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Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex
disease. The risk of developing active TB is in part determined by host genetic factors.
Most genetic studies investigating TB susceptibility fail to replicate association signals
particularly across diverse populations. South African populations arose because of multi-
wave genetic admixture from the indigenous KhoeSan, Bantu-speaking Africans,
Europeans, Southeast Asian-and East Asian populations. This has led to complex
genetic admixture with heterogenous patterns of linkage disequilibrium and associated
traits. As a result, precise estimation of both global and local ancestry is required to prevent
both false positive and false-negative associations. Here, 820 individuals from South Africa
were genotyped on the SNP-dense Illumina Multi-Ethnic Genotyping Array (∼1.7M SNPs)
followed by local and global ancestry inference using RFMix. Local ancestry adjusted allelic
association (LAAA) models were utilized owing to the extensive genetic heterogeneity
present in this population. Hence, an interaction term, comprising the identification of the
minor allele that corresponds to the ancestry present at the specific locus under
investigation, was included as a covariate. One SNP (rs28647531) located on
chromosome 4q22 was significantly associated with TB susceptibility and displayed a
SNP minor allelic effect (G allele, frequency � 0.204) whilst correcting for local ancestry for
Bantu-speaking African ancestry (p-value � 5.518 × 10−7; OR � 3.065; SE � 0.224).
Although no other variants passed the significant threshold, clear differences were
observed between the lead variants identified for each ancestry. Furthermore, the
LAAA model robustly captured the source of association signals in multi-way admixed
individuals from South Africa and allowed the identification of ancestry-specific disease risk
alleles associated with TB susceptibility that have previously been missed.
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INTRODUCTION

Pulmonary tuberculosis (TB), caused by the bacillus
Mycobacterium tuberculosis (M.tb), is a complex disease which
affects populations disproportionately and results from a
multifactorial interaction between host and pathogen (Yim
and Selvaraj, 2010). It is often said that approximately 5–10%
of infected individuals (±3 billion people worldwide) will go on to
develop active TB whilst the majority will remain asymptomatic
(Bañuls et al., 2015; El Kamel et al., 2015; Chaw et al., 2020).
According to the World Health Organization (WHO), an
estimated 10 million TB cases and 1.5 million deaths were
reported in 2019 (WHO, 2019). TB therefore remains a global
health burden and is of particular concern in low- to middle-
income countries where a generally higher incidence rate (615 per
100 000 in South Africa) occurs, together with the limitations of
currently available therapies and vaccines (Bao et al., 2016; WHO
| Global tuberculosis report 2019, 2019). Numerous genetic and
heritability studies have established the role of host genetic factors
in susceptibility to TB (Rudko et al., 2016; Kinnear et al., 2017; Cai
et al., 2019; Luo et al., 2019), but with minimal overlap between
populations from various geographical regions (Thye et al., 2010;
Oki et al., 2011; Mahasirimongkol et al., 2012; Png et al., 2012;
Thye et al., 2012; Chimusa et al., 2014, 2014; Curtis et al., 2015;
Schurz et al., 2015; Grant et al., 2016; Sobota et al., 2016; Uren
et al., 2017a; Omae et al., 2017; Qi et al., 2017; Zheng et al., 2018).
The variation observed between populations from diverse
geographic regions indicates possible ancestry-specific
differences that contribute to the host genetic variability
observed in TB genome-wide association studies (GWAS) (van
Helden et al., 2006; Chimusa et al., 2014; Schurz et al., 2019a; Cai
et al., 2019).

Previous investigations into southern African history and
population structure elucidated indigenous KhoeSan ancestry
in the region, in addition to populations being multi-way
admixed due to multiple inter-and intra-continental
migrations (de Wit et al., 2010; Quintana-Murci et al., 2010;
Uren et al., 2017b). This population history has resulted in
admixture from indigenous KhoeSan, Bantu-speaking African,
European, Southeast Asian and East Asian populations (de Wit
et al., 2010; Quintana-Murci et al., 2010; Uren et al., 2016).
Ancestral populations contributed linked alleles (haplotype
blocks) resulting in a mosaic of phenotypic consequences. This
admixture can be leveraged to identify associations between
various TB phenotypes and genomic regions harbouring
variants with highly differentiated allele frequencies among
ancestral populations, known as admixture mapping (Wang
et al., 2020). Hence, the unique and complex admixed
individuals from southern Africa, harbouring genomic
contributions from ancestral populations with differing
historical disease burden, present an opportunity to investigate
ancestry-specific disease risk alleles associated with TB
susceptibility (Shriner, 2013; Wang et al., 2020).

Previous admixture mapping and association studies
investigating TB susceptibility loci in South Africa were
restricted by a low number of controls, small reference
population sample size and low SNP density (de Wit et al.,

2010; Chimusa et al., 2014; Daya et al., 2014b, 2014a). With
the recent adaption of computational algorithms to better suit
multi-way admixed populations, a more suitable, high-density
genotyping platform and the availability of large scale,
population-specific datasets, we aimed to perform an updated
scan for variants associated with TB using local ancestry adjusted
allelic (LAAA) association models.

MATERIALS AND METHODS

Study Population and Ethics Approval
A total of 413 pulmonary TB cases and 407 healthy controls were
recruited from the metropolitan area of Cape Town in the
Western Cape Province, South Africa. The population from
this area was elected due to the high incidence of TB as well
as the equal socio-economic status and low prevalence of HIV at
the time of sampling (Rossouw et al., 2003; Möller et al., 2009;
Gallant et al., 2010). Furthermore, TB cases and controls were
sampled from the same area, therefore socio-economic status is
unlikely to be a confounding factor as previously determined by
Chimusa et al. (2014). TB cases were distinguished through
bacteriological confirmation (culture positive and/or smear
positive). Healthy controls had no previous history of TB.
However, 80% of individuals above 15 years of age in this area
were estimated to have been exposed toM.tb, and could therefore
be regarded as latently infected (Gallant et al., 2010). If study
participants were under the age of 18 or were HIV-positive, they
were excluded from the analysis.

Written informed consent was obtained from all study
participants before recruitment and blood collection. Sample
collection (protocol number 95/072) and this study (S20/02/
041) were both approved by the Health Research Ethics
Committee of the Faculty of Health Sciences (HREC),
Stellenbosch University. The research was conducted according
to the principles expressed in the Declaration of Helsinki (2013).

Genotyping, Data Merging and Quality
Control
Genotype data on the case-control cohort was generated using the
Illumina (Illumina, CA, United States) multi-ethnic genotyping
array (MEGA) comprising ∼1.7 million markers (Schurz et al.,
2019b). The Sanger Imputation Server (SIS) (https://imputation.
sanger.ac.uk) and the African Genome Resource (AGR) reference
panel (Gurdasani et al., 2015) was utilised for the imputation of
missing genotypes. The imputed data was subjected to iterative
quality control as previously described by Schurz et al. (2019b).
Thereafter, the data from the admixed individuals were merged
with the respective appropriate source populations (summarised
in Table 1) using PLINK v2.0 (https://www.cog-genomics.org/
plink/2.0/) (Purcell et al., 2007) in order to generate input files
required for global and local ancestry inference.

After merging of admixed and source ancestral populations,
all individuals missing more than 10% genotypes were removed,
SNPs with more than 3% missing data were excluded and a
Hardy-Weinberg equilibrium (HWE) filter was used in controls
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(threshold < 0.01). The data was screened for relatedness using
the software KING (Manichaikul et al., 2010) and individuals up
to second degree relatedness were subsequently removed.
Variants with a minor allele frequency (MAF) below 1% were
removed. The final dataset after quality control and data filtering
consisted of 392 TB cases and 346 controls in addition to 289
ancestral individuals. A total of 4,249,442 variants passed quality
control and filtering parameters.

Global Ancestry Inference
ADMIXTURE was used to investigate the population
substructure amongst our cohort, as well as to determine the
correct number of contributing ancestries (Alexander and Lange,
2011; Zhou et al., 2011). This is a model-based approach to
estimate individual ancestry coefficients of an individual’s
genome from k ancestral populations and corresponding
ancestral genotype frequencies through cross validation. For
the purpose of computational efficiency, redundant single-
nucleotide polymorphisms (SNPs) were removed and only
tagging SNPs representative of the genetic haplotype blocks
remained. Therefore, each SNP that has a linkage
disequilibrium (LD) r2 of >0.1 within a 50-SNP sliding
window (advanced by 10 SNPs at a time) was removed. A
total of 261,694 autosomal markers after LD pruning and 820
individuals (413 cases and 407 controls) were used to infer
ancestry in an unsupervised manner for k � 3–10 (5
iterations). All 820 individuals were grouped into running
groups of equal size together with 289 ancestral populations
whilst inferring global ancestry proportions. Related
individuals were included in separate running groups.
Running groups were created to ensure an equal number of
reference populations and admixed populations whilst removing
relatedness as a confounding factor during global ancestry
assignment. After determining the correct k number of
contributing ancestries through cross validation, the software
RFMix was used to infer global ancestry proportions for
downstream statistical analysis, since ADMIXTURE is not as
accurate as haplotype-based analyses (Uren et al., 2020). The
software PONG was used for visualisation of global ancestry
proportions and amalgamation of multiple iterations into the
major mode (Behr et al., 2016).

Local Ancestry Inference
Local ancestry inference requires phasing of haplotypes prior to
inferring local ancestry. The software program SHAPEIT2
(Delaneau et al., 2013; Delaneau and Marchini, 2014)
(utilizing the HapMap Genetic map – GRCh37) was used to

phase the merged dataset before inferring local ancestry for each
position in the genome using RFMix (Maples et al., 2013). RFMix
is 30X faster than other local ancestry inference software and is
accurate in multi-way admixture scenarios (Maples et al., 2013;
Uren et al., 2020). Default parameters were used, except for the
number of generations since admixture, which was set to 15,
consistent with previous studies (Uren et al., 2016). Both global
and local ancestry was inferred for 1,027 individuals (392 TB
cases, 346 controls and 289 ancestral individuals) and 4,249,442
autosomal SNPs.

Statistical Analysis
A Local Ancestry Adjusted Allelic (LAAA) model, first described
by Duan et al. (2018), was used to investigate if there are allelic,
ancestry-specific or ancestry-specific allelic associations with TB
susceptibility in an admixed South African population (Duan
et al., 2018). Dosage files were compiled at each locus as a biallelic
state and were calculated as 0, 1 or 2 copies of a specific ancestry at
any locus along the genome. Separate regression models for each
ancestral group were fitted to investigate which ancestral
population(s) drive the association between TB status and
local ancestry at each locus. Genome-wide admixture
proportions obtained from RFMix were included in all
regression models to account for population structure. The
smallest ancestry proportion (East Asian) was excluded as
covariate to avoid complete separation of data. Therefore, four
ancestral components (KhoeSan, African, European, and
Southeast Asian) were included as covariates in association
testing, together with age and gender. The number of alternate
alleles (not the reference alleles) were counted, as these are more
likely to be ancestry-specific. A total of 738 unrelated individuals
(392 TB cases and 346 controls) and 4,249,442 autosomal
markers were included in this analysis. The glm() function in
R was used for logistic regression association testing.

The following four regression models were tested
simultaneously to detect the source (allelic, ancestry or both
ancestry-allelic effect) of the association signals observed:

1. Global ancestry proportions were included as covariates and
thus represents the null model. This test is regularly used in
GWAS to investigate whether an additive allelic dose affect
exists on the phenotype, not considering local ancestry
(Homozygous for the reference allele � 0; Heterozygous �
1; Homozygous for the alternate allele � 2).

2. Local ancestry expressed in terms of the number of copies of a
specific ancestry (Ancestry of interest � 1; Other ancestries �
0) at a locus were included as covariates. This model is often

TABLE 1 | Ancestral populations included in analysis.

Population n Source

European (British) 60 1000G phase 3
African (Luhya) 50 1000G phase 3
East Asian (Chinese) 36 1000G phase 3
KhoeSan (Nama) 44 European Genome-Phenome archive- https://ega-archive.org/
South East Asian (Malay) 40 Wong et al. (2013)
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utilised to conduct admixture mapping studies to elucidate
ancestry effects of variants which showcases frequency
disparities across ancestral populations (Homozygous for
other ancestry � 0; Heterozygous � 1; Homozygous for
ancestry of interest � 2).

3. Minor allelic effects were used in an additive manner and were
included as covariates whilst still adjusting for local ancestry.
Therefore, jointly testing for model 1 + 2.

4. This model utilises the ancestry-specific minor alleles at a
locus, thus the minor alleles together with the corresponding
ancestry of the minor allele were included as covariates (Minor
allele and ancestry not on the same haplotypes � 0; Minor
allele and ancestry are on the same haplotype � 1). This model
is an extension to the allelic (3) and local ancestry (2) model by
modelling the combination of the minor allele present at a
specific locus and the ancestry of the specific allele at that
genomic locus. (Both minor allele and ancestry not on the
same haplotype � 0; Heterozygote (only one haplotype has
both minor allele and ancestry on the same haplotype � 1;
Both minor allele and ancestry on the same haplotype � 2).

Since the true underlying causal variants as well as the LD
between the marker under study are unknown, modelling all
three terms simultaneously is the most effective approach to
elucidate causal variants in an admixed cohort with minimal
power loss (Duan et al., 2018). Therefore, we can determine if a
specific minor allele, ancestry or both a minor allelic and ancestry
co-occurs with TB status more often than would be expected by
chance.

The development of power and sample size analysis tools for
mapping ancestry-specific effects are lacking. The power to detect
significant associations depends greatly on the proportion of
admixture, differences in effect sizes between diverse ancestries
and differences in the allele risk frequencies among ancestral
populations. It is noteworthy to highlight that this information
will vary for each admixture scenario. Nonetheless, it remains
critical to conduct some sort of power calculation to ensure the
reliability of elucidating ancestry-specific genomic regions
amongst admixed individuals. Hence, we conducted a priori
power analysis in order to ensure the reliability of results
given our samples size using G*Power (Faul et al., 2007, 2009).

To account for the multiple testing burden, the R package
STEAM (Significance Threshold Estimation for Admixture
Mapping) (Grinde et al., 2019) was used to estimate the
genome-wide significance threshold. STEAM is specifically
designed to estimate genome-wide significance thresholds for
admixture mapping studies given the admixture proportions and
number of generations since admixture. We quantified the degree
of inflation by generating a Quantile-Quantile plot of the
residuals.

RESULTS

Global Ancestry Inference
After close inspection of global ancestry proportions
generated using ADMIXTURE, the k number of

contributing ancestries was determined to be k � 5, since
this was the lowest k-value through cross validation
(Supplementary Table S1). Since haplotype-based
admixture software is more accurate at global ancestry
inference, ancestry proportions (genome-wide ancestral
contributions) were inferred for all individuals using
RFMix (Uren et al., 2020). Figure 1 represents the global
ancestry proportions plotted vertically for each admixed
individual and contributing ancestral populations using
RFMix (k � 5). It is evident from the global ancestry
inference that the cohort is a complex five-way admixed
group, with ancestral contributions from the indigenous
KhoeSan (∼35–40%), Bantu-speaking Africans (∼27–30%),
Europeans (∼20%), Southeast Asians (∼7–8%) and East
Asians (∼5%). Furthermore, extensive genetic
heterogeneity can be observed, since genome-wide
proportions differ vastly between individuals.

Local Ancestry Inference
Local ancestry was estimated for all individuals and visually
observed with karyograms. As shown in Figure 2, admixture
between geographically distinct populations creates complicated
ancestral-and admixture induced LD blocks. Figure 2 represents
a single five-way admixed individual. Since not all individuals will
harbour the same number and length of ancestry segments, it is
necessary to accurately infer local ancestry in every individual at
each genomic locus.

Local Ancestry Allelic Adjusted Association
Analysis
A total of 4,249,442 autosomal markers and 738 unrelated
individuals (392 TB cases and 346 controls) were included in
logistic regression models to assess whether any loci were
significantly associated with TB status (adjusting for gender,
age, and global ancestry proportions inferred by RFMix).
More information regarding the distribution of age, gender
and ancestry proportions of the cohort can be found in the
Supplementary Figures S1–S3 and Supplementary Table
S2. LAAA models were successfully conducted for all five
ancestries present in this highly complex admixed cohort.

One variant (rs28647531) was significantly associated with TB
status (p-value < 1.078 × 10−6) due to an allelic SNP effect (G
allele; 0.204 frequency) whilst adjusting for Bantu-speaking
African local ancestry on chromosome 4 (OR � 3.065, p-value
� 5.518 × 10−7) (Figure 3). This variant is an intronic variant with
a gene consequence on Follistatin-related protein (FSTL5), which
is a protein coding gene involved in calcium ion binding. No
restrictions on the analysis or inflation of results were observed as
indicated by the Quantile-Quantile plot (Supplementary Figure
S4). Although no other variants passed the significance threshold,
multiple lead variants (p-value < 1 × 10−5) were identified.
Furthermore, it is clear from our results that multiple distinct
lead variants were identified for each ancestry.

The lead variants identified using only the global ancestry
as covariates (model 1), are summarised in Supplementary
Table S3. One lead variant (rs38672118) is near the protein
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coding gene, CUL2 (Cullin-2), located on chromosome 10.
The lead variants identified by conducting admixture
mapping (model 2), are summarised in Supplementary
Table S4. Only one ancestry (European) identified a local
ancestry peak on chromosome 15 (Supplementary Figure
S5). The lead variants identified utilising the allelic model
adjusting for local ancestry (model 3), are summarised in
Table 2. The lead variants identified by the LAAA model
(model 4) are summarised in Table 3. It is noteworthy that
both the allelic model adjusting for local ancestry (model 3),
and the LAAA model (model 4) captured association signals
not previously observed for this cohort.

DISCUSSION

We conducted local ancestry allelic adjusted association
analysis in a multi-way admixed South African (SA)

population to investigate whether ancestry-specific genetic
regions are associated with TB susceptibility. Multi-way
admixed populations allow the opportunity to
simultaneously assess the association of TB status in
multiple continental populations and elucidate possible
ancestry-specific effects on TB susceptibility. Previous
studies were confounded by the limited number of
representative reference populations available to infer local
ancestry and the use of the low-density Affymetrix gene chip
array (∼500k markers) in the analyses. New, more
representative ancestral populations and an increase in
accuracy of several software tools facilitated the novel
findings presented here.

Global ancestry deconvolution suggested a five-way admixed
scenario for the study cohort. This is in accordance with previous
studies (de Wit et al., 2010; Chimusa et al., 2014; Uren et al.,
2016). This diverse admixture and associated regional
heterogeneity are reflected in the karyograms generated via

FIGURE 1 | Genome-wide ancestral proportions of all SA individuals, with the ancestry proportion of each individual plotted vertically.

FIGURE 2 | Karyogram of one admixed SA individual.
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local ancestry inference (Figure 2). This scale of genetic
heterogeneity suggests that no two individuals will harbour the
same DNA segment from the same ancestral population,
i.e., there is a high degree of locus-specific ancestry (Duan
et al., 2018). The results presented here highlight that only
including global ancestry proportions in the analysis is not
sufficient to identify which ancestry is located on distinct
chromosomal segments. The only lead variant (rs38672118)
identified using the global ancestry-only model is near the
protein coding gene, CUL2. Although the function of CUL2 on
M.tb clearance is still uncertain, CUL2 forms an important part of
the cullin-RING-based E3 ubiquitin-protein ligase complex and
subsequently targets the ubiquitination of target proteins
(Nguyen et al., 2017). The model used for admixture mapping
(only utilising local ancestry) seems overconservative for complex
multi-way admixed individuals, since only one admixture peak
was close to the significance threshold for European ancestry
(located on chromosome 15). This highlights the phenomenon of
genetic heterogeneity where the presence of both admixture-
induced LD blocks and haplotype LD blocks often results in
missed association signals due to tagging SNPs being possibly
located in different ancestral LD blocks (Duan et al., 2018).

One example of missing relevant associated variants in
complex admixed populations, is the association signal
obtained on chromosome 11q13 while adjusting for Bantu-
speaking African- and European local ancestry. This lead
variant indicated an association with the TIR Domain
Containing Adaptor Protein (TIRAP) gene (Figure 4) and is
involved in the toll-like receptor (TLR) 4 signalling pathway of
the immune system via the TIR adaptor protein it codes for.
TIRAP is a protein which identifies microbial pathogens trough
TLRs as part of the initial innate immune response (Selvaraj et al.,
2010). This acts via IRAK2 and TRAF-6, leading to the activation
of NF-kappa-B, MAPK1, MAPK3 and JNK, which is essential for
cytokine secretion in order to mount an inflammatory response
(Capparelli et al., 2013). Polymorphisms in the TIRAP gene were
previously identified to be associated with TB susceptibility in
a South Indian population (Selvaraj et al., 2010), as well as a
Chinese population (Zhang et al., 2011). This suggests a
possible role of the TIRAP gene in TB susceptibility via
activation of TLRs in order to recognize several
components of M.tb during active TB disease. The T allele
of TLR4 (rs4986791) was found to be associated with an
increased risk for an Asian subgroup in a meta-analysis

FIGURE 3 | Log transformation of association signals (p-value < 1.078 × 10−6) obtained for Bantu-speaking African ancestry whilst using the allelic model whilst
adjusting for local ancestry on chromosome 4. The dashed red line represents the significant threshold for admixture mapping calculated with the software STEAM and
the black solid line represents the genome-wide significant threshold of 5 × 10−8. The four different models are represented in orange (global ancestry only), blue (local
ancestry effect), pink (minor allelic effect only) and black (both minor allelic and ancestry effects).
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TABLE 2 | Summary statistics of the top results (p-value < 1 × 10−5) whilst utilising the Additive allelic model whilst adjusting for local ancestry.

Chr Position rsID Ref Alt Altfreq OR SE p-value Ancestry Location Gene

4 153960368 rs1024148 T G 0.463 1.589 0.126 9.948e-06 European None None
13 24752695 rs7325698 T C 0.310 1.363 0.150 7.721e-06 European Intronic SPATA13
13 24753449 rs2862243 A G 0.263 1.300 0.174 3.811e-06 European Intronic SPATA13
13 50909771 rs67217502 T C 0.103 1.108 0.225 6.474e-06 European Intronic DLEU1
13 50913874 rs12853498 A T 0.103 1.108 0.225 6.474e-06 European Intronic DLEU1
13 50915280 rs17074141 C T 0.103 1.108 0.225 6.474e-06 European Intronic DLEU1
13 50920890 rs17363026 T C 0.104 1.110 0.225 4.129e-06 European Intronic DLEU1
13 50922773 rs17074143 T A 0.099 1.104 0.230 5.059e-06 European Intronic DLEU1
13 50925317 rs34712361 T C 0.098 1.103 0.230 7.398e-06 European Intronic DLEU1
13 50925565 rs67964536 C T 0.098 1.103 0.230 7.398e-06 European Intronic DLEU1
13 50926076 rs79714483 A G 0.098 1.103 0.230 7.398e-06 European Intronic DLEU1
14 48325261 rs447600 T A 0.459 1.582 0.123 4.350e-06 European None None
2 52241352 rs2883609 C G 0.318 1.374 0.122 9.361e-06 East Asian nRNA_intronic AC007682.1
2 180940603 rs13411512 T C 0.274 1.315 0.130 7.428e-06 East Asian Intronic CWC22
12 9388842 ss1388098326 C T 0.124 1.132 0.176 9.961e-06 East Asian nRNA_intronic A2MP1
14 48325261 rs447600 T A 0.459 1.582 0.107 5.988e-06 East Asian Intergenic RP11-476J6.1
22 46046477 rs134850 A G 0.223 1.250 0.131 7.042e-06 East Asian Intergenic ATXN10
1 151185502 rs4971014 A G 0.187 1.206 0.150 3.279e-06 SouthEast Asian Intronic PIP5K1A
2 52241352 rs2883609 C G 0.318 1.374 0.126 9.022e-06 SouthEast Asian ncRNA_intronic AC007682.1
2 180940603 rs13411512 T C 0.274 1.315 0.132 5.645e-06 SouthEast Asian Intergenic CWC22
8 126754436 rs12547413 T C 0.135 1.144 0.170 8.440e-06 SouthEast Asian Intronic CLU2
10 35527543 rs3867218 C T 0.513 1.670 0.116 3.194e-06 SouthEast Asian Intergenic RNU6794P
14 90278083 rs10137384 T C 0.121 1.129 0.192 8.522e-06 SouthEast Asian ncRNA_intronic RP1133N16.3
21 43759441 rs692544 C T 0.508 1.662 0.115 4.414e-06 SouthEast Asian Intergenic TFF2
22 46036079 rs1894617 G C 0.235 1.265 0.129 7.610e-06 SouthEast Asian Intergenic RNU6794P
22 46046477 rs134850 A G 0.223 1.250 0.131 6.868e-06 SouthEast Asian Intergenic ATXN10
2 143729878 rs10928161 C T 0.129 1.137 0.204 7.369e-06 KhoeSan Intronic KYNU
2 143730019 rs16855223 G A 0.130 1.139 0.204 6.268e-06 KhoeSan Intronic KYNU
2 143731496 rs35991933 A T 0.129 1.137 0.204 7.369e-06 KhoeSan Intronic KYNU
2 143731661 rs34891373 T A 0.129 1.137 0.204 7.369e-06 KhoeSan Intronic KYNU
2 143737201 rs11904225 G A 0.146 1.157 0.194 1.374e-06 KhoeSan Intronic KYNU
2 143742532 rs10496933 G A 0.129 1.138 0.204 5.676e-06 KhoeSan Intronic KYNU
2 143743246 rs12463750 G A 0.146 1.157 0.194 1.374e-06 KhoeSan Intronic KYNU
2 180940603 rs13411512 T C 0.274 1.315 0.164 8.617e-06 KhoeSan Intronic KYNU
4 54413304 rs4864469 T C 0.067 1.070 0.247 8.725e-06 KhoeSan ncRNA_intronic FIP1L1
4 114309839 rs6533681 C T 0.356 1.427 0.157 4.856e-06 KhoeSan Intergenic ANK2
5 81172726 rs62368165 G A 0.401 1.494 0.180 9.898e-06 KhoeSan Intergenic SHFM1P1
6 7328023 rs145663084 T C 0.113 1.120 0.211 4.122e-06 KhoeSan ncRNA_exonic PRSS23
11 86632570 rs612410 T C 0.337 1.400 0.158 8.791e-06 KhoeSan Intronic PRSS23
11 86641079 rs10792884 A G 0.361 1.435 0.160 9.751e-06 KhoeSan Intronic PRSS23
11 86641484 rs7940935 C T 0.363 1.437 0.160 9.775e-06 KhoeSan Intronic PRSS23
11 86642522 rs10792886 G A 0.363 1.437 0.160 8.430e-06 KhoeSan Intronic PRSS23
11 86643022 rs7948323 C A 0.364 1.439 0.160 8.311e-06 KhoeSan Intronic PRSS23
11 86643351 rs10751145 A G 0.364 1.439 0.160 8.311e-06 KhoeSan Intronic PRSS23
11 86644159 rs10792887 G A 0.364 1.439 0.160 8.311e-06 KhoeSan Intronic PRSS23
11 86644244 rs10792888 A C 0.364 1.439 0.160 8.311e-06 KhoeSan Intronic PRSS23
11 86644300 rs7484279 C T 0.364 1.439 0.160 8.311e-06 KhoeSan Intronic PRSS23
11 86644938 rs3740665 C T 0.365 1.440 0.160 8.889e-06 KhoeSan Intronic PRSS23
11 86645157 rs10898560 A G 0.366 1.442 0.160 9.506e-06 KhoeSan Intronic PRSS23
11 86645214 rs1902425 C T 0.365 1.440 0.160 8.889e-06 KhoeSan Intronic PRSS23
11 124196782 rs676720 C A 0.239 1.271 0.162 8.973e-06 KhoeSan Intergenic OR8B7P
11 124199570 rs7119360 A G 0.239 1.271 0.162 8.973e-06 KhoeSan Intergenic OR8B7P
12 18844727 rs10841067 T C 0.050 1.052 0.292 4.802e-06 KhoeSan Intronic variant PLCZ1
12 18845754 rs1973289 C T 0.054 1.056 0.282 1.710e-06 KhoeSan ncRNA_exonic PLCZ1
12 18846108 rs2900416 A G 0.054 1.056 0.282 1.710e-06 KhoeSan ncRNA_exonic PLCZ1
15 39513293 rs7176317 C G 0.516 1.675 0.127 2.405e-06 KhoeSan ncRNA_exonic RP11-624L4.1
4 162663106 rs10517752 G A 0.199 1.221 0.222 2.142e-06 African Intronic FSTL5
4 162663775 rs28647531 A G 0.204 1.226 0.224 5.518e-07 African Intronic FSTL5
17 75030582 rs11077888 G A 0.470 1.600 0.142 3.400e-06 African Intergenic AC015815.5
18 41342728 rs11659620 T C 0.081 1.084 0.251 5.876e-06 African Intergenic RNU6443P
18 41351686 rs1822027 T G 0.081 1.084 0.251 5.876e-06 African Intergenic RNU6443P
18 41352221 rs35810759 A G 0.081 1.084 0.251 5.876e-06 African Intergenic RNU6443P
21 43759441 rs692544 C T 0.508 1.662 0.136 1.094e-06 African Intergenic TFF2
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investigating TLR variants and susceptibility to TB (Schurz
et al., 2015). Additionally, chromosome 11p13 was also
previously associated with African ancestry in a previous
GWAS (Thye et al., 2012; Chimusa et al., 2014). If the
allelic model was not used while adjusting for local
ancestry, this lead variant located near the TIRAP gene
would have been missed due to the tagging SNP being
located on a different ancestral haplotype LD block. This
underlines the importance of including the LAAA models in
association studies investigating complex multi-way admixed
individuals.

One variant (rs28647531) passed the significance threshold
and is located on chromosome 4q22 using the allelic model
adjusting for Bantu-speaking African local ancestry (Figure 3).
This variant is an intronic variant and located near the FSTL5
gene, which has not been associated with TB susceptibility
previously. This gene is a coding protein and was previously
associated with colorectal cancer and acute myeloid leukaemia
(Lv et al., 2017). Previous investigations of TB susceptibility in a
southern African cohort identified African-and KhoeSan ancestry
to be associated with an increased risk for TB (Chimusa et al.,
2014, 2014; Daya et al., 2014b). Likewise, previous association
signals for TB susceptibility in Africans included the WT1 gene
located on chromosome 11p13 and locus 18q12 and
polymorphisms in the TLR8 genes (Thye et al., 2010, 2012;
Chimusa et al., 2014). Although we did not validate these
genes in our study, we did however elucidate a lead variant
located on chromosome 18q12 for Bantu-speaking African
ancestry whilst utilising the LAAA model, meaning both the

minor allele and ancestry co-occurs in this region. A previously
unmapped protein coding gene (DSEL-AS1) was identified to be
in LD with a leading SNP located on chromosome 18q12 for
Bantu-speaking African ancestry (Supplementary Figure S6).
DSEL-AS1 is a lncRNA gene and was previously associated with
unipolar depression, asparagine levels, bipolar disorder, body
mass index and gut microbiome levels (Shi et al., 2011; Rhee
et al., 2013; Winham et al., 2014; Ishida et al., 2020), but no
biological pathways or interactions were reported for this
lncRNA.

Moreover, another lead variant was identified for Bantu-
speaking African ancestry. Transient receptor potential cation
channel subfamily Melastatin member 3 (TRPM3), located on
chromosome 9, is a protein coding gene which belongs to the
family of transient receptor potential (TRP) channels. TRPM3 is a
permeable non-selective cation gene channel (Zhao et al., 2020,
3). Therefore, this gene is essential for cellular calcium signalling
and homeostasis. Previous GWAS indicated the potential role of
TRPM3 in the measurement of mean platelet volume and were
previously discovered in mostly European individuals (Astle
et al., 2016; Vuckovic et al., 2020). Another protein coding
gene, Phosphodiesterase 1A (PDE1A), is involved in calcium
signalling and was amongst the lead variants identified for
KhoeSan ancestry located on chromosome 2q14 by the LAAA
model. This gene forms part of the cyclic nucleotide
phosphodiesterases, which plays a role in signal transduction
by regulating intracellular cyclic nucleotide concentrations
through hydrolysis of cAMP and/or cGMP to their respective
nucleoside 5-prime monophosphates. Therefore, this gene is

TABLE 3 | Summary statistics of the top results (p-value < 1 × 10−5) whilst utilising the Local Ancestry Adjusted Allelic (LAAA) model.

Chr Position rsID Ref Alt Altfreq OR SE p-value Ancestry Location Gene

1 208027696 rs61821315 C T 0.132 1.141 0.356 8.804e-06 African None None
1 208029947 rs7550821 C T 0.132 1.141 0.358 4.771e-06 African None None
1 208030856 rs7551724 C T 0.131 1.140 0.359 8.065e-06 African None None
2 59343477 rs17049931 C T 0.148 1.160 0.318 5.919e-06 African None None
2 172987232 rs7583008 T C 0.230 1.259 0.318 9.628e-06 African None None
2 172987357 rs7569224 G C 0.230 1.259 0.318 9.628e-06 African None None
3 22648301 rs1449916 T C 0.394 1.483 0.307 3.665e-06 African None None
3 104923287 rs13061116 G A 0.216 1.241 0.357 5.134e-06 African None None
3 104923579 rs1525840 T C 0.216 1.241 0.357 6.076e-06 African None None
3 104924774 rs11923672 A T 0.216 1.241 0.357 6.076e-06 African None None
3 104924866 rs11926446 G A 0.216 1.241 0.357 5.134e-06 African None None
3 104929569 rs9834777 T C 0.217 1.242 0.357 5.161e-06 African None None
5 31584670 rs10940959 C A 0.123 1.131 0.380 5.596e-06 African None None
9 73895875 rs7037178 T G 0.459 1.582 0.235 8.903e-06 African Intronic TRPM3
9 73899145 rs1504387 T C 0.461 1.586 0.234 3.558e-06 African Intronic TRPM3
11 126163124 rs609634 T C 0.261 1.298 0.255 7.570e-06 African Intronic TIRAP
18 65322790 rs1444107 T A 0.082 1.085 0.446 6.644e-06 African Intronic DSEL-AS1
18 65323846 rs2448767 A G 0.082 1.085 0.446 6.644e-06 African Intronic DSEL-AS1
18 65324070 rs2448766 A G 0.082 1.085 0.446 6.644e-06 African Intronic DSEL-AS1
2 183351225 rs1594304 T C 0.421 1.523 0.253 3.557e-06 Khoesan Intronic PDE1A
5 26027283 rs12659706 C T 0.337 1.401 0.340 9.503e-06 Khoesan None None
6 9576203 rs4715321 G T 0.406 1.501 0.288 7.051e-06 Khoesan None None
5 142454386 rs13340374 C T 0.061 1.063 0.532 3.421e-06 European Intronic ARHGAP26
9 119475712 rs72763937 C T 0.184 1.202 0.320 8.548e-06 European Intronic ASTN2
11 126163124 rs609634 T C 0.261 1.298 0.311 9.909e-06 European Intronic TIRAP
20 36998495 rs11698149 T C 0.064 1.066 0.520 7.203e-06 European Intronic LBP
9 73099454 AS T C 0.324 1.383 0.531 9.295e-06 SouthEast Asian Intronic KLF9-DT
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important for calmodulin binding and cGMP binding, as well as
associated with urate measurement and glomerular filtration rate
(Hellwege et al., 2019; Gill et al., 2021). Hence, there is evidence of
the role of calcium ion channel activity in TB susceptibility, which
includes the FSTL5 gene and TRPM3 gene for African ancestry,
and the PDE1A gene for KhoeSan ancestry. M.tb modulates the
levels and activity of key intracellular second messengers, such as
calcium, to evade protective immune responses. Furthermore,
calcium plays a crucial role in M.tb pathogenesis by activating
differential transcription factors or mediating of the phagosome-
lysosome fusion and cell survival (Sharma et al., 2016).

Our results demonstrate the benefit of simultaneously modelling
allele, local ancestry, and ancestry-specific minor allelic effects when
the admixed population under study exhibits extreme heterogeneity,
since multiple distinct ancestry-specific genetic variants were
identified for TB susceptibility that were previously missed by
standard analyses. Thus, including an interaction term between the

minor allele present and the corresponding ancestry of that minor
allele can robustly identify ancestry-specific effects on disease
phenotypes in a complex admixed population. It is important to
mention that only variants that met certain quality control criteria
during the imputation procedure were included in our analysis.
Furthermore, minor alleles might have become evident after
populations diverged, or have occurred in recent human history,
and they are more likely to be ancestry-specific (Qin et al., 2019). The
LAAAmodel first described by Duan et al. (2018) counts the number
of reference alleles, whereas we counted the number of copies of the
alternate alleles. Minor alleles might have become evident after
populations diverged, or have occurred in recent human history,
and they are more likely to be ancestry-specific (Qin et al., 2019).
Therefore, allowing the detection of minor ancestry-specific allelic
effects.

Currently there is no clear best practise for deriving the
significance cut-off threshold for admixture mapping studies.

FIGURE 4 | Regional plot indicating the nearest genes in linkage disequilibrium for the lead variant observed for Bantu-speaking African ancestry on chromosome
11, whilst utilising the LAAA model. SNPs not in linkage disequilibrium are coloured grey and the lead variant is indicated in purple. Mapped genes are coded in red.
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Every admixture scenario is unique in terms of contributing
ancestral source populations, density markers analysed and
particularly generations since admixture occurred. Moreover,
in the presence of correlated tests the Bonferroni correction
for multiple testing burden is overconservative for admixture
mapping studies and does not necessarily control for family-wise
error rate control in association analysis (Grinde et al., 2019). For
this reason, we used the method described by Grinde et al. (2019),
which entails a test statistic simulation directly from the
asymptotic distribution implemented in the R software
package STEAM. It considers the number of contributing
ancestral populations, number of generations since admixture
occurred and the distribution of admixture proportions in the
cohort of interest and permutes these factors 1,000 times to get a
new cut-off for significance (Grinde et al., 2019).

A limitation of the current study is the small sample size and
findings should be validated in additional larger cohorts from various
ethnic groups. Given our sample size of 735 participants (392 TB cases
and 346 controls), we have 95% chance to correctly rejecting the null
hypothesis for large (>0.5) and medium effect sizes (>0.3). We do
however lose power if the effect size is small (0,1–0,3) and any
reported associations with a smaller effect size should therefore be
interpreted with caution (Supplementary Figure S7). Furthermore,
there is a possibility that the true effect could be smaller than 0.1 for
ancestry-specific effects in five different continental populations,
confounding the study power (Skotte et al., 2019). Since literature
suggests that TB susceptibility is governed by numerous SNPs with
small effect sizes, we may have missed true local ancestry effects (type
2 errors) due to our small sample size. To report on ancestry-specific
susceptibility to TB in a multi-way admixed southern African
population, we estimate that at least 5,568 participants are required
to confidently identify markers with smaller effect sizes (0.1–0.3).

Future studies should also include in silico and in vitro validation.
Moreover, progression to active TB might be explained by numerous
variants having a small effect on disease outcome, or exceptionally rare
variants (Schurz et al., 2015). Variants that are unique to different
populations and at low frequency should also be interrogated in well-
powered studies. In addition, the information on the infecting M.tb
strain should also be included in association analysis, if possible, since
it appears that M.tb co-evolved with humans (Brites and Gagneux,
2015) and that the interaction between host genes and M.tb lineage
affects TB severity (Müller et al., 2021). The combination of the
ancestral allele and olderM.tb lineages, i.e., the genotype and lineage
that co-existed historically, had the lowest average TB score (McHenry
et al., 2020). According to the TB score system, individuals are ranked
according to their relative risk of being infected with TB given certain
diagnostic information. A TB score of more than 40 indicates that a
TB diagnosis is highly likely, a score of 30–35 indicates a possible TB
diagnosis and a score below 25 indicates an unlikely diagnosis (dos
Santos et al., 2017). Thus, the host populations that were historically
exposed to a specific lineage have a lower chance of disease. Similarly,
the average TB score for the combinations of genotype and lineage
that have not historically co-existed, were the highest (McHenry et al.,
2020). Thus, the evolutionary history of both species should be
considered together.

In conclusion, this is the first study to apply the LAAA
model to a complex five-way admixed population from South

Africa which exhibits extensive genetic heterogeneity. This
was enabled by newly developed algorithms for local ancestry
inference, updated reference panels to represent contributing
ancestral populations and a more suitable genotyping
platform for diverse populations worldwide. We have
demonstrated that the LAAA model robustly captured the
source of association signals in highly complex admixed
individuals. The true underlying architecture at each locus
is unknown for most southern African populations,
indicating that careful consideration of both global-and
local ancestry is required for successful complex-trait
mapping. Furthermore, local ancestry information across
the genome is likely to become relevant to determine
whether a genetic variant is expected to be useful in
precision medicine, specifically in admixed populations.
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