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Adipose tissue NAPE-PLD controls fat mass
development by altering the browning process
and gut microbiota
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Obesity is a pandemic disease associated with many metabolic alterations and involves

several organs and systems. The endocannabinoid system (ECS) appears to be a key

regulator of energy homeostasis and metabolism. Here we show that specific deletion of the

ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance,

adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted

mice present an altered browning programme and are less responsive to cold-induced

browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and

metabolism in the physiological state. Our results indicate that these alterations are mediated

by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free

mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body

metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat

obesity and related metabolic disorders.
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O
besity has reached pandemic levels. In addition to being
associated with a massive expansion of adipose tissue,
obesity is also associated with a cluster of metabolic

alterations, such as type 2 diabetes and cardiovascular and hepatic
diseases. Thus, it is of the utmost importance to unravel the
underlying mechanisms that lead to these metabolic alterations to
discover new therapeutic strategies. Obesity can be considered a
‘multi-system disease’ because several organs and systems
participate in this metabolic condition. Among those, the
endocannabinoid system (ECS) appears to be a key regulator of
energy homeostasis and metabolism.

The ECS is a complex system composed of several bioactive
lipids interacting with both membrane-bound and nuclear
receptors, leading to a broad range of physiological effects. ECS
activity is mainly controlled by key synthesis and degradation
enzymes1. Anandamide (N-arachidonoylethanolamine, AEA) is
one of the best characterized endocannabinoids (eCBs) and is
involved in regulation of appetite and energy homeostasis2,3. In
addition to AEA, other related N-acylethanolamines (NAEs),
such as N-palmitoylethanolamine (PEA), N-stearoylethanolamine
(SEA) and N-oleoylethanolamine (OEA) share biosynthetic and
degrading pathways with AEA. NAEs are typically synthesized by
the enzyme N-acylphosphatidylethanolamine phospholipase D
(NAPE-PLD), although alternative pathways exist for AEA
biosynthesis1,4. The eCBs are synthesized from cell membrane
phospholipids and are released to the extracellular compartment
to target their receptors. eCBs act via an autocrine or a paracrine
mechanism5. The principal eCB receptors are the G-coupled
receptors CB1 and CB2, which are mainly targeted by AEA and
2-arachidonoylglycerol, the two major eCBs. Other NAEs, such as
OEA or PEA, activate non-cannabinoid receptors, including
PPARa, GPR55 or GPR119 (refs 1,6–8). The levels of eCBs are
closely regulated by a balance between synthesis and degradation.
After release, eCBs and NAEs are rapidly degraded by a cluster of
degrading enzymes such as fatty acid amide hydrolase (FAAH) or
NAE hydrolyzing acid amidase (NAAA)5. Because they are
primarily synthesized on demand, it is worthwhile to focus on
eCB production. NAEs modulate food intake and inflammatory
response3,9,10 and thus seem to act as important mediators of
metabolic homeostasis and inflammation. Studies on total
Napepld knockout (KO) mice revealed no overt phenotype,
highlighting alternative synthesis pathways for certain long-chain
NAEs such as AEA and suggesting a role for NAPE-PLD
in regulating lipid signalling systems4,11. These studies focused
on the central ECS, but the exact role of NAPE-PLD
per se in metabolism in peripheral tissues has yet to be
investigated.

Among the peripheral tissues involved in obesity, the adipose
tissue plays a central role. Besides storing excessive energy, the
adipose tissue is an active metabolic organ that secretes many
mediators, such as hormones and cytokines (for example,
adipokines)12,13. We and others have previously underlined a
role for the ECS in adipogenesis and adipose tissue function14–17,
thereby designating the ECS as an important actor in adipose
tissue metabolism. We hypothesize that NAEs produced by
adipocytes are key mediators regulating whole-body metabolism
and energy homeostasis.

To evaluate the specific role of NAEs produced in adipose
tissue, we generated a mouse model of adipocyte-specific deletion
of the Napepld gene and investigated the physiological role of
adipose tissue NAPE-PLD under basal (control diet (CT)) and
pathological (diet-induced obesity (DIO)) conditions. We found
in this study that Napepld deletion in adipose tissue leads to
development of obesity, impairment of glucose and lipid
homeostasis along with altered adipose tissue metabolism and
changes in gut microbiota composition.

Results
Napepld deletion is specific of adipose tissue. To assess the role
of adipose tissue NAPE-PLD on metabolism, Napepldlox/lox mice
(construction in Supplementary Fig. 1) were crossed with Fabp4-
Cre mice to generate mice with a conditional adipocyte-specific
KO (cKO) of NAPE-PLD. Fabp4-Cre-Napepld cKO mice have a
normal postnatal development, in contrast to other Fabp4-Cre
mice strains that can develop postnatal lethality18. To confirm the
invalidation of the Napepld gene in the adipose tissue of the cKO
mice, we assessed the presence of the NAPE-PLD protein by
Western blot analysis in the white adipose tissue (WAT) of wild-
type (WT) and cKO mice (Fig. 1a) and found no detectable
amounts of NAPE-PLD in the WAT of cKO mice. In contrast, we
did not observe reduced NAPE-PLD levels in the brain, which
demonstrates the specificity of our model (Supplementary Fig. 2).
In addition, the analysis of messenger RNA (mRNA) expression
from multiple tissues confirms that the deletion is specific for
different depots of WAT (subcutaneous, visceral and epididymal)
and brown adipose tissue (BAT; Fig. 1b), without affecting
Napepld expression in the liver, colon or muscles, which indicates
that recombination did not occur in other tissues19. During
experiments, WT and cKO mice were fed either a CT (WT-CT
and cKO-CT groups) or a high fat diet (HFD; WT-HFD and
cKO-HFD groups). Deletion of the Napepld gene was verified in
cKO groups under both diets (Fig. 1b). Because we observed a
residual expression of Napepld in the adipose tissue, we
performed a separation of the stromal vascular fraction (SVF)
and adipocytes enriched fraction in the WAT. This indicated that
decreased expression of Napepld occurs only in adipocytes
fraction and not in the SVF (Supplementary Fig. 2). Some
reports in the literature established a Cre activity mediated by the
Fabp4 promoter in other cell types such as macrophages20. To
verify Napepld expression in macrophages, we isolated peritoneal
macrophages from WT and cKO mice. We found that
macrophages from both genotypes did not differ in Napepld
expression (Supplementary Fig. 2). Finally, to ensure that the
deletion of Napepld is indeed reducing NAE levels we measured
the levels of NAEs produced by NAPE-PLD. Figure 1c illustrates
B60% reduction of PEA, OEA and SEA levels in the adipose
tissue of cKO mice compared with WT mice. In contrast, we
found no decrease in NAEs levels in the brain when comparing
both genotypes (Supplementary Fig. 2). The lack of a significant
impact of Napepld deletion on AEA confirms the existence of an
alternative synthesis pathway for this NAE4,11,21. Importantly, we
determined that HFD-treated WT mice exhibited similar levels of
NAEs to cKO mice, suggesting that HFD treatment in itself has a
NAE lowering effect that was only slightly intensified by the cKO
genotype. Moreover, we found that Napepld deletion in adipose
tissue leads to increased NAE precursor levels (that is, NAPEs)
in adipose tissue, corroborating results of previous studies
performed in Napepld� /� mice4,11,21 (Supplementary Fig. 2).

Adipose tissue Napepld-deleted mice develop an obese phenotype.
Surprisingly, under the CT diet, cKO mice gained more weight
than WT mice, a phenomenon exacerbated under the HFD
(Fig. 2a). Body composition measured by NMR indicated that the
cKO mice accumulate more fat mass, which results in a higher
percentage of total body fat and increased fat mass gain (Fig. 2b,c)
and a lower percentage of lean mass when compared with their
control counterparts after 8 weeks of CT diet (Supplementary
Fig. 3). Food intake remains unchanged between the WT and
cKO mice but is increased in the HFD-treated groups compared
with the CT-treated groups (Fig. 2d). The increase in fat mass
gain observed in cKO mice is associated with an increase in
adipocyte size in both mice on the CT diet and HFD (Fig. 2e,f).
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This increase is reflected by a higher frequency of larger adipo-
cytes in cKO mice and HFD mice compared with WT-CT mice
(Fig. 2g). Moreover, the plasma levels of leptin, produced pro-
portionally to fat mass, are markedly increased in cKO-CT mice
compared with WT-CT mice and are increased even more in
cKO-HFD mice compared with WT-HFD mice (Fig. 2h). We
next assessed whether adipose Napepld deletion has an impact on
whole-body glucose metabolism. We observed that cKO-CT mice
are hyperglycemic in the fasted state and that these mice develop
glucose intolerance, as evidenced by an oral glucose tolerance test
(OGTT) (Fig. 2i). Importantly, this glucose intolerance is main-
tained throughout the duration of the OGTT. In addition, adipose
Napepld deletion exacerbated HFD-induced glucose intolerance

(Fig. 2i). The cKO-CT mice exhibit a twofold higher level of
plasma insulin in the fasted state as well as after the oral glucose
load, and this latter effect is also present during HFD feeding (Fig.
2j). These observations are confirmed by the increased insulin
resistance index observed in cKO-CT during both CT and HFD
diet feeding, the latter being worsened in cKO-HFD mice com-
pared with WT-HFD mice (Fig. 2k).

Adipose tissue Napepld deletion induces insulin resistance.
Insulin resistance in cKO mice is suggested by the increased
fasted glycaemia, glucose intolerance, fasted and fed hyper-
insulinemia and a higher insulin resistance index (Fig. 2i–k).
To explore which organ may be responsible for insulin resistance,

WT cKO

55 kDa
NAPE PLD

�-Actin

43 kDa

43 kDa

WT-CT
cKO-CT

1.2 1.4
1.2
1.0
0.8
0.6 * *

*
*0.4

0.2
0.0

SAT
VAT

EAT
BAT

Liv
er

Colo
n

M
us

cle

N
ap

e 
pl

d 
m

R
N

A1.0

0.8

0.6 * * * *
0.4

0.2

0.0

100 750
aa

a

a

a

b
b

b

600

450

300

150

0

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

P
E

A
 (

pm
ol

 g
–1

)

75

50

25

0

1,000 600 a

b
b

b

500

400

300

200

100

0

S
E

A
 (

pm
ol

 g
–1

)

a

b b
b

750

500

250

0

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

O
E

A
 (

pm
ol

 g
–1

)

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

A
E

A
 (

pm
ol

 g
–1

)

SAT
VAT

EAT
BAT

Liv
er

Colo
n

M
us

cle

N
ap

e 
pl

d 
m

R
N

A

WT-HFD
cKO-HFD

Figure 1 | Specific deletion of Napepld in adipose tissue. (a) Representative adipose tissue immunoblot of NAPE-PLD and b-actin in WT mice and

cKO mice. (b) mRNA relative expression of Napepld in different adipose tissue deposits (subcutaneous, visceral, epididymal and brown adipose tissue—

SAT, VAT, EAT and BAT), as well as in liver, colon and tibialis muscle under CT diet and HFD in cKO mice and WT mice (n¼ 20–27). These data (a,b)

correspond to the results of three independent experiments. Data with ‘*’ indicate a significant difference (Po0.05) versus WT-CT or WT-HFD according

to the unpaired two-tailed Student’s t-test. (c) SAT levels of AEA, PEA, OEA and SEA (pmol per g tissue) measured by HPLC-MS (n¼ 6–10). Data are

presented as the mean±s.e.m. Data with different superscript letters are significantly different (Po0.05) according to post-hoc one-way analysis of

variance statistical analysis.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7495 ARTICLE

NATURE COMMUNICATIONS | 6:6495 | DOI: 10.1038/ncomms7495 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


we analyzed insulin-induced phosphorylation of the insulin
receptor (p-IRb). We found that following insulin stimulation,
phosphorylation of IRb was strongly reduced in the liver and in
the muscles of cKO mice, whereas the reduced phosphorylation
of IRb in adipose tissue was not statistically significant
(Fig. 3a–c). To further analyze insulin resistance in the liver, we
next analyzed insulin-induced phosphorylation of Akt (p-Akt),
downstream mediator in the insulin signalling pathway. Phos-
phorylation of Akt on the serine site after insulin stimulation was
reduced in the liver (Fig. 3d), confirming insulin resistance in
this organ, whereas p-Akt levels were not affected in muscle or
adipose tissue (data not shown). Finally, we found that glucose-6-
phosphatase activity was increased and glycogen content
decreased in the liver, confirming insulin resistance in this organ
(Fig. 3e,f).

Napepld deletion impacts adipose and whole-body lipid profiles.
Napepld deletion leads to decreased synthesis of bioactive

mediators (that is, NAE) which could be involved in the regula-
tion of lipid synthesis and release by the adipose tissue. To
examine this possibility, we performed an analysis of circulating
lipids and adipose tissue lipidomics. We observed increased cir-
culating triglycerides (TAG) and cholesterol levels (Fig. 4a,b) in
cKO mice, whereas circulating non-esterified fatty acids levels
were not affected by the deletion (Fig. 4c). In addition, NAEs
share similar biosynthetic pathways with eicosanoids and their
derivatives (namely prostaglandins (PG)), which are also
important lipid mediators involved in metabolism and inflam-
mation22. As we cannot exclude the possibility that adipose tissue
Napepld deletion also affects these lipid mediators and that this
interaction could be an additional mechanism involved in
changes in energy homeostasis and glucose metabolism, we
quantified the adipose levels of eicosanoids, PG, ceramides and
phospholipids using a lipidomic approach. We observed that the
deletion of Napepld in adipose tissue decreases PG and eicosanoid
concentrations in adipose tissue to the same extent as the HFD

17.5
15.0
12.5
10.0

7.5
5.0

a

a

e

i j k

f g h

b c d

b

c
d 30 9 6

a a

b b

4

2

0

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

F
oo

d 
in

ta
ke

 p
er

da
y 

(g
)

8
7
6
5
4
3
2
1
0

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

a
b

c
c

20

a

b

c
c

10

0

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

2.5
0.0

WT

H
F

D
C

T

cKO

50

40

30

20

a

b,c b
c

20 WT-CT
cKO-CT
WT-HFD
cKO-HFD

20,000

15,000

10,000

5,000

0
a b

c

c

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

15

10

5

0
0 50 100 150

Adipocyte diameter (μm)

10

0

750 70,000 6 1,250

1,000

750

500

250

0

a

b

c

d

*
*

*
#

#

•#

4

2

0

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD15 15 15 15

In
su

lin
 (

μg
 I–1

)

In
su

lin
 r

es
is

ta
nc

e
in

de
x 

(A
U

C
gl

uc
os

e
x 

A
U

C
in

su
lin

) 
×1

0–4

a

b

c
c

60,000
50,000
40,000
30,000
20,000
10,000

0

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

G
lu

co
se

 A
U

C
(m

g 
l–

1  
m

in
–1

)

WT-CT

WT-HED
cKO-CT

cKO-HFD

500

250 #
#
* *

#
#

#
#
#

**
* * *

#

#

#
#
#

#

0

–3
0

–1
5 0 15 30

Time (min)

45 60 75 9010
5
12

0

P
la

sm
a 

gl
uc

os
e

(m
g 

dl
–1

)

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

A
di

po
cy

te
 m

ea
n

di
am

et
er

 (
μm

)

F
re

qu
en

cy
 (

%
)

Le
pt

in
 (

pg
 m

l–1
)

W
T-C

T

cK
O-C

T

W
T-H

FD

cK
O-H

FD

B
od

y-
w

ei
gh

t g
ai

n
(g

)

F
at

 m
as

s
(%

 T
ot

al
 b

od
y 

w
ei

gh
t)

F
at

 m
as

s 
ga

in
 (

g)

–3
0

–3
0

–3
0

–3
0

Figure 2 | Adipose tissue Napepld deletion induces an obese-like phenotype. (a) Total body-weight gain (g) (n¼ 20–27). (b) Total fat mass (% of total

body weight) measured by TD-NMR (n¼ 20–27). (c) Total fat mass gain (g) measured by TD-NMR (n¼ 20–27). (d) Mean daily food intake per mouse (g)

(n¼ 20–27). (e) Representative haematoxylin and eosin-stained pictures of SAT deposits. Scale bar, 100mm. (n¼ 6–10). (f) Mean adipocyte diameter (mm)

determined by histological analysis (n¼6–10). (g) Adipocyte distribution and frequency with respect to the mean diameter measured by histological

analysis (n¼6–10). (h) Leptin plasma levels measured in the vena cava (mg ml� 1; n¼6–10). (i) Plasma glucose (mg dl� 1) profile and the mean area under

the curve (AUC) measured between 0 and 120 min after glucose loading (mg dl� 1 min; n¼ 20–27). (j) Plasma insulin levels at 30 min before and 15 min

after glucose loading (n¼ 20–27). (k) Insulin resistance index determined by multiplying the AUC of blood glucose by the AUC of insulin. These data

(a–d and i–k) correspond to the results of three independent experiments. Data are presented as the mean±s.e.m. Data with different superscript letters

are significantly different (Po0.05) according to post-hoc one-way analysis of variance (a–h and k). ‘*’ indicates a significant difference versus WT-CT

(Po0.05) (i) and at both time points (� 30 and 15) versus WT-CT (Po0.05) (j); ‘#’ indicates a significant difference (Po0.05) versus WT-CT and

cKO-CT; and ‘�’ indicates a significant difference versus WT-HFD as determined by a two-way statistical analysis (i,j).
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treatment (Fig. 4d,e). We found in cKO-CT mice significantly
increased levels of very long-chain ceramides (Fig. 4f) compared
with WT-CT mice. Interestingly, we observed that HFD
treatment does not affect long-chain ceramide levels, as there is
no exacerbation of the cKO condition under HFD. Furthermore,
cKO-CT mice exhibit a drop in the content of several
phospholipids in the WAT compared with WT-CT mice
(Supplementary Table 1). Altogether, these data confirm a
strong impact of Napepld deletion on lipid metabolism in the
basal state.

Napepld deletion modifies inflammation and browning process.
To better explain the increased fat mass and altered lipid profile
observed following the deletion of Napepld in adipose tissue, we
analyzed the gene expression profiles in the WAT by microarray.
These revealed an increased expression of a large number of genes
involved in inflammatory pathways and a decreased expression
of numerous genes involved in adipose tissue metabolism in
cKO-CT, WT-HFD and cKO-HFD mice compared with WT-CT
mice (Fig. 5a). Genes were assigned to relevant pathways by
analyzing gene ontology using the bioinformatics tool DAVID
(Supplementary Fig. 4). Figure 5a represents relative ratios in
our experimental groups of selected genes that were down or
upregulated by at least 1.5-fold in cKO-CT versus WT-CT mice.
The entire list of genes is available in Supplementary Data 1.
To confirm the results obtained from the microarray analyses,

we performed quantitative PCR (qPCR) measurements on key
inflammatory markers as well as on lipid metabolism and
browning markers. All of the qPCR results supported the results
from the microarrays and confirmed that cKO mice exhibit a
markedly increased inflammatory tone in adipose tissue (Fig. 5b).
It is worth noting that the levels of inflammatory markers in
cKO-CT mice are similar to those of WT-HFD and cKO-HFD
mice or are even more pronounced than under HFD conditions,
emphasizing the effect of Napepld deletion on adipose tissue
inflammation under physiological conditions. We have confirmed
the presence of inflammation in cKO mice by histological stain-
ing for the F4/80 marker in WAT sections (Fig. 5c, quantification
in Supplementary Fig. 5). With regard to lipid metabolism, we
observed a decreased expression of several genes involved in
lipogenesis (Fasn and Acaca), b-oxidation (Acox1 and Acsl1)
or key regulators of lipid metabolism (Ppara and Ppargc1a) in
cKO-CT mice (Fig. 5d). Seeking a mechanistic explanation for
the increased fat accumulation, we identified by microarray a
marked downregulation of key markers of browning, namely
Ppargc1a, Ucp1, Cidea and Elovl3 in cKO-CT mice (Fig. 5a). This
downregulation was confirmed by qPCR (Fig. 5d) and by
immunological staining for UCP1 (Fig. 5e, quantification in
Supplementary Fig. 5). Because we observed increased fat mass
but no increase in food intake, these results suggest the impact of
adipose Napepld deletion on the browning process. These dif-
ferent markers were similar between cKO-HFD and WT-HFD
(Fig. 5b–e). We and others have linked the increased expression
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and cKO mice with or without insulin stimulation. Ratio of the insulin-stimulated p-IRb in the liver on the loading control as measured by densitometry in

cKO and WT mice (n¼ 6). (b) Representative skeletal muscle immunoblots for p-IRb and b-tubulin in WTand cKO mice with or without insulin stimulation.

Ratio of the insulin-stimulated p-IRb in the muscle on the loading control as measured by densitometry in cKO and WT mice (n¼ 3–6). (c) Representative

adipose tissue immunoblots, for p-IRb and b-Actin in WT and cKO mice with or without insulin stimulation. Ratio of the insulin-stimulated p-IRb in the

adipose tissue on the loading control as measured by densitometry in cKO and WT mice (n¼ 3). (d) Representative liver immunoblots for p-AktThr308,

p-AktSer473 and b-Actin in WT and cKO mice with or without insulin stimulation. Ratio of the insulin-stimulated p-AktThr308 and p-AktSer473 in the liver on

the loading control as measured by densitometry in cKO and WT mice (n¼ 6). (e) Liver G6Pase activity (U per g liver) (n¼6–10). (f) Liver glycogen

content (mg per mg proteins; n¼6–10). Data are presented as mean±s.e.m. Data with ‘*’ are significantly different (Po0.05), data with ‘***’ are

significantly different (Po0.001), data with ‘#’ tend to be significantly different (P¼0.06) according to the unpaired two-tailed Student t-test.
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of lipopolysaccharide (LPS) binding protein (LBP) in the
adipose tissue to inflammation and plasma LPS levels23,24. As Lbp
mRNA were drastically increased in the adipose tissue
of cKO mice according to both microarray and qPCR data,
we measured plasma LPS levels, and found that the increased
Lbp mRNA expression and the higher inflammation in
cKO-CT mice were associated with a significant increase in
metabolic endotoxemia (that is, increased plasma LPS levels25)
(Fig. 5f).

Napepld deletion impairs adaptation to cold exposure. To
investigate whether reduced WAT browning is a causal factor for,
or a metabolic consequence of, the phenotype observed, we
submitted body weight-matched WT and cKO mice (Fig. 6a) to
cold exposure for 72 h. Under normal conditions, this effectively
upregulates Ucp1 and consequent heat-production (‘browning’)
in WT mice, in an attempt to counter the drop in environmental
temperature26. cKO mice maintained a lower body temperature
throughout cold exposure and had a significantly lower mean
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body temperature after 72 h of cold exposure (Fig. 6b,c). qPCR
markers of the browning programme in WAT (Ucp1, Elovl3,
Cidea and Ppargc1a) indicated that cold exposure resulted in
normal browning of the WAT in WT mice, but that this
induction was impaired in cKO mice (Fig. 6d–g).

Browning phenotype is mainly conserved in ex vivo explants.
Because adrenergic stimulation of WAT induces the browning

process, this phenomenon in vivo is considered as a sympathetic
event27. Indeed, many actions of so-called ‘browning agents’ may
be traced back to indirect mechanisms that lead to activation of
the sympathetic nervous system (SNS) and subsequent induction
of browning27. However, some agents may have an impact on
browning in a direct and cell-autonomous manner. To further
understand the impact of adipose tissue-specific Napepld deletion
on the browning process, we wondered if this phenotype was
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regulated by cell-autonomous functions or was linked to changes
in the sympathetic tone in vivo. To address this question, we
isolated subcutaneous fat pads (explants) and cultured them
ex vivo for 24 h to eliminate peripheral adrenergic stimulations.
Interestingly we found that after 24 h incubation in culture
medium, adipose tissue explants from cKO mice tend to
reproduce the in vivo phenotype on browning markers,
although this decrease did not reach statistical significance
(Supplementary Fig. 6). These results suggest that the effect of
Napepld deletion on browning cannot entirely be attributed to a
change in the sympathetic drive. Furthermore, we did not find
any changes in mRNA expression of the b3 receptor in vivo,
which could have been expected as b3 receptors are closely
regulated at the expression level by sympathetic inputs
(Supplementary Fig. 6).

Adipose tissue Napepld deletion changes gut microbiota. The
metabolic endotoxemia observed in cKO-CT mice indicates a
putative shift in gut microbiota composition. Because we pre-
viously demonstrated a strong association between adipose tissue,
eCB content and gut microbiota14,15, we analyzed the gut
microbiota using high-throughput sequencing. Consistent with
previous studies24,25,28, we observed a significant change in gut
microbiota composition under HFD compared with the CT diet.
Interestingly, the deletion of Napepld profoundly affected gut
microbiota under CT diet conditions, as observed in the Principal
coordinates analysis (Fig. 7a). More specifically, the abundance
of 64 operational taxonomic units is significantly different in
cKO-CT mice compared with WT-CT mice (Fig. 7c). At the
taxonomic level, two phyla, six families and eight genera were
significantly modified in cKO-CT mice compared with WT-CT

mice (Fig. 7b–d and Supplementary Tables 3–5). Interestingly,
gut microbiota from cKO-CT mice differed from that of the
WT-CT mice but also from that of the HFD-treated mice
(Fig. 7a,d), suggesting that the effects of Napepld deletion on gut
microbiota may be different than those induced by the HFD
treatment. This finding strongly suggests that the deletion of
Napepld in adipose tissue has a profound influence on gut
microbiota composition in physiological conditions and thereby
suggests for the first time the existence of an adipose tissue to gut
microbiota axis.

Long-term antibiotic treatment improves glucose homeostasis.
To investigate if gut microbiota may influence the phenotype
observed following Napepld deletion, we treated mice with anti-
biotics for 12 weeks. Interestingly we found that long-term
antibiotic treatment in cKO mice under CT (cKO-Abx) reduced
body-weight gain and fat mass development (Fig. 8a,b). Antibiotics
also improved glucose tolerance and insulin resistance index in
cKO mice (Fig. 8c–f), suggesting a direct impact of gut microbiota
on energy and glucose homeostasis.

Gut microbiota transfer partially replicates the phenotype. To
see whether the altered gut microbiota composition in cKO mice
is a causal factor for, or a metabolic consequence of, the phe-
notype observed and to further elucidate whether the profound
shift in gut microbiota composition observed in cKO mice may
contribute to the phenotype, we transferred gut microbiota from
body-weight-matched WT or cKO mice into germ-free (GF)
recipient mice. Both donors and recipients were kept on a CT
diet. After 4 weeks, we found that gut microbiota transfer from
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cKO donors significantly increased fat mass gain and the
adiposity index (sum of the weights of the different adipose tissue
depots) (Fig. 9b,c). There was a trend towards increased
total body-weight gain but this did not reach statistical sig-
nificance (Fig. 9a). We found that gut microbes from cKO mice
increase adipose tissue inflammation (increased Cd11c mRNA

levels—Fig. 9d) and markedly decrease markers of b-oxidation
and browning (Acox, Ppargc1a, Cidea, Elovl3, Ucp1—Fig. 9d).
To investigate if gut microbiota transfer may also affect insulin
sensitivity, we analyzed Slc2a4 (GLUT4) expression in sub-
cutaneous adipose tissue (SAT) and muscle and glucose-6-
Phosphatase (G6pc) expression in the liver and found that the
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microbiota transfer from cKO mice did not affect these para-
meters. Furthermore, microbiota transfer did neither alter liver
glycogen levels nor G6Pase activity (Fig. 9e,f). Thus, these results
suggest that gut microbiota transfer is sufficient to rapidly
reproduce the phenotype observed in adipose tissue of Napepld-
deleted mice (that is, fat gain and browning), whereas the impact
on glucose metabolism is not yet observed. Together, the results
obtained following antibiotic exposure and microbiota transfer
confirm the key role played by gut microbiota in shaping the host
phenotype and demonstrate the critical influence of adipose tissue
NAPE-PLD on gut microbiota.

Discussion
The ECS and its related bioactive lipids such as NAEs play key
roles in the regulation of energy homeostasis. In this paper, we
discovered the essential role of the eCB synthesizing enzyme
NAPE-PLD in adipose tissue (summarized in Fig. 10). Mice

lacking the Napepld gene in their adipose tissue are prone to
obesity and associated metabolic disorders. Remarkably, the
phenotype of cKO mice develops in a physiological state (that is,
CT diet). This indicates that NAPE-PLD plays an important role
in the regulation of basal metabolism, energy homeostasis and
inflammation. Surprisingly, Napepld-deleted mice under HFD
have higher body-weight gain and insulin resistance index,
whereas other metabolic parameters are not exacerbated under
this pathological condition. Since the levels of adipose tissue
NAEs are similar between WT and cKO mice under HFD, this
may explain why we do not observe increased inflammation and
altered lipid metabolism under HFD. Nevertheless, Napepld
deletion is effective when differentiation of adipose tissue is
complete, thus before the beginning of HFD treatment. Therefore
increased body-weight gain and insulin resistance may be directly
attributed to Napepld deletion whereas other metabolic
alterations are probably due to long-term NAEs reduction.

Using different approaches (that is, microarray, qPCR and
histology), we determined that cKO mice develop a marked
inflammatory tone. This phenotype may be explained by different
mechanisms, including the fact that Napepld deletion decreased
the levels of the anti-inflammatory PEA. Indeed, PEA has been
identified previously as a bioactive lipid with anti-inflammatory
properties9,10,29. Moreover, the altered regulation of several PGs,
phospholipids, ceramides and eicosanoids may contribute to
altering the regulation of inflammatory pathways30. Interestingly,
it has been shown that an inflammatory stimulus such as LPS
reduces Napepld expression and PEA production in RAW264.7
macrophages31. These in vitro data, together with our in vivo
findings, support a role for NAPE-PLD in regulating the normal
inflammatory response.

The ECS plays an important role in regulating glucose
homeostasis32–34. Accordingly, our findings highlight the
impact of adipose tissue Napepld on glucose metabolism.
Perturbations of glucose homeostasis have been linked to
adipose tissue inflammation35,36, suggesting that the
inflammatory tone developed in our model contributes to the
observed glucose intolerance and insulin resistance. We also
found that insulin resistance occurs mainly in the liver rather
than skeletal muscle or adipose tissue. Nevertheless, we cannot
exclude that insulin resistance could affect those organs at a later
time since phosphorylation of IRb is also significantly affected in
skeletal muscle and there is an important trend towards reduced
insulin-induced phosphorylation of IRb in adipose tissue. Thus,
the specific kinetic of development of insulin resistance warrants
further investigations.

In addition, we found that Napepld deletion in adipose tissue
leads to an increase in circulating TAG and cholesterol levels,
underlying perturbations in lipid metabolism. To further
elucidate the mechanisms linking bioactive lipids produced by
NAPE-PLD and other lipid candidates known to play a major
role in inflammation and insulin resistance, we performed a
thorough lipidomic analysis, including ceramides, eicosanoids
and PGs. Ceramides link inflammation to insulin resistance37.
Moreover, a recent study reported a direct link among long-chain
ceramides, eCB and insulin action in the liver38. Interestingly we
observed that cKO mice exhibit increased levels of long-chain
ceramides in their adipose tissue, suggesting that altered NAE
production in adipose tissue may impact ceramide levels and
subsequently lead to other metabolic disturbances. The eCB and
eicosanoid metabolisms are closely related17,39. Eicosanoids and
PG are synthesized from arachidonic acid (AA) via the COX
pathway, which can also metabolize eCB39. Moreover, in cKO-CT
mice, we found an upregulation for several genes involved in the
regulation of inflammation and immunity as well as bioactive
lipid metabolism (Alox5ap, Pla2g5 and Plce1; Fig. 5a). In contrast,
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we observed a decrease in eicosanoids and PG in the adipose
tissue of cKO mice as well as in the adipose tissue of HFD-treated
mice, where an increase in these pro-inflammatory lipid
mediators could have been expected22. However, recent data
have suggested that these lipids may exhibit both pro- and anti-
inflammatory properties according to the pathological situation.
On the other hand, PG derivatives can be synthesized by the

metabolism of eCB via the COX2 pathway, leading to the
formation of PG-glycerol esters or PG-ethanolamides, which
exert anti-inflammatory effects40,41. In addition, these bioactive
lipids may act as resolvins, thereby contributing to the complex
resolution of inflammation30. Whether the decrease in PGD2 and
PGE2 observed here contributes to the modulation of these
complex interactions requires further investigation. Finally,
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AA levels are unchanged in cKO-CT mice and are decreased
under HFD compared with WT-CT mice (Supplementary Fig. 7).
The global altered lipid profile observed in our model suggests
that the decreased level of the substrate (AA) may explain why
PGs are not increased. Taken together, these data shed light on
the influence of NAPE-PLD on bioactive lipid levels in adipose
tissue and the pronounced altered adipose tissue lipid metabolism
in our mice model. Furthermore, we found increased levels of
NAPEs (NAEs precursors, Supplementary Fig. 2) in adipose
tissue of cKO mice compared with WT mice, confirming data
obtained in previous studies4,11,21. These lipids could also be
potential contributors to the phenotype observed since some
NAPEs have been shown to present metabolic properties, namely
on energy homeostasis42. Nevertheless, this statement warrants
further investigation in our model.

cKO mice also exhibited decreased mRNA levels of Ucp1 and
other brown fat cell-enriched genes, such as Cidea and Ppargc1a,
in their WAT, suggesting that their adipose tissue loses
thermogenic potential. This finding was further supported by
the microarray analysis, which indicated a reduction in the
expression of several genes generally associated with brown/beige
adipocytes, such as Eva1 (also known as myelin protein zero-like
2, Mpzl2) and the mitochondrial genes Cox7a1 and Cox8b. It has
recently been suggested that a subset of adipocytes in the SAT
deposits can activate a thermogenic programme, namely beige or
brite cells43,44. Animals deficient in functional beige cells develop
obesity, in conjunction with a huge increase in SAT deposits45.
Remarkably, we observed that more than 10 genes involved in the
regulation of these metabolic processes were significantly affected
in the absence of NAPE-PLD. Based on these observations, we
propose that the increased fat mass development is associated
with an altered browning process in the adipose tissue and a
reduced capacity to develop a normal thermogenic programme.
Interestingly, the microarray analysis also revealed the
downregulation of Fabp3 and mitochondrial fatty acid
oxidation genes, such as Acss1, Acsl5 and Cpt1b. These enzymes
have been found to be upregulated after cold exposure or
b-adrenergic stimulation and are linked to a brown-like
transformation of the WAT46. Their downregulation might
reflect reduced b-oxidation due to the further loss of the
BAT-characteristics of the WAT. This defect in b-oxidation
may potentially contribute to the elevated levels of circulating
lipids observed. Moreover, pharmacological blockade of the CB1

receptor induces the activation of BAT thermogenesis associated
with enhanced glucose and lipid utilization47,48, while OEA has
been recently implicated in the enhancement of b-adrenergic-
mediated thermogenesis in rats49, linking ECS and
thermogenesis. Altogether, the altered lipid metabolism
observed in our model could be linked to the altered browning
process. For example, PGE2 has recently been identified as a key
regulator of white-to-brown adipogenesis50 and the reduced
PGE2 levels observed in the WAT may therefore participate in
decreased browning. To further explore the effects of Napepld
deletion on the browning process, we exposed cKO and WT mice
to cold exposure and found that Napepld-deleted mice clearly
present an altered induction of cold-induced browning process.
This process seems to be due to Napepld deletion independently
of a sympathetic drive since adipose tissue explants from cKO
donors tend to develop the same phenotype. Overall, these data
clearly indicate that adipose tissue NAPE-PLD is a key enzyme
involved in the regulation of energy homeostasis by regulating the
browning process. Nevertheless, the causal impact of
Napepld deletion on browning process merits further
investigations to ascertain the direct effects on browning,
independently of a heat-loss mechanism or sympathetic
nervous system activation27.

Using 454-pyrosequencing, we discovered that altering the
NAE synthesis in adipose tissue profoundly alters the gut
microbiota composition. For instance, the genera Lactobacillus
and Allobaculum were decreased in cKO-CT mice compared with
WT-CT mice (Supplementary Table 5). We have previously
reported that HFD feeding reduces the abundance of Allobacu-
lum, whereas prebiotics increase this genus; reduce fat mass,
metabolic inflammation and Lbp mRNA expression; and increase
insulin sensitivity24. Similarly, the abundance of Allobaculum is
increased in rats that were fed with berberine, which prevents
obesity and insulin resistance on HFD treatment51. Several strains
of Lactobacillus are commonly used probiotics52,53. It is therefore
not unconceivable that the effect of Napepld deletion in adipose
tissue induces metabolic alterations associated with metabolic
functions assumed by gut microbes. We also observed a
significant impact of HFD treatment on the gut microbiota
composition, confirming previously published data24.
Furthermore, Napepld deletion leads to an increase in portal
LPS, suggesting an altered intestinal barrier function54. We thus
postulate that the decreased production of NAEs in the adipose
tissue has an impact on the gut microbiota and the gut barrier
function14.

By treating cKO mice with antibiotics and by transferring gut
microbes from cKO and WT mice to GF recipients, we could
demonstrate the contribution of the gut microbiota on the
phenotype observed in cKO mice. These results acknowledge an
important role for the gut microbiota, which seems to be
independent of body weight, as adipocyte-specific Napepld
deletion results in a distinct gut microbiota composition from
that obtained under HFD conditions and as transfer of gut
microbiota from body-weight-matched donors is sufficient to
effectively transfer part of the phenotype. However, we may not
completely rule out the complementary association of body
weight and gut microbiota modulation over the long term since
antibiotic treatment reduces body weight and improves glucose
homeostasis in cKO mice. To note, only 4 weeks follow-up after
gut microbiota transfer (compared with 8 weeks in the other
in vivo studies) were enough to partly reproduce the phenotype.
Conversely, insulin sensitivity and glucose tolerance may not yet
be affected 4 weeks after gut microbiota transfer in our mice
model, but rather observed after a long-term modulation of gut
microbiota (that is, antibiotic treatment). Also, whether one or
several specific gut microbes contribute to this phenotype
requires further investigations.

In conclusion, our study highlights the essential contribution of
the adipose tissue NAE synthesis pathway, to whole-body energy
metabolism and physiology. In the absence of this functional
synthesis pathway in the basal state, mice develop obesity, adipose
tissue inflammation, insulin resistance, glucose intolerance and
perturbation of the lipid metabolism. This phenotype is partly
mediated by the alteration of gut microbiota composition and by
an altered browning programme (Fig. 10). Taken together, these
data underlie the importance of tissue-specific differences in ECS
regulation, with special emphasis on adipose tissue.

Methods
Mice. Generation of adipose tissue Napepld cKO mice. Adipose tissue-specific
Napepld-deleted mice (cKO mice) were generated by crossing mice bearing the
Cre recombinase expressed under the control of the Fabp4 promoter (Fabp4-Cre)
(C57BL/6 background, Jackson-Laboratory, Bar Harbor, ME, USA) with mice
harbouring a loxP-flanked Napepld allele. Napepld loxed mice were generated as
previously described55. Deletion was effective when adipose tissue reaches maturity
and mice were born at normal Mendelian ratios.

All mouse experiments were approved by and performed in accordance with the
guidelines of the local ethics committee for animal care of the Health Sector of the
UCL under the supervision of Prof. F. Lemaigre and Prof. JP Dehoux and under the
specific number 2010/UCL/MD/022. Housing conditions were specified by the
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Belgian Law of 29 May 2013 regarding the protection of laboratory animals
(agreement number LA1230314).

cKO experiments. Cohorts of 8-week-old male cKO mice and WT littermates
were housed in groups of two mice per cage (filter-top cages) with free access to
food and water. The mice were fed a CT (AIN93Mi, Research Diet) or a HFD (60%
fat, D12492, Research Diet). Treatment continued for 8 weeks. This experiment
was replicated independently three times. The control mice were WT littermates
harbouring the Napepld loxP-flanked allele but not the Cre recombinase. Body
weight, food intake and water consumption were recorded once a week. Body
composition was assessed once a week using 7.5-MHz time-domain NMR
(TD-NMR) (LF50 Minispec, Bruker, Rheinstetten, Germany).

After 7 weeks of treatment, an OGTT was performed as previously described in
freely moving mice25,32. To analyze the insulin signalling pathway, mice received
5 U insulin (Actrapid; Novo Nordisk A/S, Denmark) under anaesthesia (isoflurane,
Forene, Abbott, Queenborough, Kent, England), or an equal volume of PBS into
the portal vein to analyze signalling response to insulin. Three minutes after
injection, mice were killed and liver, SAT and gastrocnemius skeletal muscle were
rapidly dissected.

At the end of the treatments, the mice were anaesthetized with isoflurane after a
6-h fasting period. Portal and cava vein blood samples were collected for further
analysis. After exsanguination, mice were killed by cervical dislocation. Tissues
were precisely dissected, weighed and immediately snap-frozen in N2 and stored at
� 80 �C for further analysis.

Cold exposure experiment. Cohorts of 8-week-old male cKO mice and WT
littermates were reared at room temperature under standard housing conditions
(filter-top cages) with free access to food and water for 10 weeks. The mice were fed
a CT diet (AIN93Mi, Research Diet, New Brunswick, NJ, USA). Body weight, food
intake and water consumption were recorded once a week. Body composition was
assessed once a week using 7.5-MHz TD-NMR. After 10 weeks follow-up, two
groups of age- and body weight-matched cKO and WT mice were separated and
individually housed. One half of the animals from each genotype was transferred
to a cold room at 8 �C, whereas the other half remained at room temperature
(n¼ 7–9/group). Mice were fasted during the day period and fed ad libitum during
the night. Mice were kept in the cold room for 72 h and after 18 h acclimation in
the cold room, body temperature was monitored at different intervals during two
days with a rectal probe (RET-3, World Precision Instruments, Aston Stevenage,
UK). After 72 h, all mice were sacrificed as described above.

Antibiotic treatment experiment. Cohorts of 8-week-old C57/Bl6 female cKO
mice were housed in groups of 2 or 3 mice/cage (filter-top cages) with free access to
food and water. The mice were fed a CT diet for 12 weeks. Half of the mice (n¼ 5
per group) received antibiotics (1.0 g l� 1 ampicillin (Sigma, St Louis, MO) and
0.5 g l� 1 neomycin (Sigma)) in their drinking water during the experimental
period14. Body weight was recorded once a week. Body composition was assessed
once a week using 7.5-MHz TD-NMR. After 11 weeks, an OGTT was performed as
described above. After 12 weeks follow-up, mice were killed as described above.

Gut microbiota transplantation experiments. The caecal contents of 3 cKO mice
and 3 WT littermates (body weight matched) were transplanted into 14 GF mice
(7-week-old Swiss-Webster males, Taconic, Hudson, NY, USA) as previously
described56. Each donor was used to transplant two or three GF recipients. Each
caecal sample (150 mg) was sampled in an anaerobic chamber and suspended in
PBS (1.5 ml per caecum). Caecal contents were then immediately administered
(0.15 ml per mouse) to the GF mice. GF mice were housed individually in
ventilated cages (IVC AERO GM500, Tecnilab-BMI, Someren, The Netherlands)
and fed a CT diet for 4 weeks. Body weight, food intake and water consumption
were recorded once a week. Body composition was assessed once a week using
7.5-MHz TD-NMR. After 4 weeks follow-up, mice were killed as described above.

Insulin resistance index. The plasma insulin concentrations were measured in
plasma collected from tail blood during OGTT using an ELISA Kit (Mercodia,
Uppsala, Sweden) according to the manufacturer’s instructions. The insulin
resistance index was determined by multiplying the area under the curve of both
the blood glucose (� 30 to 120 min) and the plasma insulin (� 30 to 15 min)
obtained from the OGTT.

RNA extraction and real-time qPCR analysis. Total RNA was prepared from
tissues using the TriPure reagent (Roche). The quantification and integrity analysis
of the total RNA were performed by running 1 ml of each sample on an Agilent
2100 Bioanalyzer (Agilent RNA 6000 Nano Kit, Agilent). The complementary
DNA was prepared by reverse transcription, and real-time qPCR was performed
as previously described24. RPL19 RNA was chosen as the housekeeping gene.
Primer sequences are provided in the Supplementary Table 2.

Microarray analysis. Equal amounts of RNA from five mice per group were
pooled within each group. Microarrays were performed as previously described57.
Mouse gene ST microarray chips were used for hybridization (MoGene 1.0 ST,
Affymetrix). The WT expression kit (Ambion) was used for complementary RNA
preparation from the total RNA. The hybridization, wash and scan were done
according to the Affymetrix kits and procedures specific to the mouse gene ST
chips. After the scan, the quality controls of the hybridization were checked using

the Affymetrix Gene Expression Console software. Using the Affymetrix APT suite
tools, we normalized the data by the RMA-Sketch procedure and computed the
signal detection P values using the DABG algorithm. All the probe sets that have
the DABG P value 40.05 in all conditions were discarded from the analysis. The
rest of probes sets were kept for fold-change analysis. Functional annotation and
pathway analysis was done using the DAVID web tool58. Both tools were fed with
the list of selected official gene names as input, and the threshold of significance
was set by default to P values o0.05.

DNA isolation from mouse caecal samples and qPCR and sequencing. Caecal
contents were collected and kept frozen at � 80 �C until use. Metagenomic DNA
was extracted from the caecal content using the QIAamp DNA Stool mini-kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The
V1-V3 region of the bacterial 16S rRNA gene was amplified using barcoded
primers 27f and 534r (ref. 59), and the high-throughput sequencing results of the
purified amplicons were analyzed on a Roche FLX Genome Sequencer using
titanium chemistry (DNAVision, Gosselies, Belgium). The resulting reads were
processed through the QIIME v1.7.0 pipeline60. The abundance of identified and
unclassified taxa was transformed using the Hellinger method after removing taxa
representing o0.01% of the total abundance. Principal coordinates analysis was
calculated using the weighted UniFrac distance. Operational taxonomic units were
identified using the uclust consensus taxonomy classifier with a 0.97 threshold
against the Greengenes database. Phylogenetic trees were generated using QIIME
1.7.0 and visualized using iTOL v2.2.2.

SDS–PAGE and immunoblotting. For the total lysates, tissues were homogenized
with TissueLyser II (Qiagen) in RIPA buffer61 supplemented with a cocktail of
protease inhibitors (Sigma) and phosphatase inhibitors. Equal amounts of proteins
were separated by SDS–PAGE and transferred to nitrocellulose membranes. For
detection of proteins of the insulin pathway, tissues were homogenized in ERK
buffer (Triton X-100 0.1%, HEPES 50 mM, NaCl 5 M, Glycerol 10%, MgCl2
1.5 mM and DTT 1 mM) supplemented with a cocktail of protease inhibitors and
phosphatase inhibitors. Membranes were incubated overnight at 4 �C with the
following antibodies diluted in Tris-buffered saline tween-20 containing 1%
non-fat dry milk: NAPE-PLD (1:200; ab95397, Abcam, Cambridge, MA, USA),
p-IRb (1:1,000; sc-25103, Santa Cruz, CA, USA), p-AktThr308 (1:1,000; #2965L, Cell
Signaling, Danvers, MA, USA) and p-AktSer473 (1:1,000; #4060L, Cell Signaling).
Quantification of phospho-proteins was performed on six animals with insulin
injection per group. The loading control was b-actin (1:10,000; ab6276) or
b-tubulin for skeletal muscle (1:800; sc-9104). Full unedited blots are available
in Supplementary Fig. 8.

Histological analysis and immunohistochemistry. The tissues were fixed in 4%
formaldehyde. Haematoxylin and eosin staining was performed using standard
protocols on 5-mm adipose tissue sections. Adipocyte size (haematoxylin and
eosin-stained sections), macrophage infiltration (F4/80: ab6640, Abcam) and
UCP1 staining (ab23841, Abcam) were determined using ImageJ (version 1.48r,
National Institutes of Health, Bethesda, Maryland, USA).

Separation of adipocytes and the SVF. About 150–300 mg of SAT deposit were
dissected and cut in small pieces and digested with collagenase A (Roche) for
15 min at 37 �C. Digested tissue was filtered and centrifuged at 400 g for 1 min. The
infranatant containing the SVF and the supernatant containing adipocytes were
washed three times in a Krebs-BSA1% solution and stored at � 80 �C in Tripure
Reagent (Roche) for further RNA extraction.

Primary peritoneal macrophage isolation. Murine peritoneal macrophages were
obtained by eliciting an acute peripheral inflammatory reaction with an i.p.
injection of thioglycolate62. Isolated primary macrophages were incubated at 37 �C
for 4 h, washed with PBS and then frozen in Tripure Reagent for further RNA
extraction.

Adipose tissue explants culture. Subcutaneous adipose depots from 20 mice
(10 WT mice and 10 cKO mice) were precisely dissected, and all visible vessels,
particles and conjunctive tissues were removed. The fat tissue was then cut into
small pieces (4 mm3), pooled per genotype and placed into Krebs buffer (pH 7.4)
containing 0.5% (w/v) fatty acid-free BSA, penicillin/streptomycin (1:100) and
fungizone (1:100) (Invitrogen). A total of 200 mg adipose tissue was rinsed in PBS
and incubated in 100-mm Petri dishes containing 10 ml aMEM (Invitrogen)
supplemented with 0.5% (w/v) fatty acid-free BSA, penicillin/streptomycin (1:100)
and fungizone (1:100). All conditions were repeated in six different dishes. Dishes
were cultured for 24 h at 37 �C in a 5% CO2 atmosphere. The basal concentration
of glucose in fresh media was 5 mmol l� 1. At the end of the experiment, adipose
material was collected and immediately frozen in liquid nitrogen, and stored at
� 80 �C until subsequent mRNA analysis.
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Biochemical analyses. Circulating leptin was determined using a multiplex
immunoassay kit (Merck Millipore, Brussels, Belgium) and measured using
Luminex technology (Bioplex, Bio-Rad, Belgium) following the manufacturer’s
instructions.

For liver G6Pase activity, liver tissue was homogenized in lysis buffer (HEPES
20 mM, sucrose 250 mM, KCl 10 mM, MgCl2 1.5 mM, EDTA 1 mM and DTT
1 mM) and sonicated to release membrane-bound G6Pase. Homogenates were then
separately incubated with 20 mM G6P (Sigma) or 20 mM b-glycerophosphate
(Sigma) to measure nonspecific phosphatase activity. Inorganic phosphate was
assayed in each condition at time 0 and 10 min incubation at 37 �C. G6Pase activity
was determined by calculating specific G6Pase–phosphate release as previously
described63.

For the measurement of liver glycogen content, liver was digested in NaOH
(1 M) and digestion was stopped with HCl (1 M). Digested liver was diluted in
sodium acetate (1:4 vol/vol) unsupplemented or supplemented with
amyloglucosidase (50 U ml� 1; Merck Millipore) and incubated at 55 �C for 1 h to
transform glycogen into glucose. Released glucose was quantified using Glucose
God FS (Diasys Diagnostic and Systems, Holzheim, Germany) according to the
manufacturer’s instructions.

Plasma non-esterified fatty acids, cholesterol and triglyceride concentrations
were measured using kits coupling an enzymatic reaction with spectrophotometric
detection of the reaction end-products (Diasys Diagnostic and Systems) according
to the manufacturer’s instructions.

The portal plasma LPS concentration was measured using Endosafe-MCS
(Charles River Laboratories, Lyon, France) as previously described64.

Lipidomics analysis. Lipidomics were performed in collaboration with Biocrates
(Innsbruck, Austria). The most biologically abundant phospholipids, ceramides
and eicosanoids were quantitatively analyzed by a high-throughput flow injection
electrospray ionization-tandem mass spectrometry (ESI-MS/MS) screening method
or by HPLC-MS/MS(LC-MS/MS).

Measurement of eCB and NAPEs levels. Tissues were homogenized in CHCl3
(10 ml), then MeOH (5 ml), H2O (2.5 ml) and HCl 2 N were added and the lipids
extracted by vigorous mixing. The organic layer was recovered and dried under N2.
The resulting lipid fraction was pre-purified by solid-phase extraction over silica,
and NAPEs were eluted with CHCl3-MeOH (6:4, v/v). The resulting lipid fraction
was analyzed by HPLC-MS using a LTQ Orbitrap mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) coupled to an Accela HPLC system
(Thermo Fisher Scientific). Analyte separation was achieved by using a C-18
Kinetex C-18 column (5 mm, 4.6� 150 mm; Phenomenex, Utrecht, Netherlands)
and a C-18 pre-column. Mobile phases A and B were composed of MeOH-H2O-
NH4OH (75:25:0.1, v/v/v) and MeOH-NH4OH (100:0.1, v/v), respectively. The
gradient (0.5 ml min� 1) was as follows: from 100% A to 100% B in 15 min, fol-
lowed by 10 min at 100% B and subsequent re-equilibration at 100% A. Mass
spectrometry analysis in the negative mode was performed with an ESI source. The
measurement of eCB were generated as previously described32, and the data were
normalized to tissue sample weight.

Statistical analyses. The data are expressed as the mean±s.e.m. Differences
between the groups were assessed using one-way analysis of variance (ANOVA),
followed by the Tukey post-hoc test. A two-way ANOVA analysis with a Bonfer-
onni post-test on repeated measurements was performed for the evolution of body
weight, fat mass and glycaemia during the OGTT. The data were analyzed using
GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, CA,
USA). Data with different superscript letters or symbols are significantly different
at Po0.05 according to the post-hoc ANOVA statistical analysis. Comparisons
between the WT-CE and cKO-CE, the cKO and cKO-Abx groups, and the GF-WT
and the GF-KO groups were performed using a two-tailed Student’s t-test. The
results were considered statistically significant when Po0.05.
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