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Identification of the majority of organisms present in human-associated microbial

communities is feasible with the advent of high throughput sequencing technology. As

substantial variability in microbiota communities is seen across subjects, the use of

longitudinal study designs is important to better understand variation of the microbiome

within individual subjects. Complex study designs with longitudinal sample collection

require analytic approaches to account for this additional source of variability. A common

approach to assessing community changes is to evaluate the change in alpha diversity

(the variety and abundance of organisms in a community) over time. However, there

are several commonly used alpha diversity measures and the use of different measures

can result in different estimates of magnitude of change and different inferences. It

has recently been proposed that diversity profile curves are useful for clarifying these

differences, and may provide a more complete picture of the community structure.

However, it is unclear how to utilize these curves when interest is in evaluating changes

in community structure over time. We propose the use of a bi-exponential function in

a longitudinal model that accounts for repeated measures on each subject to compare

diversity profiles over time. Furthermore, it is possible that no change in alpha diversity

(single community/sample) may be observed despite the presence of a highly divergent

community composition. Thus, it is also important to use a beta diversity measure

(similarity between multiple communities/samples) that captures changes in community

composition. Ecological methods developed to evaluate temporal turnover have currently

only been applied to investigate changes of a single community over time. We illustrate

the extension of this approach to multiple communities of interest (i.e., subjects) by

modeling the beta diversity measure over time. With this approach, a rate of change in

community composition is estimated. There is a need for the extension and development

of analytic methods for longitudinal microbiota studies. In this paper, we discuss different

approaches to model alpha and beta diversity indices in longitudinal microbiota studies

and provide both a review of current approaches and a proposal for new methods.
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INTRODUCTION

Identification of the majority of organisms present in human-
associated microbial communities is now feasible with the
advent of high throughput sequencing technology. Several
studies have shown large subject-to-subject variability (Flores
et al., 2014) as well as many different factors thatmight contribute
to variability in microbiome studies, i.e., diet, region, exposure,
genetics, etc. Given the highly personalized microbiome, valuable
information is likely to come from studies following subjects over
time. The use of longitudinal study designs is important to better
understand the contribution of the microbiome to human health
(Flores et al., 2014). Complex study designs with longitudinal
sample collection require analytic approaches to account for this
additional source of variability, and to allow examination of
changes within subjects.

Extension and development of analytic methods are needed
for longitudinal microbiota studies (Gerber, 2014). Current
approaches include extending models applied to individual
taxa to address repeated measures over time (Chen and Li,
2016; Fang et al., 2016; Wagner et al., 2017) but not much
attention has been given to discussion and extension of
ecological community indices, which are useful for describing
the community biodiversity. Themajority of analyticmethods for
these measures were developed for studying one community over
time in the field of ecology. This paper, therefore, focuses on the
application and development of methods for diversity indices in
order to model multiple communities (i.e., subjects) over time.

Several measures of diversity have been widely applied to
microbiota data. The selection of a diversity measure is important
as the inferences made can differ widely depending on the
measure chosen (Jost, 2006; Ellison, 2010; Tuomisto, 2010a,b;
Jurasinski and Koch, 2011; Moreno and Rodriguez, 2011;
Tuomisto, 2011) and several analyses include multiple measures
which makes consolidating the results challenging. For alpha
diversity, the calculation and comparison of diversity curves
(Renyi, 1961; Whittaker, 1972; Hill, 1973; Carranza et al., 2007;
Studeny et al., 2011; Gotelli and Chao, 2013) has been proposed,
which alleviates the need to choose a single diversity index. These
curves provide a useful visualization but there currently is no

method available to make inferences about the changing shape
of the curves over time.

Furthermore, it is possible that no change in alpha diversity
(single community/sample) may be observed despite the
presence of a highly divergent community composition. Thus,
it is also important to use a beta diversity measure (similarity
between multiple communities/samples) that captures changes
in community composition. Ecological methods developed to
evaluate temporal turnover have currently only been applied to
investigate changes of a single community over time (Collins
et al., 2000; Korhonen et al., 2010; Yuan et al., 2016; Lewthwaite
et al., 2017). In order to evaluate changes over time in multiple
communities (i.e., subjects), an extension to a hierarchical model
is needed.

In this paper, we discuss different approaches to model
diversity indices in longitudinal microbiota studies. All
approaches are illustrated using a motivating example described

in section Description of Motivating Example. In section Single
Alpha Diversity Index, a linear mixed model (also called a
hierarchical model) is used to separately model three alpha
diversity measures over time and the results are compared
across measures. The recently proposed alpha diversity curves
are explained in section Alpha Diversity Curves and we
develop a hierarchical model approach to analyze these curves
longitudinally with a non-linear mixed model. In section Beta
Diversity, a description of how to model beta diversity in
longitudinal studies is provided. This work provides both a
review of current approaches and presents newly developed
methods.

DESCRIPTION OF MOTIVATING EXAMPLE

The motivating example used throughout this paper is a
prospective study of 50 subjects aged 10–22 years with cystic
fibrosis (CF) and admitted for intravenous (IV) antibiotic therapy
for a pulmonary exacerbation (Pex). All subjects were treated
following standard clinical guidelines, at the discretion of their
physician. Study evaluation and specimen collection occurred
at three times, hospital admission (day 0–2; Beg Pex), hospital
discharge (day 6–21; End Pex), and a clinical follow-up visit
post-exacerbation (within 30 days of completing IV antibiotic
treatment; Post Pex). A total of 123 sputum samples were
collected and frozen prior to analysis: 31 subjects provided
samples at all three times, 12 subjects missed 1 sample collection,
and 7 subjects missed 2 sample collections. All models used for
the analysis of this dataset assume data are missing at random.
Written informed consent was obtained from all patients aged
18 years or older and from parents/legal guardians for patients
under 18 years of age, and assent was obtained from patients aged
10–17 years. The study was approved by the Colorado Multiple
Institutional Review Board (COMIRB #07-0365).

Bacterial profiles were determined by broad-range
amplification and sequence analysis of 16S rDNA following
previously described methods and validated in prior publications
(Hara et al., 2012; Markle et al., 2013; Zemanick et al., 2017).
Quality control procedures were performed on paired-end

sequences (Zemanick et al., 2017). Assembled sequences were
aligned and classified at the lowest taxonomic level with SINA
version 1.2.11 (Pruesse et al., 2012) using the SILVA111 database
(Quast et al., 2013) as reference configured to yield the SILVA
taxonomy (www.arb-silva.de). Sorted paired-end sequence
data were deposited in the National Center for Biotechnology
Information Sequence Read Archive (www.ncbi.nlm.nih.gov/sra)
under accession number SRP143768. Operational taxonomic
units (OTUs) were produced by clustering sequences with
identical taxonomic assignments (generally genus level groups).
This process generated 20,183,481 sequences for 361 samples
(average sequence length: 316 nt; average sample size: 83,722
sequences/sample; minimum sample size: 2,188; maximum
sample size: 422,831). The median Goods coverage score was ≥
99.25% at the rarefaction point of 2,188 (the minimum number
of sequences for all samples). The software package Explicet
version 2.10.5 (www.explicet.org) (Robertson et al., 2013) was
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used for calculation of diversity indices at the rarefaction point.
Taxonomic data utilized in this analysis have been included as
Supplementary Material and represent a subset of data from
the parent study (excluding saliva samples and samples from
repeated Pex events).

SINGLE ALPHA DIVERSITY INDEX

Diversity, defined as the description of “the variety and
abundance of species in a defined unit of study,” (Magurran,
2004) is a measure often used to describe the complexity of
a community. Several measures of diversity have been widely
applied to microbiota data and have been used previously as
outcomes in longitudinal models (Gajer et al., 2012; Flores et al.,
2014; Wagner et al., 2017). In this section we similarly apply
linear mixed models to three diversity measures over time. These
results serve as a useful comparator for the remaining sections of
this paper.

Differences in Weights for Evenness and
Richness Components Across Measures
Explain Differences in Results
Diversity indices applied to microbiota data consist of differing
weights of two components, richness and evenness (Jost, 2006).
Richness is a count of the number of different taxa observed in
the community without regard to their frequencies, and evenness
refers to the equitability of the taxa frequencies in a community.
Three commonly used alpha diversity measures include species
observed, Shannon index and Simpson index:

S
(

obs
)

=
∑

k
I
(

pk > 0
)

Shannon = −
∑

k
pk ln

(

pk
)

Simpson =
∑

k
p2k,

where p is some function of frequency, often relative abundance
(proportion of total sequences) for each taxon, k.

Species observed is equal to richness and therefore provides
no weight to the evenness component, Shannon index equally
weights richness and evenness and Simpson index provides more
weight to evenness (Jost, 2006). Moreover, the units are different
across the measures, species observed is a count, Shannon index
contains a logarithmic value and Simpson index is a sum of
squared proportions. These differences in weighting and units
explain differences often observed in results from each measure.

Motivating Example
Species observed, Shannon diversity index and Simpson
diversity, as well as the corresponding evenness components,
were separately modeled over time in CF patients during a Pex
using a linear mixed model that included a random subject
intercept with SAS PROC MIXED software. All three diversity
measures show a decrease at the end of the Pex (hospital
discharge), followed by an increase at follow-up, although
measures still remained lower at follow-up than at the beginning
of the Pex (Figure 1). Despite this agreement in general trends,

the pairwise comparisons of times differ across the measures.
The means at each time (Table 1) differed significantly across all
three times for species observed and Shannon index (p < 0.01),
but Simpson diversity differed only marginally across times
(p= 0.07). Neither of the evenness measures change significantly
over time.

Issues of Numerous Measures
Although the concept of diversity is rather straightforward, its
application can be complicated for several reasons: (1) there
are numerous commonly used diversity indices which can
yield different results; (2) the nomenclature currently in use
to describe diversity is complex and confusing; (3) partitioning
diversity into components, such as richness and evenness, may
be useful, but varies depending on the diversity measure; and (4)
the application to sequence data is complicated by incomplete
sampling, i.e., not all bacterial sequences may be measured due
to differences in sequencing depth. These issues result in debates
and general confusion over which diversity measure to use,
misinterpretation of results, and an inability to compare results
across studies.

Often these indices are incorrectly treated as interchangeable
measures of the same characteristic without consideration of
the variations in the mathematical properties of each diversity
index. The measurement of diversity has been discussed in the
ecological literature (Jost, 2006; Ellison, 2010; Jurasinski and
Koch, 2011; Moreno and Rodriguez, 2011; Tuomisto, 2011) and
there has been an acknowledgement within the field that more
rigor is needed. One approach is the calculation and comparison
of diversity curves (Renyi, 1961; Whittaker, 1972; Hill, 1973;
Carranza et al., 2007; Studeny et al., 2011; Gotelli and Chao,
2013) which provides information across multiple weights of the
components of richness and evenness and alleviates the need to
choose a single diversity index.

ALPHA DIVERSITY CURVES

The computational formula for diversity curves is

D(q) =

(

∑K

k=1
pk

q
)

1
1−q

,

where D is most commonly calculated for q = 0, 1, 2 and
p is some function of frequency, often relative abundance
(proportion of total sequences) for each taxon, k, when applied
to sequencing data. D is undefined for q = 1, so the limit as q
approaches 1 is used instead.

In this equation, the order, q, determines how much weight
is given to abundant vs. rare taxa (evenness). Species observed
(q = 0) weights rare taxa more heavily since the abundance of
each taxon is not considered. Conversely with diversity of orders
> 1 (e.g., Simpson q = 2), more weight is given to the more
abundant species. Only when q = 1 [Shannon index, specifically
exp(Shannon index)] are the rare and abundant species equally
weighted (Jost, 2006).

A plot of D vs. varying values of q can provide a more
complete way to convey diversity of a community compared
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FIGURE 1 | Comparison of alpha diversity over time. Species observed (A) shows a decrease in values after completion of IV antibiotic treatments that increase at

follow-up. A similar pattern is observed for the Shannon and Simpson diversity indices (B,C, respectively) but the magnitude of change differs for each index.

to using a single measure (Tothmeresz, 1995; Carranza et al.,
2007; Lozupone et al., 2007; Studeny et al., 2011; Gotelli and
Chao, 2013; Buckland et al., 2017). For instance, the shape of
the curve conveys the evenness of a community. A perfectly even
community is represented by a horizontal line (D does not change
as q increases) and a highly uneven community is represented by
a curve with an initial steep descent as q increases, see https://
wagnerbd.shinyapps.io/Frontiers/ (snapshots from the shiny app
displayed in Supplementary Figure 1).

Characterization of Diversity Curves Using
Bi-Exponential Function
Although visual inspection of diversity curves may identify
potential changes in their shape, it is not clear how to make
inferences about whether these differences are meaningful. In
this section, we propose a method to characterize a sequence of
diversity curves using a bi-exponential function.

The D values, alternatively referred to as Hill’s numbers (Hill,
1973), are related to the Renyi entropies

(

H(q)

)

(Renyi, 1961) as

D(q) =

(

K
∑

k=1

pk
q

)

1
1−q

= e

H(q)

where Renyi entropies are H(q) =
1

1−q ln
(

∑K
k=1 pk

q
)

Suppose taxa can be divided roughly into two groups, rare and
non-rare, based on abundance p, and let k = 1, ..K1 for rare taxa

with abundance p1 and k = K1 + 1, ..,K for non-rare taxa with
abundance p2. Then

D(q) =

(

∑K

k=1
pk

q
)

1
1−q

,

≈
(

K1p
q
1 + K2p

q
2

)
1

1−q

where K1 + K2 = K and since eln(x) = x

≈

(

K1e
q∗ ln(p1) + K2e

q∗ ln(p2)
)

1
1−q

which is now in the form of a bi-exponential function. We can
re-parameterize such that

θ1 = − ln(p1),

θ2 = − ln(p2),

θ3 =
K1

K1 + K2
, and

θ4 = K1 + K2 then

D(q) =
(

θ3θ4e
qθ1 + (1− θ3)θ4e

qθ2
)

1
1−q

where θ4 is the total number of taxa in the sample, θ3 is the
proportion of rare taxa with a fast rate of decline θ1 for increasing
q and θ2 is the slow rate of decline in the curve for the 1 − θ3
proportion of non-rare taxa.
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TABLE 1 | Comparison of common alpha diversity measures at three time points: Beg Pex, End Pex, and a follow-up visit post-Pex.

Species observed Shannon Evenness Shannon Simpson Evenness Simpson

Means (SE) Beg Pex 26.0 (1.3) 0.46 (0.02) 2.13 (0.12) 0.026 (0.002) 0.62 (0.03)

End Pex 19.0 (1.3) 0.40 (0.02) 1.70 (0.12) 0.029 (0.002) 0.53 (0.03)

post-Pex 23.1 (1.4) 0.46 (0.02) 2.07 (0.12) 0.028 (0.002) 0.62 (0.03)

P-values Across all times <0.01 0.09 0.01 0.40 0.07

Beg vs End <0.01 0.06 <0.01 0.19 0.04

Beg vs post-Pex 0.10 0.89 0.69 0.27 0.90

End vs post-Pex 0.02 0.05 0.02 0.69 0.06

P-values < 0.05 are indicated in bold.

Development of a Hierarchical Model
In order to make inferences in the changing shape of the curves
over time, we propose a longitudinal model to simultaneously
estimate the parameters describing the change in the diversity
curves over time. To further simplify the model, we will replace
the θ4 parameter with the observed number of taxa and drop the
1/(1-q) exponent. Let

θijm = αjm + sim

D(q)ij = Kijθij3e
qθij1 + Kij(1− θij3)e

qθij2 + eij

where m = {1, 2, 3} indexes the θ parameters for the bi-
exponential, i = 1, .., n indexes subjects, j = 1, 2, 3 indexes time,
αjm is the estimated mean for parameter m at time j, eij ∼

N(0, σ 2) is a random error, and sim is a random subject intercept,

sim ∼ N
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Motivating Example for Alpha Diversity
Curves
A non-linear mixed model was estimated by maximum
likelihood using SAS PROC NLMIXED. Diversity curves were
calculated for each sample and are presented graphically for
each subject at each time (Figure 2A). The fitted curves follow
points indicating good fit. All curves have similar shape and show
curvature indicating that the bacterial communities of all samples
are relatively uneven (a flatter curve would indicate a more even
community). The curves appear to exhibit steeper decline from
beginning of the Pex (Beg Pex) to the follow-up visit (post Pex)
for the majority of subjects.

The mean curves at each time from the longitudinal model
indicate that D(0) (species observed, i.e., richness) was highest
at the beginning of the pulmonary exacerbation and decreased
thereafter (Figure 2B). The curve for the end of the pulmonary
exacerbation (End Pex) is more uneven (steeper decline)
compared to the other two times. The parameter estimates
provided in Table 2 correspond to visual observations related
to the change in shape in both the individual curves and
the mean curves, but in addition provide quantification and
the ability to make inference on the change in the shape
of the curves over time. Estimated θ1 at End Pex is largest,

corresponding to the visually steepest decline, θ2 estimates
increase over time resulting in lower diversity at the Post
Pex time associated with the more dominant taxa, and θ3
estimates from the hierarchical model indicate a significant
shift toward a lower proportion of rare taxa over time
(Table 2).

The shapes of the diversity curves differ (Figure 2B) which
explains the discrepancies in comparing the diversity indices
that were observed earlier (Table 1). In addition, using the
individual indices conveys no information about evenness
without calculating an evenness measure separately. Although
separate models evaluating changes in diversity, evenness and
richness are easily obtained, there is a different evenness measure
corresponding to each diversity measure and therefore this
approach suffers from the same issue of multiple measures that
may provide different answers depending on how much weight
is given to rare taxa. Advantageously, diversity curves provide
information about the change in the evenness of the communities
over time in a singlemodel. These characteristics can be evaluated
and compared numerically with the longitudinal model that
allows estimation of trends in the four parameters from the bi-
exponential distribution and additional estimates of non-linear
functions of these parameters. Application of the hierarchical
model to the parameters from the bi-exponential distribution
represents a novel approach to evaluating changes in the diversity
curves over time.

BETA DIVERSITY

In addition to partitioning diversity into independent
components describing evenness and richness, we can also
partition diversity by collections of samples. Whereas, the
diversity associated with a single sample is referred to as a local
(alpha) component, the diversity of the collection of samples
is referred to as the regional (gamma) component and the
relationship between these two is referred to as beta diversity
(Legendre and Legendre, 1998). Previously, an alpha diversity
measure was calculated for each sample α(xij), here, a beta
diversity index is calculated for each pair of samples β(xij, xij′ ),
and represents either a similarity or a distance between the two
samples.

Changes in alpha diversity over time can be useful for
evaluating the change in the community structure over time as
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FIGURE 2 | Diversity curves from each sample, where the points correspond to D values from the Hill’s numbers (y-axis) plotted vs. the q values (x-axis). The

corresponding bi-exponential distribution fits are displayed using lines for each time point separately (A). The average diversity curves at each time estimated from the

joint longitudinal model are displayed in panel (B).

TABLE 2 | Parameter estimates from nonlinear mixed model at three time points:

Beg Pex, End Pex, and a follow-up visit post-Pex.

Est (95% CI) Beg Pex End Pex post-Pex

θ1 3.65 (2.97–4.33) 3.87 (3.19–4.55) 3.70 (3.02–4.38)

θ2 1.48 (0.90–2.06) 1.63 (1.05–2.21) 1.64 (1.06–2.22)

θ3 0.82 (0.72–0.91) 0.79 (0.69–0.90) 0.62 (0.47–0.77)

previously discussed. However, these measures do not convey
any information about changes in the community composition
(Yuan et al., 2016; Buckland et al., 2017), for example, a
community can experience a complete shift in composition,
where no taxa are shared, but can still have similar alpha
diversity measures, i.e., similar number and abundance of taxa.
An important addition to evaluating amicrobial community over
time in any longitudinal analysis is the incorporation of beta
diversity.

As with the alpha diversity measures, there are several possible
beta diversity indices that one could use, some of the most
popular in microbiome studies include Jaccard, Bray-Curtis,
Morisita-Horn and Sorenson. Similar to the earlier discussion
of alpha diversity measures, differing results are obtained across
beta diversity indices, again due to differences in weighting of
the components (Tuomisto, 2010a,b). The calculation of beta
diversity indices for all combinations of pairs of samples results in
a distance matrix that is often used for ordination (e.g., principal
coordinates analysis) and data exploration in microbiota data
analysis. Several methods are available for analysis of the full
distance matrix (correspondence analysis, redundancy analysis,
Mantel test, etc.) (Tuomisto and Ruokolainen, 2006). We focus
here on regression based methods that allow for inference at
the subject level in a longitudinal design, i.e., studying changes
over time within a subject. The implication of this focus is
that not all values in the distance matrix are of interest,

only those that are comparisons of samples collected within a
subject.

Pairwise Comparison of Consecutively
Collected Samples
In order to evaluate beta diversity indices at the subject level and
compare values over time or across groups, specific values from
the full distance or similarity matrix are selected for analysis.
In the case of longitudinal studies, we are most interested
in evaluating changes in the community over time within a
subject and can therefore select the distance measures between
samples collected on the same subject β(xij, xij′ ). One approach
that has been used is to calculate the mean or median beta
diversity value for each subject and use this as an outcome
(Gajer et al., 2012). Here we instead use the beta diversity values
from consecutively collected samples within the same subject
β(xij, xij+1) as outcomes in a second stage generalized linear
mixed model.

Community Turnover
A recently proposed approach in the ecological literature is to
use beta diversity indices to evaluate temporal turnover (Collins
et al., 2000; Shimadzu et al., 2015). Here, the beta diversity indices
are regressed on a time lag variable using a time series model.
With this approach, all pairwise indices comparing samples
within a subject are used β(xij, xij′ ) (not simply the indices
from consecutive samples as above) and a rate of change in
composition is estimated. The proposed approach has been useful
for assessing turnover in a single community over time (Collins
et al., 2000; Korhonen et al., 2010; Yuan et al., 2016; Lewthwaite
et al., 2017), but requires extension to a hierarchical model to
make inferences on groups of communities (i.e., subjects in our
motivating example). We suggest the use of a similar model
to that used for the indices of consecutive samples and simply
replace the single independent time variable with one denoting
all pairs (Wagner et al., 2017).
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Shannon Beta
Another useful measure that has been proposed in the ecological
literature (Marcon et al., 2012, 2014) and applied to microbiota
data (Zemanick et al., 2015) is the Shannon Beta index.
This measure can be decomposed into multiple alpha and
beta components even when community weights are unequal
(Tuomisto, 2010a,b; Marcon et al., 2012). Thus, in addition
to being widely used in other disciplines, its well-understood
mathematical properties and underlying theory make Shannon
Beta a useful measure overall.

This approach extends the beta diversity measure to apply
to a collection of samples rather than just for pair-wise
comparisons β(xij, xij′ , xij′′ , ..). For our example, Shannon Beta
(Hβi ) is calculated as

Hβi =
∑

j

cij

ci++

∑

k

cijk

cij+
ln





cijk
cij+
ci+k
c+++





where cijk is the sequence count for subject i, from time j and
taxon k, the + in the subscript denotes the summation of the
counts over the specified indicator.

For ease of clinical interpretation, Shannon Beta is expressed
as a Hill’s number which indicates the effective number of
communities represented by the collection of samples or the
number of distinct communities. This measure is dependent
on the number of samples from which it was calculated, and
ranges from 1 to 3 in our motivating example. A normalizing
transformation was used to rescale the Hill’s numbers to allow
comparison across subjects with differences in the number of
collected samples (Chao et al., 2010).

Hni =
Hβi − 1

ji − 1

where ji is the number of samples for subject i.

Motivating Example for Beta Diversity
Morisita-Horn (MH, Beta-diversity) values for pairwise samples
j and j′ within each subject i were calculated as follows

Morisita Horn(xij, xij′ ) = 2
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MH was compared over time using a log-normal model and
included a random subject effect. MH in this example is a
similarity measure bound between 0 and 1. Values closer to 1
indicate the pair of samples are more similar. MH values, on
average, are similar for the two consecutive sample pairs (Beg
vs. End Pex and End Pex vs. Follow-up), but individual subjects
have varying patterns (Figure 3A). Specifically, there are several
subjects with limited similarity between communities (MH for
both consecutive pairs is close to 0). The turnover analysis
was performed in two ways, first, time was defined using the
clinically meaningful states (Beg Pex, End Pex, and Post Pex)
and second, time was defined using the number of days between

when samples were collected. The latter approach is used for
illustrative purposes to better show the differences between the
consecutive and turnover analyses for this particular example
given the small number of samples collected per subject. The
turnover analysis using the clinically meaningful time points
(Figure 3B) reveals that the bacterial communities at Post Pex are
more similar to the communities at the Beg Pex than the other
comparisons (in this case the consecutive sample comparisons:
Beg vs. End Pex and End Pex vs. Post Pex). This indicates that the
communities are converging back to the original communities
observed at the beginning of the Pex after being perturbed
by antibiotics. This is also evident in those subjects with very
different communities between consecutively collected samples
but show a much higher degree of similarity between Beg Pex
and Post Pex. This same pattern is seen using the continuous
version of the time variable, where the average similarity
values increase with increasing time lag between pairs up to
approximately 45 days, after which the similarity declines over
time (Figure 3C). These figures also illustrate the large amount
of variability across subjects with varying patterns in change over
time. For both turnover analyses, there are individual subjects
whose communities remain stable (no change in similarity with
increasing time lag) and those whose communities indicate a
directional change (similarity decreases with increasing time
lag). A hierarchical model allows each subject’s trajectory to
deviate from the overall average, capturing this between subject
variability. It may be useful to further evaluate the estimated
individual subject trajectories by identifying subjects with specific
patterns of change over time or by identifying groups of subjects
with similar trajectories.

A single Beta diversity measure, Shannon Beta diversity, was
calculated for each subject to quantify the number of bacterial
communities represented. The median of the beta diversity
values after normalization was 0.15 and ranged from 0.04 to
0.75 (Figure 3D). Higher values indicate that more distinct
communities were observed for a subject, this value ranges from
0 to 3 (number of samples collected per subject). For the subset
of subjects with all three samples collected, the median of the
Hill’s beta diversity measure was 1.3 and ranged from 1.1 to
2.2 and 50% of the values were between 1.2 and 1.6 indicating
that the majority of subjects did not experience large shifts
in their bacterial communities across all three time points as
the number of distinct communities (i.e., Hill’s numbers) were
around 1.

Both alpha and beta diversity measures from a single example
subject are displayed in Figure 4. For this subject, the Shannon
diversity (q = 1) decreases for the second time point and
then increases at the third time point but remains below
the values observed at the first sample. The communities
are very uneven (include several rare taxa) and the diversity
curves cross each other indicating that different measures
would yield different results, especially for the second and
third samples which would differ with lower q values but
show similar community characteristics for larger values. The
bar charts display the composition of the three communities
and show that despite the second and third sample having
similar alpha diversity values, the communities are very different.
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FIGURE 3 | Comparison of MH beta diversity measures for the consecutively collected samples (A) and plotted vs. time lag (B). Each subjects value is plotted and

connected with lines and the means and 95% confidence intervals from the generalized linear models are plotted with dots and whiskers. The bottom panel displays

the MH beta diversity measures plotted over actual time between sample collection (C), individual subjects are indicated by the thin gray lines and the thicker blue line

indicates the average change. The distribution of the normalized Shannon Beta diversity measures for all subjects (D).

This information, however, is captured with the beta diversity
measures. The pairwise MH similarity values illustrate that
the samples collected consecutively differ, but that the first
sample and the third sample have similar compositions.
This indicates that after antibiotics this subject’s bacterial
community more closely resembled their starting community.

The Hill’s number for the Shannon beta measure indicates that
approximately 1.4 distinct communities are observed for this
subject.

The three different approaches to evaluating beta diversity
measures in longitudinal studies discussed here provide
additional information about changes in communities over time
that are not captured by simply modeling alpha diversity over
time. The pairwise measures are useful for identifying subjects
or times at which shifts in the community are observed and
the turnover analysis can yield insights into whether there are
consistent shifts with increasing time between sample collections.
The single measure (Shannon beta) calculated for each subject
can aid in identifying subjects with similar communities across
all the time points or those with large changes that suggest shifts
over time.

DISCUSSION

In this work, a discussion of methods for evaluating diversity
measures in longitudinal microbial data includes the commonly
used approach of modeling a single alpha diversity measure
over time. Modeling one alpha diversity measure over time
(e.g., species observed) could result in different inferences than
modeling a different alpha diversity measure (e.g., Simpson).
Diversity curves and their calculation were reviewed as a way
to alleviate the need to select a single measure; however,
until now, there has been no discussion of how to compare
curves over time quantitatively. We developed an approach
that utilizes a bi-exponential distribution to summarize each
curve and compare curves over time using a hierarchical model.
This represents a contribution to the field of microbiome data
analysis. Lastly, we discuss the additional information that is
gained by evaluating beta diversity measures to assess changes
in community composition over time and implement three
different approaches and discuss their differences.

Several measures of diversity have been widely applied to
microbiota data and have been used previously as outcomes
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FIGURE 4 | Diversity curves for an example subject (A) corresponding to the communities represented by the stacked barcharts (B). Taxa with a relative abundance

> 5% for any sample are displayed. The table shows the pairwise MH beta diversity values and the Shannon Beta for this subject.

in longitudinal models (Gajer et al., 2012; Flores et al., 2014;
Wagner et al., 2017). Often these indices are incorrectly treated
as interchangeable measures of the same characteristic, which
has caused debates and general confusion over which diversity
measure to use, misinterpretation of results, and an inability to
compare results across studies. Diversity curves incorporating
aspects of these different measures were promoted as a solution,
but until now have been used simply for visualization purposes
(Renyi, 1961; Whittaker, 1972; Hill, 1973; Carranza et al., 2007;
Studeny et al., 2011; Gotelli and Chao, 2013). We chose to model
the diversity curves proposed by Jost (2006) that have been
shown to equal several commonly used measures, although we
recognize that there are alternative complexity curves that have
been proposed (Rajaram and Castellani, 2016). The use of any
curve will require a model to be applied to capture the shape of
the curve to make inferences about changes over time.

An important addition to evaluating a microbial community
over time in any longitudinal analysis is the incorporation of beta
diversity, as these measures convey information about changes
in community composition. The majority of previous analyses
have concentrated on modeling turnover in a single community
(Collins et al., 2000; Korhonen et al., 2010; Yuan et al., 2016;
Lewthwaite et al., 2017). Two studies (Gajer et al., 2012; Wagner
et al., 2017) modeled beta diversity measures over time using a
hierarchical model similar to the model using beta diversity from
consecutive times discussed in this paper, but the descriptions
of the models were relegated to supplements. In this paper we
describe in detail the modeling approach and its interpretation.
Our example included the Morisita-Horn beta diversity measure,

selected because it is not influenced by richness and sequencing
effort (Magurran, 2004). However, various other beta diversity
measures including phylogenetic measures that account for
genetic similarity between taxa can be used (Gotelli and Chao,
2013) without loss of generality of the modeling approach.

The Shannon Beta index is another useful measure that has
been proposed in the ecological literature (Marcon et al., 2012,
2014) and applied to microbiota data (Zemanick et al., 2015).
This measure provides a single number denoting the similarity
across multiple communities and can be used to identify subjects
with small or large changes in their bacterial community. To
our knowledge, the Shannon Beta index has not been previously
applied to evaluate changes in bacterial communities within
a subject over time and thus our methods represent a novel
application of this measure to longitudinal microbiota data.

All of the methods discussed are illustrated and compared
using a motivating example in cystic fibrosis. The example
included a small number of repeated samples per subject
and samples corresponded to clinically meaningful time points
(hospital admission, hospital discharge, and a follow-up visit
post-exacerbation). For this reason, the models we employed
designated time as a categorical variable. These models are
flexible and could include time as a continuous variable
instead for studies with more longitudinal samples collected.
The separate models for alpha diversity indices indicated that
diversity decreased with administration of antibiotics mainly
driven by a decrease in richness. This pattern was also observed
in modeling the alpha diversity curves and provided the ability
to make inferences about the components of diversity (richness
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and evenness) without requiring a separate model for each
measure. Alpha diversity can provide information about changes
in community structure but does not provide any information
about changes in community composition, to address this, beta
diversity measures are needed. The majority of studies utilizing
beta diversity, use the measures to perform exploratory data
analysis with ordination plots. Here, we chose to focus on models
of beta diversity that can be used to test hypotheses about change
in community composition over time. We illustrated three
different approaches for modeling beta diversity. The first used
the beta diversity measure from consecutively collected samples,
and showed that the average MH was fairly large indicating
similar communities. However, there were subjects with a high
degree of dissimilarity between consecutive samples (MH values
close to 0), whereas the turnover analysis revealed that for these
subjects, there were large changes while on treatment but the
follow-up community reverted back to the baseline community
after being perturbed with antibiotics. Given the small number
of samples collected per person in the motivating example, this
pattern could have been discerned by evaluating beta diversity
for all three combinations of sample pairs, an example with more
samples per person or unbalanced collection (samples collected
at different times) might have greater benefit from the insight
gained from both analyses. The third approach provided a single
measure per subject that compares composition of all three
samples. This method does not provide information about trends
over time but it can be used to rank subjects based on whether
they had large changes or whether the three communities
were relatively similar. This information could be useful for
correlating with clinically important factors, like whether the
subject exhibited clinical improvement with treatment.

It was necessary to select specific approaches/indices to
include in this work. We recognize though that different
alternatives could have been chosen. Instead of providing
an exhaustive list and comparison of all methods, we chose
approaches that provided good examples of the concepts with

the understanding that the methods discussed generalize to
other measures; any beta diversity and any measure could be
used as the outcome in the models discussed. Future work
could incorporate the efforts to classify beta diversity measures
based on differences in weighting of the components (Tuomisto,
2010a,b) for application to longitudinal studies.

In summary, several approaches to analyzing diversity
measures in a longitudinal study were discussed and compared,
including a novel approach modeling longitudinal patterns
in alpha diversity curves over time. Given the importance
of repeated sampling of microbial communities, especially
in human studies, extension of methods appropriate for
longitudinal study designs are needed.
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