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ABSTRACT

Neorickettsia risticii is an obligate intracellular
bacterium of the trematodes and mammals.
Horses develop Potomac horse fever (PHF) when
they ingest aquatic insects containing encysted
N. risticii-infected trematodes. The complete
genome sequence of N. risticii Illinois consists of a
single circular chromosome of 879 977 bp and
encodes 38 RNA species and 898 proteins.
Although N. risticii has limited ability to synthesize
amino acids and lacks many metabolic pathways, it
is capable of making major vitamins, cofactors and
nucleotides. Comparison with its closely related
human pathogen N. sennetsu showed that 758
(88.2%) of protein-coding genes are conserved
between N. risticii and N. sennetsu. Four-way com-
parison of genes among N. risticii and other
Anaplasmataceae showed that most genes are
either shared among Anaplasmataceae (525
orthologs that generally associated with house-
keeping functions), or specific to each genome
(>200 genes that are mostly hypothetical proteins).
Genes potentially involved in the pathogenesis of
N. risticii were identified, including those encoding
putative outer membrane proteins, two-component
systems and a type IV secretion system (T4SS). The
bipolar localization of T4SS pilus protein VirB2 on
the bacterial surface was demonstrated for the
first time in obligate intracellular bacteria. These
data provide insights toward genomic potential of
N. risticii and intracellular parasitism, and facilitate
our understanding of PHF pathogenesis.

INTRODUCTION

Characterized by fever, depression, anorexia, dehydration,
watery diarrhea, laminitis and/or abortion, Potomac horse
fever (PHF) is an acute, often severe to fatal systemic

disease of horses and typically occurs in the warm weather
months of middle to late summer (1,2). The outbreak of
PHF in the 1970s along the Potomac River in Maryland
and Virginia helped to recognize PHF as a new disease
entity (3). Subsequent investigations led to the
ultrastructural observation of intracellular bacteria similar
to Neorickettsia sennetsu, the agent of human Sennetsu
neorickettsiosis, in intestinal tissues of horses with acute
PHF (2,4) and the discovery of a new bacterium,
Neorickettsia risticii (formerly Ehrlichia risticii). N. risticii
was demonstrated as the causative agent of PHF by
fulfilling Koch’s postulates (1,5). Currently, PHF is
frequently found throughout North America and increas-
ingly recognized in South America, including Brazil and
Uruguay (6,7).

In the natural environment, Neorickettsia spp. reside
inside trematodes, which can be transstadially transmitted
through all developmental stages of trematodes and
transovarially passed through generations of trematodes.
The relationship of N. risticii with its trematode host
seems to be either commensal or mutualistic, as reproduc-
tion of trematodes does not appear to be adversely
affected by infection (8). Mammalian infection by
Neorickettsia spp. occurs by horizontal transmission of
the bacterium from trematodes to susceptible mammalian
hosts, mostly through ingestion of this bacterium in the
metacercarial stage of trematodes encysting in insects
or fish (6). In the eastern United States, N. risticii is
maintained by transstadial and transovarial passage in
the digenetic trematode, Acanthatrium oregonense, which
has a complex life cycle consisting of miracidia and
sporocysts in snail hosts (Elimia virginica), free-swimming
cercariae, metacercariae in aquatic insects (caddisflies,
mayflies), and adults that lay eggs in the intestinal lumen
of insectivorous bats (6,8–11). Upon ingestion of N. risticii
in the metacercarial stage of the trematodes in aquatic
insects by horses, N. risticii is horizontally transmitted
from the trematodes to horses and replicates within inclu-
sion bodies inside monocytes, macrophages, mast cells
and intestinal epithelial cells (2,11–13). Currently, the
only effective treatment of PHF is the administration of
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broad-spectrum tetracycline antibiotics in the early stages
of the disease (11). Although a vaccine against PHF has
been marketed, PHF continues to cause widespread
infections, probably due to both the insufficient immunity
developed by the vaccination and the antigenic variation
of N. risticii strains in the field (14,15).

So far, Neorickettsia spp. that cause significant illness
in mammals have been studied sufficiently to be officially
classified. These are N. risticii, N. sennetsu (formerly
Ehrlichia sennetsu and Rickettsia sennetsu) and
N. helminthoeca, the agent of Salmon poisoning disease
in dogs (Table 1) (6,16,17). The 16S rRNA-based phylo-
genic tree shows that Neorickettsia species reside in a
clade separated from other Anaplasmataceae in the
order Rickettsiales, including Ehrlichia chaffeensis,
Anaplasma phagocytophilum and the Wolbachia endosym-
biont of Brugia malayi (wBm) (Figure 1). While N. risticii
infects a trematode that uses an aquatic insect as an inter-
mediate host in North America, N. sennetsu infects a
trematode that likely uses a fish as an intermediate host
in Southeast Asia (6,11). Despite distinct trematode and
mammalian hosts, pathogenesis and geographic ranges,
phylogenetic analysis based on the 16S rRNA sequence
indicates that there is only 0.7% divergence between
N. risticii and N. sennetsu (Figure 1).

In the present study, the N. risticii genome is sequenced,
compared with those of other members of the family
Anaplasmataceae, especially N. sennetsu: the only
sequenced member of the Neorickettsia genus with
unknown trematode association, and potential virulence
factors and novel outer membrane proteins are identified.

While N. risticii is the newest member of the genus
Neorickettsia, of all Neorickettsia spp., it has the broadest
geographic distribution, inflicting the greatest economical
and emotional loss, and the best information available for
pathogenesis and immune responses (6). These genome
sequence data will be critical for enhancing our knowledge
of this obligate intracellular bacterium, providing tools
for better understanding PHF pathogenesis, and the
development of effective vaccines.

MATERIALS AND METHODS

Culture and purification of N. risticii genomic DNA

Neorickettsia risticii IllinoisT was obtained from the
Naval Medical Research Center (Bethesda, MD) (11).
Neorickettsia risticii Illinois was propagated in P388D1

cells, a murine monocytic leukemia cell line, in RPMI
1640 medium supplemented with 10% fetal bovine
serum and 2mM L-glutamine in a humidified 5% CO2–
95% air atmosphere at 378C as previously described (18).
Bacterial cells were liberated from the infected host cells
using Dounce homogenization, and purified by differential
centrifugation and Percoll density gradient centrifugation
(17). Any specimens with host nuclei contamination were
excluded. From these isolated bacteria, phenol extraction
was used to purify DNA that was minimally fragmented
and free of host-cell DNA. Levels of host DNA contam-
ination were verified to be less than 0.01% by PCR using
host G3PDH-specific primers.

Table 1. Biological characteristics of the selected members of the family Anaplasmataceae

Species Vertebrate
host

Invertebrate vector/hosta In vivo-infected
mammalian cells

Diseases Geographical
distribution

N. risticii Horse, Bat Digenetic trematode
Acanthatrium oregonense
of snails and aquatic insects
(TOP)

Monocytes,
macrophages,
intestinal epithelial
cells, and mast cells

Potomac horse
fever

USA, Canada,
Brazil, Uruguay

N. sennetsu Human Unknown trematodes of snails
and fish (TOP, not proven)

Monocytes and
macrophages

Sennetsu
neorickettsiosis

Southeast Asia

N. helminthoeca Canidae Trematode Nanophyetus
salmincola of snails and
fish (TOP)

Monocytes and
macrophages

Salmon poisoning
disease

California,
Washington,
Oregon, Idaho,
Canada

A. phagocytophilum Human, Deer,
Cat, Rodent,
Sheep, Cattle,
Horse, Dog,
Wild boar,
Llama

Ixodes Ticks (I. scapularis,
I. ricinus, I. persulcatus)

Granulocytes and
endothelial cells

Human granulocytic
anaplasmosis

USA, Europe, Asia

E. chaffeensis Human,
Deer, Dog

Ticks (Amblyomma americanum) Monocytes and
macrophages

Human monocytic
ehrlichiosis

USA, Israel,
Europe, Africa,
South and
Central America

The Wolbachia
endosymbiont
of Brugia malayi

N/A Filarial nematode in insects
(TOP)

N/A (River blindness/
inflammation)b

World Wide

aTransmission mode: Except for Anaplasma and Ehrlichia species, all these listed organisms can be transovarially transmitted (TOP, Transovarial
passage).
bFilarial nematode causes debilitating inflammatory diseases such as river blindness and lymphatic filariasis. However, the predominant inflammatory
response in the cornea is due to a species of endosymbiotic Wolbachia bacteria (Science 295: 1982, 2002).
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Genome sequencing, gap closure and assembly

The genome of N. risticii Illinois was sequenced with shot-
gun sequencing at 20� coverage using a pyrosequencing
protocol in a microfabricated high-density picoliter reac-
tion (454 Life Sciences, Branford, CT). Eight major
contigs (>16 kb each) and five minor contigs (629–
5105 bp) were obtained, and gaps were closed by primer
walking. All PCR primers were designed around 200 bp
from the ends of each contigs, with the positions of contigs
in the N. risticii genome predicted by blasting those
to the N. sennetsu genome (GenBank No. NC_007798).
The whole genome was assembled from the contigs and
the sequenced gap segments by the SeqMan program from
the Lasergene DNAStar software package (Madison, WI).
The GC-skew was calculated as (C–G)/(C+G) in
windows of 1000 bp along the chromosome (19).

Genome annotation and comparison with other related
organisms

The DNA sequence was submitted to the JCVI (J. Craig
Venter Institute) Annotation Service, where it was run
through JCVI’s prokaryotic annotation pipeline (http://
www.jcvi.org/cms/research/projects/annotation-service/).
Included in the pipeline is gene finding with Glimmer 2,
Blast-extend-repraze (BER) searches, HMM (a hidden
Markov model) searches, TMHMM (transmembrane
helix prediction) searches, SignalP predictions and auto-
matic annotations from AutoAnnotate. Potential protein
and RNA-coding sequences were predicted and annotated
from these tools, including feature identification (e.g.
protein motifs), and assignment of database matches
and functional role categories to genes (17). The manual
annotation tool Manatee was downloaded from
SourceForge (http://manatee.sourceforge.net) and used
to manually review and curate the output from the pro-
karyotic pipeline of the JCVI Annotation Service.
Ribosome binding sites (RBS) were determined by
RBSFinder (ftp://ftp.tigr.org/pub/software/RBSfinder/).
The Ka/Ks ratio was determined using WSPMaker with
the sliding window method (http://wspmaker.kobic.kr/),
a web based tool to calculate and display the selection

pressure in sub-regions of two orthologous protein-
coding DNA sequences (20).

Phylogenetic trees were constructed based on sequence
alignment by the Clustal W method using the MegAlign
program from the Lasergene package. Comparative ana-
lysis of N. risticii and related organisms (N. sennetsu,
E. chaffeensis, A. phagocytophilum and Wolbachia wBm)
was performed by using reciprocal BLASTP. N. risticii
genes with or without homology to other related
organisms were identified by reciprocal BLASTP hits
with cutoff scores of E< 10–5. Signal peptides and trans-
membrane helices were predicted by using SignalP 3.0 (21)
and TMHMM 2.0 (22) set at default values.

Analysis of VirB2 expression in N. risticii-infected
P388D1 cells

To detect gene expression of virB2 in N. risticii, total RNA
was extracted from N. risticii-infected P388D1 cells at 3
days post-infection (p.i.) and RT–PCR was carried out
using specific primers spanning virB2.1 and virB2.2 genes
(Supplementary Table 1) as described previously (23).
The expression of VirB2 protein was confirmed by west-
ern blot analysis as described previously (23), using
custom-raised rabbit antisera against 15-mer peptide
(aa32–46: AGPDKDDSIVSRVIC) of N. risticii VirB2-1
(NRI_0738) (Sigma-Genosys, Woodlands, TX).

Double immunofluorescence labeling

Neorickettsia risticii-infected P388D1 cells at 2 days p.i., or
N. risticii organisms purified as previously described (24),
were centrifuged onto glass slides using a Shandon
Cytospin 4 cytocentrifuge (Thermo Fisher Scientific,
Kalamazoo, MI) and fixed in 4% paraformaldehyde at
room temperature for 15min. Neorickettsia risticii-
infected cells were permeabilized with 0.1% saponin for
15min and washed, whereas purified N. risticii organisms
were subjected to labeling without saponin permea-
bilization. Samples were incubated with horse anti-
N. risticii serum and rabbit anti-N. risticii VirB2
(NRI_0738) antibody in phosphate-buffered saline (PBS)
containing 1% bovine serum albumin for 1 h at room
temperature. After washing with PBS, cells were labeled
with FITC-conjugated goat anti-horse (Jackson

Figure 1. Phylogenetic tree of the family Anaplasmataceae. 16S rRNA sequences of members of the family Anaplasmataceae were aligned using the
Clustal W method, and a phylogenetic tree was built. Gray box highlights Neorickettsia species.
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ImmunoResearch, West Grove, PA) and Alexa Fluor
555–conjugated goat anti-rabbit (Invitrogen, Carlsbad,
CA) secondary antibodies for 1 h. Fluorescence images
were analyzed and captured by a SPOT CCD digital
camera (Diagnostic Instruments, Sterling Heights, MI)
connected to a Nikon Eclipse E400 fluorescent microscope
with a xenon-mercury light source (Nikon Instruments
Inc, Melville, NY).

GenBank accession number

The sequence data described here have been deposited in
GenBank (accession number CP001431).

RESULTS AND DISCUSSION

General features of the genome

The genome of N. risticii consists of a single circular
chromosome spanning 879 977 nt and has a G+C content
of 41.3% (Table 2). The replication origin of the N. risticii
was predicted based on one of the GC-skew shift points
and the location of parB (Figure 2). This putative origin
coincides with those of closely related species
E. chaffeensis and N. sennetsu (17). The N. risticii and
N. sennetsu genomes are smaller than those of other
members in the family Anaplasmataceae, which are
�1.0–1.5Mb. In agreement with small 16S rRNA gene
sequence divergence between N. risticii and N. sennetsu
(Figure 1), the synteny plot between N. risticii and
N. sennetsu indicates that these two genomes exhibit
almost complete synteny, whereas no significant synteny
is present with other members of the Anaplasmataceae
(Figure 3).

The N. risticii genome encodes one copy of 5S, 16S and
23S rRNA genes. Similar to the other Anaplasmataceae
sequenced, the 5S and 23S rRNA genes form an operon
(17), while the 16S rRNA gene is separated by �0.7Mb
and followed by sdhCD, as in A. phagocytophilum (25).
Thirty-three tRNA genes are identified, which include
cognates for all 20 amino acids. N. risticii has a smaller
number of predicted genes and a lower coding density
(86.8%) than N. sennetsu (Table 2). Of 898 predicted
protein-coding open reading frames (ORFs), 554

genes are assigned with probable functions based on
similarity searches. Nearly 40% of the predicted ORFs
(345 genes) in the genome are annotated as ‘hypothetical’
genes, either with conserved domains or unknown
functions (Table 2 and Figure 2, gray bars in first two
circles).
Analysis of the N. risticii genome identified thirteen

pairs of overlaps in protein-coding ORFs, and seven
pairs of overlaps in RNA- and protein-coding genes
(Supplementary Figure 1). Although most of the
protein-coding ORFs that overlap with RNA genes
encode small proteins (<50 aa) without any known
functions, one encodes replicative DNA helicase (dnaB,
NRI_0529), which potentially has essential functions for
bacterial replication, and overlaps with an essential tRNA
gene that decodes Proline (Supplementary Figure 1B).
Overlapping genes are detected primarily in parasitic or
symbiotic bacteria and are believed to be a consequence
of the reduction of originally larger genomes (26,27).
Whether these overlapping genes are expressed by
N. risticii remains to be experimentally verified.
The N. risticii genome has 110 ORFs that encode small

hypothetical proteins with fewer than 60 amino acids.
By RBSFinder analysis, 43 out of 110 (39%) do not
have RBS upstream of the start codon. It is possible
that translation of these leaderless mRNAs can be
initiated via a novel pathway that involves the
preassembled 70S ribosome rather than via a free 30S sub-
unit (28). To determine whether these small protein-
coding ORFs have evolved as typical coding genes with
purifying selection restricting nonsynonymous changes,
the Ka/Ks ratio was determined using WSPMaker with
the sliding window method (20). The Ka/Ks ratio
represents the rate of nonsynonymous substitutions (Ka)
to that of synonymous substitutions (Ks), which can be
used as an indicator of selective pressure acting on a
protein-coding gene (29). Since WSPMaker takes
orthologous protein-coding sequence pairs as input, we
first used BLASTP to determine the small hypothetical
proteins that are conserved between N. risticii and
N. sennetsu. The resulting 26 orthologous ORF pairs
were then concatenated with the stop codons removed
(Supplementary Figure 2). Results demonstrated that,

Table 2. Genome properties in the selected members of the family Anaplasmataceae

Organisms NRI NSE APH ECH WBM

ORFs 898 935 1369 1115 1218
tRNA 33 33 37 37 34
rRNA 3 3 3 3 3
sRNA 2 2 2 3 1
Size 879 977 859 006 1 471 282 1 176 248 1 080 084
GC (%) 41.3 41.1 41.6 30.1 34.2
Average gene length 841 804 775 840 676
Coding (%)a 86.9 89.2 90.5 87.6 77.4
Assigned functions 554 534 756 608 664
Unknown functions 344 401 612 506 554

APH, Anaplasma phagocytophilum; ECH, Ehrlichia chaffeensis; NSE, Neorickettsia sennetsu; NRI, Neorickettsia risticii;
WBM, the Wolbachia endosymbiont of Brugia malayi.
aPercent coding includes tRNA, rRNA, sRNA and all protein-coding genes.
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although the average Ka/Ks ratio of the concatenated 26
orthologous ORF pairs of N. risticii and N. sennetsu
is 0.71, four regions, corresponding to six N. risticii
protein-coding ORFs, exhibit Ka/Ks value >1 (Supple-
mentary Figure 2). It suggests that these ORFs may
have positive selection for advantageous mutations.
It has been suggested that around 10–30% of small

protein-coding ORFs (<300 bp) do not actually encode
proteins (30,31). As an obligate intracellular bacterium
with a genome of <900 kb, N. risticii may share genomic
features with closely related members in the family
Anaplasmataceae. A whole genome transcription profiling
study of A. phagocytophilum showed that �70% of ORFs
were significantly transcribed, including 342 out of 409
ORFs (84%) of fewer than 180 bp (32). Furthermore,
the global proteomic analysis of E. chaffeensis showed
that more than 90% of 1115 predicted proteins were
expressed, including 130 (62%) out of 209 proteins of
fewer than 60 aa, most of which are hypothetical proteins
(33). These data suggest that most of N. risticii small

ORFs could also be transcribed similar to E. chaffeensis
and A. phagocytophilum. As there is no definitive way to
determine functional ORFs other than the experimental
analysis, and all future analyses such as microarray and
proteomics depend on the completeness of ORFs in
curated genome sequences, we opt to retain all predicted
ORFs in our annotation to facilitate future studies.

Comparison of protein-coding genes among N. risticii
and other Anaplasmataceae

In order to compare the genome content of N. risticii
to representative members of Anaplasmataceae including
N. sennetsu, E. chaffeensis, A. phagocytophilum and
Wolbachia wBm, two-, three- and four-way comparisons
were performed, and homologous clusters were
constructed. Two-way comparison between N. risticii
and N. sennetsu shows that these two genomes have 758
protein-coding ORFs that are orthologous to each other
(88.2% of total protein-coding ORFs) (Figure 4A).

Figure 2. Circular representation of the genome of N. risticii. From outside to inside, the first two circles represent predicted protein-coding
sequences (ORFs) on the plus and minus strands, respectively. Colors indicate the role categories of ORFs: dark gray: hypothetical proteins or
proteins with unknown functions; gold: amino-acid and protein biosynthesis; sky blue: purines, pyrimidines, nucleosides and nucleotides; cyan: fatty
acid and phospholipid metabolism; light blue: biosynthesis of cofactors, prosthetic groups and carriers; aquamarine: central intermediary metabolism;
royal blue: energy metabolism; pink: transport and binding proteins; dark orange: DNA metabolism and transcription; pale green: protein
fate; tomato: regulatory functions and signal transduction; peach puff: cell envelope; pink: cellular processes; maroon: mobile and extrachromo-
somal element functions. The third and fourth circles show unique ORFs compared to N. sennetsu. The fifth and sixth circles represent RNA genes,
including tRNAs (blue), rRNAs (orange), and sRNAs (red). The seventh circle represents G–C skew values [(G – C)/(G+C)] with a windows
size of 1 kb.
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Despite almost complete genome synteny between
N. risticii and N. sennetsu, 140 (15.6% of total N. risticii
ORFs, Figure 2, third and fourth circles) and 177 genes
(18.9% of total N. sennetsu ORFs) are unique to each
organism, respectively. Among them, 120N. risticii genes
(13.4%) do not exhibit similarity to any genes of either
bacterial or eukaryotic origin (Table 3 and Supplementary
Table 2). Functions of these predicted proteins are
unknown, and their molecular masses range from 4.1 to
92.3 kDa. Of note, three N. risticii genes (0.3% of total
genes) match only to genes in other Anaplasmataceae
genomes, but not to genes in the N. sennetsu genome
(Supplementary Table 2). Two ORFs encoding Na+/H+

antiporter MnhB subunit-related proteins (NRI_0032/
NRI_0033) are found only in members of
Anaplasmataceae that primarily infect animals, such as
E. ruminantium, E. canis and A. marginale, but not in
human pathogens such as N. sennetsu, E. chaffeensis, or
A. phagocytophilum human isolate. One conserved hypo-
thetical protein matches to Wolbachia and Ehrlichia spp.,
with the characteristic C-terminal basic amino-acid motif
for a type IV secretion system (T4SS) substrate
(NRI_0703). Interestingly, N. risticii is the only sequenced
species in the order Rickettsiales that encodes a complete
DNA photolyase (deoxyribodipyrimidine photolyase,

NRI_0805): an alternative mechanism for repairing
UV-induced DNA damage (Supplementary Table 2).
Although N. sennetsu also encodes a DNA photolyase,
it contains a point mutation at nt814 (CAA ! TAA),
which results in a premature stop codon at aa271 (full-
length protein length: �470 aa) and renders this ORF
nonfunctional.
Four-way comparison of genes among N. risticii

and selected Anaplasmataceae members shows that
most N. risticii genes are either shared among all
Anaplasmataceae (525 orthologs) or specific to each
genome (>200 ORFs) (Figure 4B). Analysis of these
genes for functional categories indicates that most of the
shared genes are associated with housekeeping functions
(Table 3 and Supplementary Table 3). Of N. risticii-
specific genes detected in this four-way comparison,
the vast majority of these genes encode hypothetical,
conserved hypothetical, and conserved domain proteins,
as well as uncharacterized membrane proteins or
lipoproteins (Table 3 and Supplementary Table 4). Two-
and three-way comparisons show that most genes in these
four genomes are either conserved among E. chaffeensis,
A. phagocytophilum, and Wolbachia wBm (76 ortholog
clusters), or between E. chaffeensis and A. phago-
cytophilum (53 ortholog clusters) (Figure 4B and

Figure 3. Synteny plots between N. risticii Illinois (horizontal axis) and N. sennetsu Miyayama, A. phagocytophilum HZ, E. chaffeensis Arkansas,
and the Wolbachia endosymbiont of Brugia malayi. Numbers represent base pairs. Each dot represents a pair of probable sequence fragments
defined as reciprocal BLAST best hits with E-value <0.001 (red: sequences match at the forward strand; blue: sequences match at the reverse
complemented strand).
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Supplementary Tables 5 and 6). N. risticii shares very
limited numbers of ortholog clusters (mostly less than
10) in both two- and three-way comparisons (Figure 4B
and Supplementary Tables 4–6). The only exception is
that, in three-way comparisons, N. risticii shares 38
ortholog clusters with E. chaffeensis and A. phago-
cytophilum, but not Wolbachia wBm (Figure 4B). Most
of these orthologs are enzymes involved in vitamin and
cofactor (biotin, folate and NAD) biosynthesis (15
orthologs, 40% of 38 orthologs), along with one putative

transcriptional regulator (ECH_1118, APH_1218, or
NRI_0223), suggesting a potential pathogenic trait or a
niche adaption in mammalian hosts (Supplementary
Tables 5 and 7). Interestingly, comparison with members
of Anaplasmataceae shows N. risticii and N. sennetsu
possess some genes that have either no homology or low
homology to those in Anaplasmataceae, but higher hom-
ology to those of g-proteobacteria, such as HU DNA-
binding proteins, ATP synthase subunits, DsbB/D
protein, and some ribosomal protein subunits.

Figure 4. Comparison of the gene sets in members of the family Anaplasmataceae. Venn diagram showing the comparison of conserved and unique
genes between Neorickettsia spp. (A), or among selected members of the family Anaplasmataceae (B). Numbers within the intersections of different
circles indicate ortholog clusters shared by 2, 3, or 4 organisms. (C) Comparison of gene sets by functional role category breakdown. Species
indicated in the diagram are as follows: N. sennetsu (NSE), N. risticii (NRI, A), E. chaffeensis (ECH, C), A. phagocytophilum (APH, C), and the
Wolbachia endosymbiont of Brugia malayi (WBM, D).
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As the genomes of N. risticii, N. sennetsu, E. chaffeensis,
A. phagocytophilum and Wolbachia wBm have been
annotated and assigned role categories in an identical
manner, we compared the number of genes pertaining to
different functional roles. This comparison demonstrates
that although N. risticii and N. sennetsu encode fewer
proteins, they possess similar numbers of genes involved
in housekeeping functions (Figure 4C). The only reduction
of gene number occurs in the category of proteins with
unknown functions, suggesting that essential housekeep-
ing genes cannot be sacrificed as the genome reduces,
including genes encoding metabolism, protein synthesis,
transport and regulatory functions (Figure 4C).

Metabolism

Central metabolic pathways and transporters. A previous
study showed that N. risticii is an aerobic organism and
capable of ATP synthesis from glutamine in vitro (34).
Analysis of the N. risticii genome suggests that it encodes
pathways for aerobic respiration, including pyruvate
metabolism, the tricarboxylic-acid cycle, and the electron
transport chain (F0F1-ATPase, NADH dehydrogenase,
succinate dehydrogenase, cytochrome reductase, and cyto-
chrome oxidase complexes). However, unlike Rickettsia
prowazekii and R. conorii (35), N. risticii does not
encode d-type oxidase (cydAB, cytochrome d ubiquinol
oxidase), which is expressed during low oxygen conditions
and has a higher affinity for oxygen. N. risticii is unable to

use glucose, fructose, or fatty acids directly as a carbon or
energy source, since essential enzymes for the utilization of
these substrates are not identified. The N. risticii genome
only encodes a partial glycolysis pathway, which lacks
hexokinases and is thus unable to convert glucose to
glucose-6-phosphate, and a partial gluconeogenesis
pathway, which terminates at fructose-6-phosphate.
The enzymes in the glycolysis pathway are limited to
those that produce glyceraldehydes-3-phosphate and dihy-
droxyacetone phosphate from phosphoenolpyruvate. A
complete nonoxidative pentose-phosphate pathway exists
in N. risticii, which utilizes glyceraldehydes-3-phosphate
to produce pentose that is needed for nucleotide and co-
factor biosynthesis. To compensate for the absent or in-
complete pathways, the N. risticii genome contains several
orthologs involved in membrane transport systems that
can supply the necessary amino acids, metabolites, and
ions (Supplementary Table 8) (36,37). Unlike Rickettsia
spp., N. risticii does not encode translocases for ATP or
NADH (ATP:ADP antiporter family), so it appears to
rely on its own intracellular ATP production or have a
unique ATP acquisition mechanism (Supplementary
Table 8).

Nucleotide, cofactor and amino-acid biosynthesis. Like
all other Anaplasmataceae (17), N. risticii is limited to
synthesizing only a few amino acids, such as aspartate,
glycine and glutamine and thus must transport most
amino acids from its host (Supplementary Table 7).
However, N. risticii is capable of synthesizing all
nucleotides and most vitamins or cofactors, such as
biotin, folate, FAD, NAD, CoA and protoheme
(Supplementary Table 7). Since N. risticii is maintained
transstadially and transovarially inside its invertebrate
trematode host, it is possible that N. risticii is beneficial
to the host by providing necessary vitamins and cofactors
(mutualism) (38).

Information transfer and DNA repair

Genes-encoding enzymes for DNA replication and repair,
RNA synthesis and degradation, ribosomal proteins
(except L30 and S22), as well as genes involved in hom-
ologous recombination, including RecA/RecF pathways
and RuvABC complexes, are all identified in the N. risticii
genome. In addition, two small RNAs are also found in
the genome, including rnpB (RNase P RNA component
precursor) and tmRNA (responsible for tagging incom-
plete proteins for proteolysis on stalled ribosomes). A pre-
vious study showed that N. sennetsu encodes the most
limited genes for DNA repair among several sequenced
members of the family Anaplasmataceae (17). Similarly,
N. risticii encodes uvrD family genes, but lacks most genes
required for the repair of UV-induced DNA damage,
including various glycosylases for base excision repair
(BER, such as 3mg and fpg) and exonucleases for nucleo-
tide excision repair (NER, such as uvrABC). Instead,
N. risticii might have gained limited DNA repair function
by the acquisition of a gene (NRI_0805) most closely
related to DNA photolyases of g-proteobacteria, which
is an alternative mechanism to repair UV-damaged

Table 3. Role category breakdown of conserved or unique N. risticii

genes by two- and four-way comparisons

Role category Total
genes

Conserved
genes
(four-way)a

Unique
genes
(two-way
w/NSE)b

Amino-acid biosynthesis 9 7
Biosynthesis of cofactor and vitamin 60 40
Cell envelope 32 10 1c

Cellular processes 19 15
Central intermediary metabolism 4 4
DNA metabolism 39 35 1d

Energy metabolism 77 69
Fatty acid and phospholipid

metabolism
21 19

Mobile elements 4 1
Protein fate 78 63
Protein synthesis 105 98
Nucleotide biosynthesis 35 33
Regulatory functions 9 8
Transcription 22 19
Transport and binding proteins 40 28 2e

Unknown functions 344 76 120

Total numbers 898 525 124

aConserved genes of N. risticii are determined based on four-way
comparison with other Anaplasmataceae, including E. chaffeensis,
A. phagocytophilum, and the Wolbachia endosymbiont of Brugia malayi.
bN. risticii-specific genes are determined based on two-way comparison
with N. sennetsu (NSE).
cN. risticii NRI_0742, putative lipoprotein (142 aa, 15.9 kDa).
dN. risticii NRI_0805, deoxyribodipyrimidine photolyase.
eN. risticii NRI_0032/NRI_0033, multisubunit Na+/H+ antiporter,
MnhB subunits.
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DNA (Supplementary Table 2). The absence of many
DNA repair pathways might account for the longer evo-
lutionary branch of Neorickettsia spp. in the family
Anaplasmataceae (Figure 1).
Despite the distinct trematode hosts for N. risticii

(which reside in aquatic insects) and N. sennetsu (which
supposedly reside in fish), there is almost complete gen-
omic synteny (Figure 3). It is assumed that, on average,
the number of genome rearrangements increases with time
(or sequence divergence) (39). However, synteny analysis
between E. chaffeensis and E. canis, or A. phagocytophilum
and A. marginale, both of which have a small phylogenetic
divergence as N. risticii and N. sennetsu (Figure 1), showed
a single symmetrical inversion in the genomes (40). This
suggests that there have been very few rearrangement
events in these genomes, probably because large
rearrangements are lethal for Neorickettsia spp. due to
minimum sets of mutation repair genes. On the other
hand, this poor mutation repair system allows accumula-
tion of point mutations, resulting in new genes with
potential novel functions. As housekeeping genes are
essential to Neorickettsia spp., only those mutations that
do not affect housekeeping functions accumulate. A poor
mutation repair system due to the loss of mutation
repair genes is an important virulence factor of com-
mon pathogens such as Salmonella and Escherichia coli
(41). Therefore, the limited DNA repair system of
Neorickettsia spp. may provide species survival advantage
by allowing the accumulation of permissive mutations,
thus enhancing genetic diversity in the stable intra-
trematode environment where events leading to genomic
rearrangements may be rare.

Pathogenesis

Little is known about the genetic determinants required
for N. risticii to invade hosts and cause disease. Here, we
identify several putative genes that might be involved in
N. risticii pathogenesis, including outer membrane
proteins, protein secretion systems, two-component regu-
latory systems, and other N. risticii-specific genes.

Protein secretion systems. Extracellular secretion of
products is the major mechanism by which pathogenic
Gram-negative bacteria alter host cell functions, thus
enhancing survival of the bacteria and/or damaging
hosts. In order to secrete virulence factors across two
lipid bilayers and the periplasm in between, Gram-
negative pathogens use at least six distinct extracellular
protein secretion systems, referred to as type I–VI secre-
tion systems or T1SS-T6SS (42). Analysis of the N. risticii
genome shows that it encodes both Sec-dependent and
Sec-independent protein export pathways for secretion
of proteins across the membranes, but no homologs of
T2SS, T3SS, T5SS or T6SS components could be found
in the N. risticii genome (43–45). All major components
for the Sec-dependent pathway are identified, including
the cytosolic protein-export chaperone SecB and the
preprotein translocase complex SecY/SecG/SecA/SecD/
YajC. The Sec-independent T1SS, an ATP-driven ABC
transporter system, is capable of transporting target

proteins carrying a C-terminal secretion signal across
both inner and outer membranes and into the extracellular
medium. Both components of the T1SS, the ATPase
AprD and the membrane fusion HlyD family protein
AprE, are identified in the N. risticii genome.

The twin-arginine dependent translocation (Tat) path-
way can transport folded proteins across the bacterial
cytoplasmic membrane by recognizing N-terminal signal
peptides harboring a distinctive twin-arginine motif
(46,47). Components of the Tat pathway including TatA
and TatC are also identified in the N. risticii genome.
Using the TATFIND algorithm (http://signalfind.org/
tatfind.html), prokaryotic Tat signal peptides are
identified in two N. risticii proteins (NRI_0595 and
NRI_0661). Nevertheless, the presence of a functional
Tat pathway in N. risticii remains to be studied. In
addition, a set of common chaperonins is also identified
in N. risticii genome, including groEL, groES, dnaK, dnaJ,
hscB and htpG.

The T4SS is a protein secretion system that can trans-
locate bacterial effector molecules into host cells and plays
a key role in pathogen-host cell interactions, usually
involved in pathogenesis of Gram-negative bacteria (48).
In several intracellular bacteria including the family
Anaplasmataceae, the T4SS is essential for survival
inside host cells, involved in nutrient acquisition, inhib-
ition of phago-lysosomal fusion pathways, and most
importantly, establishment of intracellular compartments
and intracellular survival (23,49,50). In the N. risticii
genome, we also identified a T4SS encoded by virB/D
genes distributed in four separate loci: virB8-2/9-2,
virB8-1/virB9-1/virB10/virB11/virD4, virB2-1/virB2-2/
virB4-2 and virB3/virB4-1/virB6-1/virB6-2/virB6-3/virB6-4
(Figure 5A). The organization of virB/D gene clusters is
conserved between N. risticii and N. sennetsu, but is
shifted and/or inverted relative to that of E. chaffeensis
and A. phagocytophilum (Figure 5A). In addition, there
are a number of differences. Unlike A. phagocytophilum
and E. chaffeensis (51), the sodB gene is not present
upstream of the virB3/virB4/virB6 operon in
Neorickettsia spp., and virB8-2/9-2 are organized into a
cluster. Furthermore, N. risticii encodes a much shorter
virB6-4 (�1000 aa) compared to those of other
Anaplasmataceae (>2000 aa). Analysis of N. risticii and
N. sennetsu genome sequences shows that they both
encode two copies of virB2 downstream of virB4
(Figure 5). Phylogenic analysis shows that virB2 genes of
N. risticii and N. sennetsu are closely related to virB2 genes
of other a-proteobacteria, but are phylogenetically distinct
from virB2 genes of E. chaffeensis and A. phagocytophilum,
which form a separate clade (Figure 5B) (32).

Subcellular fractionation and functional studies have
demonstrated that VirB2 is the major pilus component
of T4SS extracellular filaments and may play a critical
role in mediating the initial interaction with host cells
(48,49). RT–PCR and western blotting results indicate
that VirB2 is expressed by N. risticii in infected P388D1

cells, and two virB2 genes can be co-transcribed as an
operon (Figure 6A and B). Double immunofluores-
cence assays from both intracellular N. risticii
organisms in permeabilized infected cells (Figure 6C)
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Figure 5. Genomic organization of T4SS virB/D clusters and phylogenic analysis of virB2 genes in the family Anaplasmataceae. (A) Circular
representation of T4SS virB/D genes in genomes of the family Anaplasmataceae. From outside to inside circles: first (black)—N. risticii
(879 977 bp); second (red)—N. sennetsu (859 006 bp); third (blue)—A. phagocytophilum (1 471 282 bp); fourth (green)—E. chaffeensis (1 176 248 bp).
The individual virB/D genes were color-coded in the clusters for better visualization. Note that all T4SS genes of N. risticii and N. sennetsu, and most
T4SS genes of A. phagocytophilum and E. chaffeensis are encoded in the ‘�’ strand, therefore, the location of most genes appear close to the inner
circles. Genes encoded in the ‘+’ strand are followed by red arrows. (B) Phylogenetic tree of virB2 genes in the family Anaplasmataceae. Nucleotide
sequences of virB2 from members of the family Anaplasmataceae were aligned using the Clustal W method, and a phylogenetic tree was built.
APHxxxx: locus ids for virB2 genes of A. phagocytophilum HZ; ECHxxxx: locus ids of E. chaffeensis Arkansas; NSExxxx: locus ids of N. sennetsu
Miyayama; NRIxxxx: locus ids of N. risticii Illinois; ATU6168: Agrobacterium tumefaciens C58 pilin subunit, TrbC/VirB2 family protein (Accession
No. NP_396488); RP192: Rickettsia prowazekii Madrid E TrbC/VirB2 family protein (Accession No. NP_359878); RC241: Rickettsia conorii Malish
7 TrbC/VirB2 family protein (Accession No. NP_359878); CC2417: Caulobacter crescentus CB15 TrbC/VirB2 family protein (Accession No.
NP_421220).
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and non-permeabilized purified N. risticii organisms show
that VirB2 forms a punctate pattern, mostly localized at
two poles on the surface of N. risticii (Figure 6D). These
results suggest that VirB2 can form focal complexes on the
surface of the N. risticii organism, which might serve as
channels of the T4SS apparatus, like that of
Agrobacterium (48).

Two-component and one-component regulatory systems. A
two-component regulatory system (TCS) is a signal trans-
duction system that allows bacteria to sense and respond
rapidly to changes in their environment. Through the
regulation of downstream gene expression, the TCS
plays a key role in controlling virulence responses of a
wide variety of bacterial pathogens (52). A TCS is

generally composed of a sensor histidine kinase and a cog-
nate response regulator, which is often a transcription
factor and controls gene expression in response to envi-
ronmental changes. Our previous studies showed that
E. chaffeensis and A. phagocytophilum express three pairs
of TCS, including CckA/CtrA, PleC/PleD and NtrX/
NtrY and that their histidine kinase activities were
required for bacterial infection (53,54). Computational
analysis reveals that the N. risticii genome only encodes
two pairs of TCS: CckA/CtrA and PleC/PleD (Table 4).
The response regulator CtrA is a global transcription
factor found only in a-proteobacteria that coordinates
multiple cell cycle events at the transcriptional level. The
other regulator PleD contains a GGDEF domain, which is
associated with diguanyl cyclase activity that generates

Figure 6. Expression and localization of N. risticii VirB2 (NRI_0738/NRI_0740). (A) RNAs were prepared from N. risticii-infected P388D1 cells at 3
days p.i. DNase-treated total RNA was reverse-transcribed (RT+) and subsequently PCR-amplified using primers specific to virB2 genes: NRI_0738
and NRI_0740. RT–: negative control without reverse transcriptase; 738: PCR with primers targeting NRI_0738 only; 740: PCR with primers
targeting NRI_0740 only; 738+740: PCR with primers spanning NRI_0738 and NRI_0740. The relative sizes of molecular mass standards are
shown (in base pairs) on the left. (B) Whole-cell lysates from N. risticii-infected P388D1 cells (3 days p.i.) were prepared and subjected to western
blotting using antibody against N. risticii VirB2 (NRI_0738), or host a-tubulin as a loading control. The molecular mass standards are shown
(in kDa) on the right. (C) N. risticii-infected P388D1 cells at 3 days p.i. were fixed, permeabilized with 0.1% saponin and dual labeled with horse
anti-N. risticii (NRI) and rabbit anti-VirB2-1 (NRI_0738) antibodies. Results are representative of three independent experiments. Note bright dots
of VirB2 on most of intracellular bacteria. Bar: 5 mm. (D) Host cell-free N. risticii purified from infected P388D1 cells at 3 days p.i. were fixed and
dual labeled with horse anti-N. risticii (NRI) and rabbit anti-VirB2 antibodies. The right panel is a 5� amplification of the inlet from the merged
image. Results are representative of three independent experiments. Note average bipolar localization of VirB2 per bacterium on the surface of
N. risticii and variable sizes of bacteria.
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cyclic diguanylate (c-di-GMP) to regulate biofilm or extra-
cellular matrix formation (55).

Prokaryotes also carry out signaling events using the
one-component regulatory system, which consists of a
single protein containing both input and output domains,
but lacks the phospho-transfer domains of TCS (56,57).
The number of one-component systems and TCS per
genome positively correlates with the genome size and
the total number of genes (56). Comparison among
members of the family Anaplasmataceae showed that,
although N. risticii has the smallest genome size, it
encodes the highest numbers of one-component system
proteins (Table 4 and Supplementary Figure 3). The dis-
proportionate increase in the number of one-component

systems might result from the complex lifecycle and envi-
ronmental conditions of N. risticii (56).
Interestingly, analysis of the N. risticii genome shows

that it encodes two copies of PleC histidine kinase
(Table 4) and a one-component signal transduction
protein, an EAL domain protein (NRI_0417) (Supple-
mentary Figure 3) (57). An EAL domain protein has
diguanylate phosphodiesterase (PDE) activity and can
function as a c-di-GMP PDE that converts c-di-GMP
to GMP. EAL domain proteins are absent in
A. phagocytophilum and E. chaffeensis (58,59).

Transcriptional regulations. Members in the order
Rickettsiales have a small number of transcriptional
regulators; a trait also observed in other intracellular
pathogens. This phenomenon appears to be the result of
reductive evolution coupled with the diminished demand
for regulation due to the small genome size, as well as the
relatively stable conditions provided by the intracellular
environment of the host cells. Like all Anaplasmataceae,
N. risticii encodes only two sigma factors: RNA polymer-
ase sigma-70 factor (RpoD), which is the essential primary
sigma factor and responsible for most RNA synthesis in
exponentially growing cells, and sigma-32 factor (rpoH),
which is responsible for expression from heat shock
promoters. In addition, the response regulator CtrA
might regulate the expression of genes involved in the
bacterial developmental cycle. Our previous studies
demonstrated that A. phagocytophilum and E. chaffeensis
encode a transcriptional regulator ApxR and EcxR,
respectively, which regulates the expression of genes
encoding P44 outer membrane proteins and the T4SS
(60–62). Based on sequence homology, the ortholog
N. risticii transcriptional regulator (NrxR, NRI_0036),
which encodes a 12.5-kDa DNA binding protein, is
identified.

Ankyrin domain proteins. Ankyrin repeats have been
found in numerous proteins mediating specific protein–
protein interactions in bacteria and eukaryotes. Our
previous study has suggested that the ankyrin repeat-
containing protein AnkA of A. phagocytophilum is
secreted into host cells by the T4SS and plays an import-
ant role in facilitating intracellular infection by activating
the Abl-1 protein tyrosine kinase signaling pathway (23).
Three proteins that contain ankyrin-repeat domains are
identified in the N. risticii genome. However, whether
any of the ankyrin repeat-containing proteins can be
secreted by the T4SS and regulate host-cell signaling
remains to be studied.

Cell-wall components

Lipopolysaccharide and peptidoglycan. Most of the genes
encoding peptidoglycan and lipopolysaccharide (LPS),
including lipid A are absent in members of the family
Anaplasmataceae (17,63). The N. risticii genome does
not encode any enzymes involved in the biosynthesis of
lipid A (the core component of LPS) and lacks most
enzymes required for the biosynthesis and degradation
of diaminopimelate and murein sacculus (components of
peptidoglycan) indicating that LPS and peptidoglycan are

Table 4. Potential pathogenic genes and protein locations in N. risticii

and other Anaplasmataceae

Organismsa NRI NSE APH ECH WBM

Type IV secretion system
VirB1 � � � � �

VirB2 + (2) + (2) + (8) + (4) + (4)
VirB3 + + + + +
VirB4 + (2) + (2) + (2) + (2) + (2)
VirB5 � � � � �

VirB6 + (4) + (4) + (4) + (4) + (4)
VirB7 � � � � �

VirB8 + (2) + (2) + (2) + (2) + (2)
VirB9 + (2) + (2) + (2) + (2) + (2)
VirB10 +b + + + +
VirB11 + + + + +
VirD4 + + + + +

Two-component systems
PleC/PleDc + + + + +
NtrY/NtrX � � + + �

CckA/CtrA + + + + +

One-component systemsd

DNA-binding protein + (2) + (2) + (2) + (2) �
MerR transcriptional
regulator

+ + + + +

Rrf2/aminotransferase + + + + �

dGTP triphosphohydrolase + + � + +
EAL domain protein + + � � �

Ankyrin-repeat domain
protein

3 3 4 4 21

Protein locationse

Extracellular 1 1 2 2 1
Outer membrane 8 7 21 22 16
Periplasmic 4 3 8 4 4
Cytoplasmic membrane 149 143 156 158 130
Cytoplasmic 302 311 413 271 290
Unknown 434 467 664 648 364

APH, A. phagocytophilum; ECH, E. chaffeensis; NSE, N. sennetsu;
NRI, N. risticii; WBM, the Wolbachia endosymbiont of Brugia malayi.
aNumbers inside parentheses indicate the copy numbers of the genes;
otherwise, only a single copy is present.
bN. risticii encodes an additional truncated virB10 gene resulting from a
frameshift.
cN. risticii and N. sennetsu encode two copies of PleC that are hom-
ologous to PleC of E. chaffeensis or A. phagocytophilum (e-value <e–27
and e–66, respectively).
dThe presence of genes encoding one-component regulatory systems
was based on Microbial Signal Transduction Database (http://
genomics.ornl.gov/mist).
eLocation of outer member proteins is predicted by the pSort-B
algorithm.
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absent in N. risticii. Since conserved pathogen-associated
molecular patterns like LPS or peptidoglycan are potent
stimulants for innate immunity and anti-microbial
responses in mammalian host immune defensive cells
(64,65), the loss of LPS and peptidoglycan eliminates
these microbicidal activities in leukocytes and enhances
survival for N. risticii in mammalian monocytes/
macrophages.

Lipoproteins. Studies have suggested that E. chaffeensis
is capable of expressing mature lipoproteins (66),
which involves three lipoprotein-processing enzymes: a
prolipoprotein diacylglyceryl transferase (Lgt) that
attaches the thiol group of the conserved cysteine residue
in the lipobox with a diacylglyceryl group, a lipoprotein-
processing protease signal peptidase II (SPase II, LspA)
that cleaves prolipoproteins before the conserved cyst-
eine residue in the lipobox, and an apolipoprotein
N-acyltransferase (Lnt) that adds lipids to the amine of
the newly cleaved amino-terminal cysteine (cylation)
(67,68). All three lipoprotein-processing enzymes are
identified in N. risticii: lgt (NRI_0823), lspA
(NRI_0879), and lnt (NRI_0470). Furthermore, thirteen
lipoproteins are identified by computational prediction
using the LipoP 1.0 program (http://www.cbs.dtu.dk
/services/LipoP), which is specific for the prediction of
lipoproteins and signal peptides in Gram-negative bacteria
(Supplementary Table 9) (69). Among these lipoproteins,
nine are predicted to be located on the outer membrane.
Given the role of E. chaffeensis lipoproteins in inducing
delayed-type hypersensitivity reaction in dogs (66), it is
likely that N. risticii lipoproteins are also involved in
pathogenesis and immune response in infected horses.

Putative outer membrane proteins. Computational ana-
lysis with the pSort-B algorithm predicted nine outer
membrane proteins, two of which (rotamase family pro-
tein and outer membrane protein assembly complex YaeT
protein or Omp85 family protein) might be involved in
outer membrane protein transport and stabilization (70)
(Table 4 and Supplementary Table 10). Unlike most other
members in the family Anaplasmataceae, which encode a
diverse complement of OMP-1/MSP2/P44 outer member
superfamily proteins, N. risticii encodes only one group
of putative outer surface proteins that falls into this
PFAM family (Pfam01617) (17). This group of proteins
consists of three Wolbachia surface protein (WSP)-like
N. risticii surface proteins, each approximately 30-kDa
in mass (NSPs: NRI_0838, NRI_0839, and NRI_0841)
(Figure 7A–C, and Supplementary Table 10).
WSPs have been identified as highly expressed proteins

in Wolbachia strains and are likely surface-exposed, based
on their similarities to other outer surface proteins
in related bacteria (such as MSP4 in A. marginale) and
through membrane fractionation and bacterial labeling
experiments (71,72). Unlike WSP paralogs of Wolbachia
strains that are scattered in the genome (38), N. risticii nsp
genes (NRI_0838, NRI_0839 and NRI_0841) comprise a
potential operon (Figure 7A). Alignment of Neorickettsia
nsp and Wolbachia wsp genes shows that they are well
conserved, with more than 35% identity among

Wolbachia wsps, N. risticii nsps and N. sennetsu nsps
(which were previously annotated to encode hypothetical
proteins) (17) (Figure 7B). Furthermore, alignment of
three N. risticii NSP proteins using blast2seq shows that
NSP2 (NRI_0839) is related to NSP3 (NRI_0841), but
NSP2 or NSP3 only share C-terminal fragments with
NSP1 (NRI_0838) (Figure 7C). Wolbachia WSP proteins
are known to inhibit human neutrophil apoptosis, and
induce inflammatory responses in human neutrophils
(73–75). It is possible that N. risticii NSP proteins can

Figure 7. Genomic organization and alignment of N. risticii putative
membrane proteins NSP and SSA. (A and D) Genomic organization of
N. risticii genes encoding putative membrane proteins NSP (A) and
SSA (D). Color bars inside SSA genes indicate repeat sequences.
NCR: non-coding region. (B and E) Phylogenetic tree of nsp (B) and
ssa (E) genes in N. risticii and N. sennetsu. Nucleotide sequences of nsp
or ssa from N. risticii and N. sennetsu were aligned using the Clustal
W method, and a phylogenetic tree was built. NRI25-D: N. risticii
strain 25-D; NRI90-12: N. risticii strain 90-12. (C and F) Alignment
of N. risticii NSP (C) and SSA (F) protein sequences using blast2seq.
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act in a similar fashion to Wolbachia WSP proteins,
regulating host cell functions and immune responses. In
addition, two members in this family, A. phagocytophilum
P44 and E. chaffeensis P28/OMP-1F, have been
demonstrated to possess porin activities of relatively
large pore size to allow passive diffusion of L-glutamine,
monosaccharides, disaccharides, and even tetrasacc-
harides (76,77). Given the similar predicted structures of
amphipathic and antiparallel b-strands, abundant polar
residues, and a phenylalanine residue at the C-terminus
of both NSP1 and NSP2, N. risticii NSP might also
have porin activity to facilitate bacterial intracellular
growth.

Computational analysis of the N. risticii genome and
recent molecular characterization of N. risticii have
identified alternative sets of potential surface proteins,
which include one 51-kDa protein (P51), and three
strain-specific antigens (SSA). P51 is a specific antigenic
protein conserved among N. sennetsu, N. risticii and
Stellantchasmus falcatus trematode agent (SF agent)
(78). A previous study had shown that P51 is the major
antigen recognized in horses with PHF (79). Computa-
tional analysis by SignalP indicates that P51 encodes a
signal peptide, and an immunofluorescence assay using
anti-P51 antibody on fixed but non-permeabilized
N. risticii organisms showed a ring-like labeling pattern
surrounding the bacteria, supporting bacterial surface
exposure of P51 (80). Jaccard-filtered COG analysis
indicates that P51 belongs to an ortholog cluster that
presents in all Rickettsiales (E-value <1e–5) (17), and
computational prediction using PRED-TMBB method
(http://biophysics.biol.uoa.gr/PRED-TMBB/) shows 18
transmembrane b strands in the P51 protein (81). The
discrimination score of P51 for b-barrel proteins is
2.910, lower than the threshold value of 2.965, suggesting
that it is a b-barrel outer membrane protein (Supple-
mentary Figure 4).

Strain-specific antigens (SSAs), which encode proteins
at 50- or 85-kDa in different strains of N. risticii, were
initially identified during cross-reaction studies between
strains 25-D (P50/SSA) and 90-12 (P85/SSA) of N. risticii
isolated from horses with PHF (15,82). Surface labeling
with 125I suggested that P50/SSA from N. risticii strain
25-D is a surface antigen (83). Furthermore, P50/SSA
has been determined to be a protective antigen of
N. risticii against homologous challenge; however, the
length and number of repeats varied within SSAs of
each strain, which is suggested to contribute to vaccine
failure (15,82). Analysis of the N. risticii Illinois genome
identifies three SSA proteins (NRI_0870, NRI_0871 and
NRI_0872), which apparently are arranged in a single
operon (Figure 7D). Sequence analysis indicates that the
three N. risticii SSAs contain different numbers of intra-
molecular tandem repeats, which may contribute to the
antigenic variation of this pathogen (Figure 7D,
colored boxes in the ORF, and Supplementary Table 11)
(84). Alignment of Neorickettsia SSA genes or pro-
teins using Clustal W or blast2seq shows that ssa1
(NRI_0870) is closely related to ssa2 (NRI_0871);
however, ssa3 (NRI_0872) only shares a short N-terminal
fragment with either ssa1 or ssa2 and belongs to a separate

clade from ssa1 and ssa2 (Figure 7E and F). Proteins with
tandem repeats play important roles in pathogenesis and
pathogen–host interactions, including creating phase
variations (Vlp of Mycoplasma hyorhinis) and controlling
bacterial motilities (ActA of Listeria monocytogenes)
(85,86). In additional to SSA proteins, intragenic tandem
repeats are identified in 17 proteins of N. risticii
(Supplementary Table 12). Among them, 11 proteins are
predicted to localize on bacterial membrane or periplasm.
The roles of these putative outer membrane proteins in

infecting horses and regulating host immune responses
remain to be elucidated; nevertheless, these proteins
could be interesting candidates for protective PHF vaccine
development.

CONCLUSIONS

Analysis of the genomic sequence of N. risticii provides
the resources necessary for a detailed study of this bacter-
ium within trematodes hosts and for comprehensive
understanding of molecular pathogenesis in mammalian
hosts. Despite apparent divergent trematode hosts: one
encysting within insects in North America and another
encysting within fish in Japan and Southeast Asia,
N. risticii and N. sennetsu have preserved complete
genome synteny, but genome contents are divergent on
proteins with unknown functions. These unique hypothet-
ical proteins could be factors that define their host/vector
specificities and could be involved in pathogenesis.
Surface-exposed proteins and unique sets of proteins
involved in pathogenesis identified in the present study
provide valuable insights into future research on PHF
vaccines and development of novel therapeutic modalities.
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