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Abstract: Precision measurements of a nanoscale sample surface using an atomic force 

microscope (AFM) require a precise quantitative knowledge of the 3D tip shape. Blind tip 

reconstruction (BTR), established by Villarrubia, gives an outer bound with larger errors if 

the tip characterizer is not appropriate. In order to explore the errors of BTR, a series of 

simulation experiments based on a conical model were carried out. The results show that, to 

reconstruct the tip precisely, the cone angle of the tip characterizer must be smaller than that 

of the tip. Furthermore, the errors decrease as a function of the tip cone angle and increase 

linearly with the sample radius of curvature, irrespective of the tip radius of curvature. In 

particular, for sharp (20 nm radius) and blunt (80 nm radius) tips, the radius of curvature of 

the tip characterizer must be smaller than 5 nm. Based on these simulation results, a local 

error model of BTR was established. The maximum deviation between the errors derived 

from the model and the simulated experiments is 1.22 nm. Compared with the lateral 

resolution used in the above simulated experiments (4 nm/pixel), it is valid to ignore the 

deviations and consider the local error model of BTR is indeed in quantitative agreement 

with the simulation results. Finally, two simulated ideal structures are proposed here, 

together with their corresponding real samples. The simulation results show they are suitable 

for BTR.  
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1. Introduction 

Atomic force microscope (AFM) is the most prevalent technique for studying the surface properties 

of materials from the micron all the way down to the atomic level in a variety of science and technology 

areas. It can be used to study insulators [1], as well as semiconductors [2] and conductors [3]. 

Unfortunately, some limitations caused by the geometry of the scanning tip degrade the accuracy of  
the AFM images which are distorted by the dilation effect between the tip and the actual sample  

surface [4–6]. Since the touching segments of the tip are not always the vertex during the scanning 

process, the deflection of the cantilever is not only affected by the actual sample surface but also affected 

by the tip shape. Furthermore, such image distortions are increased as soon as the dimensions of the 

AFM tip becomes comparable to the size of the sample features. The distorted image will have a great 

impact on roughness analysis [7], dimensional measurements [8], hardness measurements [9], etc. That 

is why the 3D tip shape needs to be known precisely in advance in order to obtain an accurate 

representation of the sample surface [10,11]. In addition, the tip shape also effects the measurements that 

determine mechanical properties of surfaces and forces, such as Young’s modulus and adhesion [12,13]. 

Aside from tip shape, calibrations for cantilever deflection [14,15] and the spring constant of the AFM 

cantilever [16–18] are also crucial to the measurements of mechanical properties of surfaces and forces. 

These types of calibrations are very important for the quantitative measurements in AFM. 

Until recently, there have been many published papers devoted to solve the above problem which 

broadly fall into two groups, directly imaging the tip without AFM and indirectly calibrating the tip 

while using AFM. Among the two groups, various mathematical methods are used together. Direct 

microprobe imaging methods mostly involve either a high-resolution scanning electron microscope 

(SEM) [19] or a transmission electron microscope (TEM) [20]. These methods are limited to the 2D 

profile imaging. In addition, they may show other disadvantages such as SEM probe-specimen 

“convolution” effects, sample contamination induced by electron beam [21], and unstable resolution 

caused by material charging during measuring process. The methods of indirect imaging of the tip could 

be mainly divided into two groups based on the choice of the tip characterizer. The first group uses the 

well-calibrated tip characterizer, such as the sharp-edged calibration structures [22] and polystyrene 

nanospheres [23–25]. This method relies completely on the accuracy of the calibrated geometry of the 

tip characterizer which is significantly restricted by the nanometer scale measurement ability of the 

instrument. In addition, the tip characterizer may suffer from uncertain wear or contamination during the 

scanning process which makes the previous calibration unreliable. Another group uses tip characterizer 

without calibration. This method can extract tip shape from an AFM image by various mathematical 

algorithms without calibration of the tip characterizer, such as the deconvolution algorithm [26], 

expectation maximization (EM) algorithm [27] and morphological estimation algorithm [28]. 

Among the above methods, the most promising one is the Blind Tip Reconstruction (BTR) algorithm 

which is able to determine the best upper bound of the tip shape using mathematical morphology 

operations. With suitable tip characterizer, this method can not only be used to reconstruct standard 

silicon or silicon nitride AFM tips, but also be used to reconstruct carbon nanotube AFM tips [29,30] 

which tend to have smaller diameters and much higher aspect ratios than standard AFM tips. Here, we 

concentrate on the BTR algorithms proposed by Villarrubia [31,32] and verified by Dongmo [33]. It is 

most widely studied [34,35] and further regularized to reconstruct the flared tip by using a dexel 



Sensors 2014, 14 23161 

 

 

representation [36,37]. This algorithm can reconstruct an upper bound of the tip shape from an AFM 

image obtained by scanning any samples. However, with the upper bound, the reconstruction image will 

be below the actual sample surface which is far from our expectation and certainly not be beneficial to 

further analysis like the calculation of organic molecule models in biology, the determination of surface 

roughness and grain size in material science, the identifications of critical dimension (CD) in 

semiconductor industry. Therefore, in order to determine the real sample surface geometry, it is  

better to obtain a more accurate 3D tip shape, i.e., the minimum upper bound by using the suitable  

tip characterizer.  

However, among all the published papers about BTR, there are only some fuzzy requirements of the 

tip characterizer since the BTR method works without prior knowledge of the sample. This leads the 

algorithm to work excellent in theory but not always in practice. For example, the simulated experiment 

illustrated by Villarubia in 1997 [32] was done on a granular surface. The tip was constructed as a 118° 

cone with a 40 nm radius at the apex. From the comparison with the actual tip, the reconstruction fits the 

tip well only on the 5 nm apex but is not coincident with the parts below. Of course, this phenomenon 

may be limited by the maximum height of the sample. Another example is a tip with ~38 nm-wide base 

that is simulated by Flater in 2013 [38] with a maximum height of 254 nm. We can clearly see the 

estimated tip only fits well around the tip apex, but matches poorly the actual tip geometry far from the 

tip apex even if the maximum peak-to-valley height of the sample is 290 nm. According to their analysis, 

the reason is that the samples are not optimized to give tip reconstructions that most accurately reproduce 

the actual tip shape. The reconstructed tip is far from satisfactory even if the features of the samples are 

smaller than that of the tip. Actually, in previously published papers, the descriptions of suitable tip 

characterizer are very ambiguous. The authors just use some specific samples to reconstruct some 

specific tips without regularity conclusions.  

In order to explore the errors of BTR caused by sample features, here we carried out a series of 

simulation experiments based on the conical model. It is generally believed that the reconstructed tip 

shape fits very well to the real tip shape by using samples with surface structures sharper than the applied 

tip. However, the simulation results verified that this view is not entirely correct. The prerequisite of the 

tip characterizer is that its cone angle must be smaller than that of the tip. Then the smaller the radius of 

curvature of the tip characterizer is, the closer the reconstructed tip is to the actual tip. Through further 

analysis, we simulate a sharp-edged cylinder structure whose equivalent cone angle is smaller than that 

of the tip. The results show that this kind of structures is also a suitable tip characterizer.  

2. Methodology 

In this part, we mainly explain the blind reconstruction methods and illustrate some significant 

equations. For detailed information, please refer to [32] and for detailed principles on how to select tip 

reconstruction parameters, like tip matrix size and threshold values, please refer to [38]. 

2.1. Image Production 

The imaging process can be described as incessantly adjusting the height of the tip until a measured 

feedback quantity reaching the preset value when it scans the sample point-by-point, line by line. The 

position of the tip apex will mark the image height at that point. Feedback quantities are selected 
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depending on their sensitivity to the proximity of the tip to the sample surface. The above process 

approximates to lower the tip until it just touches or nearly touches the sample surface. On the basis of 

the approximation, the mathematical description of the imaging process is described by Equation (1). 

( )
( )

( ) ( )
,

', ' min ', ' ,
x y

i x y t x x y y s x y= − − − −    (1)

Here, ( )', 't x x y y− − is a function describing the translated tip apex from the point ( ),x y . ( ),s x y  

is the top surface of the sample. ( )', 'i x y  is the image surface. 

Then through a few mathematical derivations [32], the imaging equation can be expressed in terms 

of mathematical morphology as follows. 

I S P= ⊕  (2)

Here, I  and S  are the sets of function i  and s  respectively describing the top surface of image and 

specimen. P  are the sets of function p  which is a tip reflection through the origin of a coordinate 

system. ⊕  is the mathematical operation of dilation. Based on the Equation (2), we can use S  and P  as 

inputs to obtain image I . 

2.2. Tip Reconstruction 

The BTR method is an iterative process expressed by a mathematical morphology operation as in 

Equation (3).  

( ) ( )'
1i i i

x I
P I x P x P+

∈
 = − ⊕   ， ( )' ( )i iP x P x I= −  (3)

iP  is the iteration result of the reflection tip. '
iP  excludes the forbidden situation that the tip apex 

penetrate the sample. I  is an image surface set. 

Since the tip-sample touching point is unknown, the BTR algorithm gets the contact coordinates by 

comparing every allowable touching point for a given image and tip coordinate. As Villarubia  

verified [32], each iteration of Equation (3) will produce a result smaller than or equal to the preceding 

one. Until the convergence limit, i.e. no modification of the tip, the best estimated tip will be obtained 

by blind reconstruction procedure. For a more detailed implementation of Equation (3), please refer  

to [32]. 

From the imaging process, it is obvious that the sample is a subset of the image, or equivalently, the 

top surface of the image forms an upper bound on the top of the sample as shown in Figure 1. The image 

is formed by dilation operation between sample and tip. Switching the two factors will provide the same 

result according to the reflexive property of dilation. Consequently, features on the image can be 

regarded as broadened images of the inverted tip that has been imaged by sample features. Owing to the 

fact that tips are generally much smaller than the samples in size, we can safely assume that the 

interaction parts between tip and sample at each scanning point is very limited compared with the whole 

sample. In this way, it is feasible to regard the sufficiently separated subsets of the image as independent 

parts, each of which respectively places an upper bound over the tip just like the four features named A, 

B, C and D in Figure 1. Therefore it would be better to extract more effective tip geometry if the useful 

features of the sample separate far enough.  
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In order to obtain accurate tip shape, the image surface shape must coincide with or be very close to 

the inverted tip at each local maximum point of image as shown in A, B, and C features. What need to 

be emphasized is that sometimes if the sample feature is inappropriate, the reconstructed tip will be much 

wider than the actual tip. As shown in D, the size of the image at this local maximum point almost 

doubles with respect to the size of the sample in the horizontal direction. This will lead to the result that 

the reconstructed tip is almost twice wider than the size of the actual tip, since BTR algorithm completely 

depends on images to reconstruct tip shape, and in this case, the reconstructed tip shape will be equal to 

the image of the feature. This is why we need to choose suitable sample to obtain more accurate 3D  

tip shape.  

Figure 1. Comparison of the sample, image and the inverted tips. 

 

2.3. Surface Reconstruction 

With a given image I  and an estimated tip shape P , we can reconstruct the sample surface by the 

mathematical erosion operation as follows. 

rS I P= Θ  (4)

First of all, if the estimated tip shape is the same as actual tip shape, rS  is not only an upper bound 

on the actual sample surface but also the best possible reconstruction. That is to say no upper bound 
smaller than rS  is acceptable and rS  is the least upper bound consistent with the image [32]. Why it is 

simply the upper bound rather than actual sample surface even though the actual tip shape is applied. 

The reason is that sometimes the tip is too large to penetrate regions like undercuts, narrow ditches or 

the base of steep walls. In summary, we can conclude that the erosion method can reconstruct all the 

regions of the sample surface that are touched by the tip. This in turn provides an interpretation why this 

method can obtain the best possible reconstruction. On the other hand, if the reconstructed tip shape is 

just an outer bound of the actual tip, some parts of the sample surface reconstructed by such a tip through 

erosion algorithm may be below the corresponding parts of the actual sample surface while the others 

are upper bound. In this case, the reconstructed sample surface is neither the upper nor lower bound of 

the real sample surface, which makes it more difficult for us to estimate the real sample surface. This 

phenomenon indicates how necessary it is to select the suitable sample. 

Sample 

Image 

Tip 

A B C D 
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In addition, based on the commutative law, the erosion method provides another great service shown 

in Equation (5). 

rP I S= Θ  (5)

It means we can use erosion to reconstruct the tip shape if the sample surface geometry S  is known 

while the tip shape is not. Strongly resembling the foregoing discussions, rP  is only equal to those 

segments of P  that have been in contacted with the sample surface but an upper bound elsewhere. 

Putting another way, Equation (5) can return to all sample-tip touching points of the real tip which is 

helpful to examine if the selected sample contains suitable structures. 

3. Simulation Description and Discussion 

3.1. Simulation Description 

As for the high resolution of CSG01 series from NT-MDT company, the parameters of the probes on 

the specification of CSG01 series is as follows: tip height varies from 10 μm to 15 μm, tip cone angle is 

no more than 20° and the tip radius of curvature is small than 10 nm. In order to know the accurate 

parameters of this kind of probes, nine unused probes have been imaged by SEM. Figure 2a shows a SEM 

photo of tip NO.5. The cone angle θ of the tip is measured for a height H of ~350 nm (Figure 2c).The other 

parameters are listed in the following Table 1. The averages of the tip radius of curvature and cone angle 

are ~9.2 nm and 16.1°, respectively, which is in accord with data from the manufacturer. According to 

the actual probe shape, we suppose the tip is a circular cone tangent to a sphere on the top. The cross 

sections through the apex of the supposed tip model are illustrated in Figure 2b.  

Figure 2. (a) A SEM image of measured tip NO.5; (b) A duplicate of image (a) with the 

cone angle lines; (c) A center cross-section of the supposed conical tip model.  

  

Table 1. The parameters of nine unused probes (CSG01) obtained from SEM images. 

Probe Number 1 2 3 4 5 6 7 8 9 Average

Tip radius of curvature (nm) 9.4 9.35 10.0 9.15 9.35 10.0 8.85 7.8 8.9 9.2 
Tip cone angle θ (°) 19.2 17.4 14.0 15.8 13.1 12.8 16.4 16.8 19.5 16.1 

In order to explore the sources of errors of BTR, a representative set of simulation tests are 

implemented in this section. The simulation platforms we are using here are MATLAB R2012a and 

(a) (b

R 

H
 

θ 

(c) 
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Microsoft Visual Studio 2010. These tips and samples are simulated based on 3D geometrical model on 

MATLAB. The images are generated by the dilation algorithm in Equation (2) and the tips are 

reconstructed by the iterative algorithm in Equation (3) on Microsoft Visual Studio. The source codes 

of the above two algorithms were provided in C code by Villarrubia [32]. The samples are simulated 

with analogous structure as the upper mentioned tip but with different parameters. Since it is not possible 

for any technique to reconstruct tip parts that are not touched by sample features, the cone angle of the 

samples must be smaller than that of the tip to touch it as much as possible. First, three sets of 

experiments with tip cone angle of 16° and sample cone angle of 10°, 15° and 20° respectively were 

done to verify this inference. Then based on the parameters of the aforementioned actual tips and the 

wear effects which make the tip flatten during the scanning process, we suppose the tip cone angles are 

equal to the above average value of 16° and the tip radii of curvature are 20 nm, 50 nm and 80 nm 

respectively. Hence three sets of experiments were carried out to investigate the effect of tip radius on 

tip reconstruction. Finally, another three sets of experiments with tip cone angle of 16°, 32° and 64° 

were performed to investigate the influence of the tip cone angle on the tip reconstruction. All sets of 

experiments were carried out with samples of different radius of curvature. The detailed parameters and 

errors are illustrated in Table 2. The sample matrix sizes are 100 × 100 and the maximum height are 100 

nm. The matrix sizes of tips range from 35 × 35 to 49 × 49 based on the actual tips sizes. The heights of 

the tips are 120 nm. 

Table 2. The errors of the BTR of different tips and samples. For example, on row of  

(80, 16, 15), it shows how the errors change with the radius of curvature of samples when 

the radius of curvature of tip is 80nm, the cone angle  of tip is 16° and  the cone angle of 

sample is 15°. 

Rs(nm) 
(Rt,Ct,Cs) (nm,°,°) 30 25 20 15 10 8 6 4 2 0 

(80,16,15) 24.95 21.20 16.89 12.05 7.62 6.60 4.22 3.65 1.35 0 

(50,16,15) 25.40 21.48 17.29 12.82 8.33 6.95 4.86 3.48 2.00 0 

(20,16,15) 25.71 21.30 17.37 12.97 8.56 6.96 5.12 3.52 1.61 0 

(50,32,15) 22.49 18.84 14.70 10.28 6.91 5.90 3.61 2.93 0 0 

(50,64,15) 16.50 13.75 11.01 8.26 5.12 3.43 3.09 1.71 0 0 

(50,16,10) 25.24 21.43 17.16 12.08 7.47 6.92 3.82 3.46 0.88 0 

(50,16,20) 27.26 22.63 18.53 14.41 10.35 8.17 6.73 5.74 3.25 1.76 

The estimated tip shape was obtained from the ideal noise-free image. In AFM imaging, we can 

change the lateral resolution by setting different scan size and pixel numbers. Such as, when images are 

collected on the same area and at the same scan size of 5 μm, but with pixel numbers of 512 × 512,  

256 × 256, the lateral resolution is up to ~9.76 nm/pixel and ~19.53 nm/pixel respectively. Resembling 

the AFM lateral resolution, via 2D interpolation procedure (The essential part of “2D interpolation” 

procedure is the function of “interp2” in MATLAB), we present the samples and tips matrix sizes of the 

same resolution of 4 nm/pixel, which is smaller than the above mentioned lateral resolution. Just like we 

can choose different pixel numbers in the AFM imaging, the essence of this procedure is to reduce the 

pixel numbers of the tips and samples, so we can reduce the matrix sizes of samples and tips without 

changing their shapes. (Note that when using 2D matrix to show 3D morphology in MATLAB, the 
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matrix sizes are the pixel numbers). The decrease of matrix sizes is of great help to reduce the time of 

tip reconstruction, and the reconstruction times are all shorter than 180 s in the simulated experiments. 

For example, for the image with 100 × 100 points and the tip with 41 × 41 points, the reconstruction 

time is around 120 s. Apparently, time decrease is at the cost of lower resolution. In order to balance the 

relationship between the resolution and time, we can choose samples with specific features instead of 

arbitrary structure to reduce the scan size. Then with the same lateral resolution, the pixel numbers will 

decrease. Finally, it will cause the decreasing of the reconstructed time.  

Figure 3. An example of simulated experiments using the Blind Tip Reconstruction (BTR) 

method. (a) A simulated 3D sample surface; (b) An image obtained by dilating sample 

surface with the simulated tip; (c) Comparison of cross sections through the apex of the 

sample and image; (d) A simulated 3D tip; (e) A reconstructed 3D tip produced by using the 

created image in BTR algorithm; (f) Comparison of cross sections through the apex of the 

tip and reconstructed tip; (g) The deviations between the actual tip and the reconstructed tip. 

H means the tip height measured from the tip apex. E means the deviations indicated by the 

black arrows in the same height in Figure 3f.  

(a) (b) (c) 

(d) (e) (f) 

  

 (g)  
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Here we illustrate one experiment ((Rt, Ct, Cs) is (50 nm, 16°, 15°), Rs is 25 nm) in Figure 3 to make 

the whole simulation process clearly.  

Rs means the radius of the sample. Rt means the radius of the tip. Ct means the cone angle of the tip. 

Cs means the cone angle of the sample. In comparison with the simulated 3D sample in Figure 3a, the 

image obtained by dilating sample surface with the simulated tip in Figure 3b is obviously dilated by the 

tip shape. Figure 3c shows the comparison of cross sections through the apex of the sample and image. 

The black arrows in Figure 3c indicate the error between the sample surface and image at the height of 

~90 nm below the apex, which is about 42 nm. The size of the image almost doubles with respect to the 

size of the sample. Therefore, it is crucial to extract the tip shape and reconstruct the sample. In  

Figure 3d, we can see the height of the tip is 20 nm higher than that of the sample of 100 nm. In addition, 

the height of the reconstructed tip which is also 100 nm as seen in Figure 3e is just equal to that of the 

sample, which means the height of the reconstructed tip is determined by the height of the tip 

characterizer. Whatever the required height of the reconstructed tip, a tip characterizer of the same or 

larger height should be used. Therefore, here we concentrate on the errors in width, while ignoring the 

errors along the height.  

Figure 3f shows the deviations between the actual tip and the reconstructed tip. The black arrows in 

Figure 3f, where the two curves tend to be parallel below ~60 nm, indicate the errors of BTR presented 

in Table 2. As we can see, the errors are defined as the stable difference in half widths between the actual 

tip and the reconstructed tip. Note that the deviations between the tips are different at different places. 

This definition for error does not take into account the entire geometry of the tip. However, in this paper, 

we simply use error to evaluate the quality of the reconstructed results. In addition, in Figure 3g, we can 

see the errors increase linearly with the tip heights and will tend to be stable when the tip heights are high 

enough, so the stable error can achieve this objective. Furthermore, this phenomenon appeared in other 

experiments in Table 2, since the heights of the samples were all made high enough to provide 

reconstructed tips of enough height. Hence, here we choose the stable errors as the error of BTR. 

From the study of the influence of the radius of curvature and the cone angle in the frame of the 

conical model, three conclusions can be drawn. First, in Table 2, the error of (50, 16, 20) is 1.76 nm even 

if the radius of curvature of the tip characterizer is 0 nm, while the others whose cone angles are smaller 

than that of the tips are 0 nm. Furthermore, as shown in Figure 4a, the errors of (50, 16, 20) are larger 

than that of the two others and the curve is roughly parallel to the other two curves. Hence, to reconstruct 

a tip shape completely consistent with the actual one, the prerequisite is that the cone angle of the tip 

characterizer must be smaller than that of the tip. The curves of (50, 16, 15) and (50, 16, 10) in  

Figure 4a roughly coincide with each other, which shows that the errors are insensitive to the cone angle 

of tip characterizer when it is smaller than that of the actual tip. Second, for tips with the same radius of 

curvature and different cone angle, the comparison of (50, 16, 15), (50, 32, 15) and (50, 64, 15) in  

Figure 4b shows that the errors decrease when the tip cone angle increases if the cone angle of the tip 

characterizer is smaller than that of the actual tip. The errors are sensitive to the cone angle of the tip: 

the larger the cone angle of the tip is, the more accurate the reconstructed tip is. Third, even if the radius 

of curvature and the cone angle of the tip characterizer are smaller than their tip analogs ((Rt, Ct, Cs) is 

(80 nm, 16°, 15°), Rs is 30 nm)), the calculated error remains unexpectedly large (24.95 nm). For tips 

with the same cone angle and different radius of curvature, the errors associated with (80, 16, 15),  

(50, 16, 15) and (20, 16, 15) tips are almost the same as shown in Table 2. They increase linearly with 
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the radius of curvature of tip characterizer as depicted in Figure 4c. Whatever the size of tip radius of 

curvature is, to reconstruct an accurate tip shape, the radius of curvature of tip characterizer should be 

as small as possible. When it is smaller than 5 nm, the errors are ~4 nm.  

Figure 4. The errors between the reconstructed tip and the actual tip obtained by various 

samples and tips. (a) The comparison of the errors (E on the Y axis) between (50, 16, 20), 

(50, 16, 15) and (50, 16, 10); (b) The comparison of the errors between (50, 16, 15),  

(50, 32, 15) and (50, 64, 15); (c) The mean of the errors between (80, 16, 15), (50, 16, 15) 

and (20, 16, 15) and associated linear fit. The residual mean is the deviation between the 

mean values calculated for each Rs and their fitted counterparts.  

(a) (b) 

(c) 

3.2. Local Error Model of BTR 

On the basis of the previous simulation results, we present now the local error model of BTR 

calculating BTR errors (Figure 5a). This model is equivalent to a reverse AFM imaging process where 

the tip would be scanned by the sample. In the frame of this model, the cone angle of the sample is 

assumed to be smaller than that of the actual tip. The error (the distance E in Figure 5a) of the BTR 

method is described by Equation (6).  

( )( ) ( )s t1 si cosn 2 2tE R C C= −  (6)

here, Rs is the radius of curvature of the sample and Ct is the cone angle of the tip. The error E corresponds 

to the stable error mentioned in Section 3.1. It decreases as a function of the tip cone angle and increases 
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linearly with the sample radius of curvature just as the above stable error derived from the simulated 

experiments. Since it only relates to the radius of curvature of the sample and the cone angle of the tip, 

the error E  will stay the same until the contact point just moving up to the tangential point P of the tip 

in Figure 5a. The tangential point is a critical point. Above this point, the errors do not level off when 

changing tip height. The tip height at this point can be described by the following Equation (7).  

( ) ( )( )s t1 sin 2t CH R R −= + (7)

here, H  is the tip height measured from the tip apex at the critical point. When it gets higher, the error 

will stay the same. Rs is the radius of curvature of the sample and Ct is the cone angle of the tip.  

Figure 5. (a) The local error model of BTR allowing errors of the BTR method to be 

calculated; (b) The comparison of the errors from the Equation (6) (the black straight lines 

with open symbols) and the simulated experiments (the color curves with solid symbols).  

Ct = 16°, Ct = 32° and Ct = 64° are the errors calculated from the Equation (6) when tip cone 

angles are 16°, 32° and 64° respectively. Mean of Ct = 16° are the average errors of  

(50, 16, 15), (50, 16, 10), (80, 16, 15) and (20, 16, 15), since they have the same cone angle 

of 16°. The two other curves are the errors of (50, 32, 15) and (50, 64, 15), whose tip cone 

angles are 32° and 64° respectively; (c) The average deviations between the errors from  

the Equation (6) and the errors derived from the simulated experiments of (50, 16, 15)  

(50, 16, 10) (80, 16, 15) (20, 16, 15) (50, 32, 15) and (50, 64, 15) at different tip cone angles. 

Error bars represent the corresponding standard deviations. 

 
(a) (b) 

(c) 

Sample 

Rt 

Tip 

E 
Rs 

Ct/2 

Ct 
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Figure 6. (T) A simulated 3D tip. (IT) an initial 3D tip for S2. (S1,S2) are simulated suitable 

structures for BTR. (S3) is the sample needed to be reconstructed. (I1,I2,I3) are the images 

obtained by dilating sample surface with the simulated tip. (RT1) and (RT2) are the 

reconstructed tips produced by using the created image I1 and I2 in BTR algorithm. (R1S3) is 

the reconstructed sample surface produced by using the reconstructed tip (RT1) in erosion 

algorithm. (a) The comparisons of cross sections through the apex of the actual tip (T) and 

the tip reconstructed from S1 (RT1); (b) The comparisons of cross sections through the apex 

of the actual tip (T) and the tip reconstructed from S2 (RT2); (c) The comparisons of cross 

sections through the apex of the actual surface of S3, image (I3), reconstructed image using 

RT1 (R1S3) and reconstructed image using RT2 (R2S3).  
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As seen in Figure 5b, the errors calculated using Equation (6) are in good agreement with those 

derived from the simulated experiments. They are sensitive to the radius of curvature of the samples and 

the cone angle of the tip but insensitive to the radius of curvature of the tip and the cone angle of the 

samples when the cone angle of the sample is smaller than that of the tip. The maximum deviation is 

1.22 nm. Figure 6c shows the corresponding average deviations and standard deviations (Ee on the Y 

axis) of Figure 6b at different radius of curvature of the samples. As seen in Figure 6c, the deviations 

vary with the radius of curvature of the samples. They disperse greatly and there are no rules  

between them. When the radius of curvature of the samples is 2 nm, the deviation can be expressed as 

0.62 ± 0.66 nm. The overall deviation can be expressed as 0.43 ± 0.83 nm. Combined with the above 

mentioned lateral resolution of AFM, which can be up to ~3.9 nm/pixel when the scan size is 1500 nm 

and pixel numbers are 512 × 512. In addition, increasing the scan size or decreasing the pixel numbers, 

the lateral resolution will become larger. Compared with the lateral resolution used in the above 

simulated experiments (4 nm/pixel), it is valid to ignore the deviations between the errors derived from 

the Equation (6) and the simulated experiments. Hence, the local error model of BTR is indeed in 

quantitative agreement with the simulation results. 

Since the errors calculated from Equation (6) closely match those derived from the simulated 

experiments, we can consider the reconstructed tip as a broadened image of the tip. In order to obtain an 

accurate tip shape, the image must coincide with or be very close to the inverted tip shape. Hence, the 

cone angle of the tip characterizer must be smaller than that of the tip to make most parts of the tip touch 

by the tip characterizer end. Furthermore, the smaller the radius of curvature of the tip characterizer is, 

the closer the geometries of the image and the tip are. When it is infinitely close to 0 nm, the geometries 

of the image and the tip will be the same. In this situation, BTR method will reconstruct tip exactly as 

the actual tip. The tip characterizer end can be extended to the local maximum point of sample and the 

radius of curvature can be extended to the roundings of the local maximum point. These conclusions 

will provide great help for users to choose suitable tip characterizer so as to reconstruct accurate 3D tip 

shape and to get the actual sample surface. 

3.3. Suitable Structure 

On the basis of the previous analysis, in Figure 6, we propose two suitable structures for a better 

reconstruction of BTR method. A 3D tip with cone angle of 16° and radius of curvature of 30 nm was 

simulated as shown in Figure 6T. Figure 6S1 is a conical structure S1 with small radius of curvature. The 

cone angle and radius of curvature of S1 are 10° and 5 nm. Figure 6S2 is a cylindrical structure S2. The 

corresponding cone angle of S2 is 15°. According to the previous conclusions in Section 3.2, the cone 

angles of S1 and S2 are all smaller than that of the tip (S1 and S2 are sharper than the tip). Figure 6S3 is a 

sample S3 with cone angle of 60° and radius of curvature of 40 nm. In Figure 6I1–I3, we can clearly see 

the images are distortions and expansions of the original samples. As shown in Figure 6RT1, the tip 

reconstructed from S1 is a very close outer bound of the actual tip. The error is ~3.69 nm as can be seen 

in Figure 6a. The reconstructed S3 is over eroded by the reconstructed tip as seen in Figure 6c. However, 

the error is ~2.42 nm much smaller than the image error which is ~18.74 nm as shown in Figure 6c. In 

Figure 6RT2, the S2 structure provided a 3D tip shape which is almost the same as the actual one. The 

error between the actual tip (T) and the tip reconstructed from S2 (RT2) is only ~0.95 nm as seen in 
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Figure 6b. In addition, Figure 6c shows that the reconstructed image using RT2 is very similar to the 

actual sample surface. The error between them is nearly 0 nm. However, note that the initial tip shape 

leading to this tiny error must be a specific curve structure as represented in Figure 6IT. 

The simulation results verified the above conclusions, especially the conclusion derived from  

Section 3.2 that the radius of curvature can be extended to the roundings of the local maximum point. 

From the comparison of Figure 6a,b, the cylindrical structure S2 provided better reconstruction than that 

of the conical structure S1. For structure S2, there are no roundings of the local maximum point which 

means the radius of curvature is ~0 nm. That is why the S2 structure provided a 3D tip shape which is 

almost the same as the actual one. 

4. Conclusions 

In order to get a better reconstruction of 3D tip shape and sample surface, we first need to understand 

that the reconstructed tip height is determined by the height of the tip characterizer. One should choose 

it higher than the height of samples that needed to be reconstructed. Furthermore, to make features on 

AFM images close to the geometry of the tip, the cone angle of the tip characterizer must be smaller than 

that of the tip. When it meets the above conditions, the reconstructed tip is insensitive to the cone angle 

of the tip characterizer based on the previous simulation experiments and analysis. The BTR errors are 

insensitive to the radius of curvature of the tip but sensitive to the tip cone angle. They decrease as a 

function of the tip cone angle. With the same tip characterizer, for tips with large cone angles, the errors 

of BTR are smaller than the tips with small cone angles.  

The reconstructed tip is very sensitive to the radius of curvature of the sample. The smaller it is, the 

better the result is. In an ideal situation, the sample is a circular cone with one peak point. Unfortunately, 

it is hard to find such samples in reality, but, when the radius of the tip characterizer is smaller than  

5 nm, the error will be around 4 nm. The reconstructed sample surface will be much closer to actual 

sample surface than the image. For example, the ‘Tipcheck’ sample (RS-12M) from Bruker Corporation 

containing many very sharp grain features of radii smaller than 5 nm combined with a cliffy and higher 

grating whose equivalent cone angle is smaller than that of the tip, will be ideal for determining the tip 

shape in the BTR method. The cylindrical structure, whose equivalent cone angle is smaller than that of 

the tip, is also a good tip characterizer for tip reconstruction, such as, ultra-precision turning of  

micro-optical components which contain sharp edges like Fresnel reflectors. However, no absolute 

prismatic structures like the ideal cylindrical structures in reality. There will always be roundings around 

the local maximum points of the cylindrical structures. The roundings of the local maximum points are 

similar to the radius of curvature of conical structures. The bigger the rounding radius, the larger the  

error is. 
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