of v0. This shift may be understood

in terms of a transition from stationary modes in the cavity in the static

case to modes with a time-dependence *exp(iv0t) in response to the

vibrating plate 2. The resulting fluctuation-induced force F (t) on

plate 1 is characterized by a finite lag time tl which is a measure of the

time a variation of stress in the medium generated at the vibrating

plate 2 takes to diffuse through the medium to reach plate 1 (see

Fig. 1). For the present diffusive dynamics, tl is related to the distance

L0 between the plates by tl*L2
0.

Imaginary Frequency Poles: Resonant Dissipation
For the second contribution in Eq. (32) we find

WQP(p,t)~{
a

2
e{iv0tv0

ð?

{?

dv

2pi

u(v)v(v{v0)

(v{v0zie)(vzie)

	 

zc:c:

ð36Þ

The contour integral over v can be closed either in the upper or the

lower complex v-plane, yielding identical results; the contributions

from the poles at v~v0{ie and v~{ie in the lower complex v-

plane cancel. Closing the contour integral in the lower plane, the

integral picks up contributions from the imaginary poles

cvn~{i(p2zk2
n) of u(v), where kn~np=L0 and n§1 is a

positive integer. Note that u(v) has a branch cut along the negative

imaginary axis on which the poles vn are located (see the related

discussion below Eq. (26)); however, this branch cut may be cured

using the identity Q=sinh(QL0)~R=sin(RL0), with

R(v,p)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
icv{p2

p
, which holds close to the negative imaginary

axis. The expression R=sin(RL0) is analytic in the lower complex

v-plane with isolated poles at vn; see Fig. 4b. Summing over the

residues of these poles yields

WQP(p,t)~ae{iv0t icv0

L0

X?
n~1

({1)n v(vn{v0)k2
n

(p2zk2
n)(p2zk2

n{icv0)
zc:c:

ð37Þ

The corresponding contribution to F1(t)=A is given by

kBT

2

ð
d2p

(2p)2
WQP(p,t). Note that WQP(p,t) is proportional to v0,

which implies that this term is absent in the static case v0~0 and

solely generated by the fact that the system is driven out of

equilibrium by the vibrating plate 2 (see Fig. 1). The imaginary-

frequency poles cvn~{i(p2zk2
n) leading to Eq. (37) are related to

resonant dissipation in the cavity, where the spectrum of imaginary

resonance frequencies vn is continuous due to the presence of the

continuous in-plane wave number p (compare the related discussion

of resonant dissipation in the context of the dynamic Casimir effect

of the electromagnetic field in Ref. [43]). Resonant dissipation has

been studied for the dynamic Casimir effect of the electromagnetic

field, where it is a result of enhanced creation of photons if the

driving frequency corresponds to a resonance frequency of the

cavity [41–44].
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