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Abstract 

Background:  An important task in clinical medicine is the construction of risk prediction models for specific sub-
groups of patients based on high-dimensional molecular measurements such as gene expression data. Major objec-
tives in modeling high-dimensional data are good prediction performance and feature selection to find a subset of 
predictors that are truly associated with a clinical outcome such as a time-to-event endpoint. In clinical practice, this 
task is challenging since patient cohorts are typically small and can be heterogeneous with regard to their relation-
ship between predictors and outcome. When data of several subgroups of patients with the same or similar disease 
are available, it is tempting to combine them to increase sample size, such as in multicenter studies. However, hetero-
geneity between subgroups can lead to biased results and subgroup-specific effects may remain undetected.

Methods:  For this situation, we propose a penalized Cox regression model with a weighted version of the Cox partial 
likelihood that includes patients of all subgroups but assigns them individual weights based on their subgroup affilia-
tion. The weights are estimated from the data such that patients who are likely to belong to the subgroup of interest 
obtain higher weights in the subgroup-specific model.

Results:  Our proposed approach is evaluated through simulations and application to real lung cancer cohorts, and 
compared to existing approaches. Simulation results demonstrate that our proposed model is superior to standard 
approaches in terms of prediction performance and variable selection accuracy when the sample size is small.

Conclusions:  The results suggest that sharing information between subgroups by incorporating appropriate weights 
into the likelihood can increase power to identify the prognostic covariates and improve risk prediction.

Keywords:  Cox proportional hazards model, Heterogeneous cohorts, High-dimensional data, Subgroup analysis, 
Weighted regression
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Background
Survival analysis is an important field of biomedical 
research, particularly cancer research. The main objec-
tives are the prediction of a patient’s risk and the identifi-
cation of new prognostic biomarkers to improve patients’ 
prognosis. In recent years, molecular data such as gene 
expression data have increasingly gained importance in 
diagnosis and prediction of disease outcome. Technolo-
gies for the measurement of gene expression have made 

rapid progress and the use of high-throughput technolo-
gies allows simultaneous measurements of genome-wide 
data for patients, resulting in a vast amount of data.

A typical characteristic of this kind of high-dimen-
sional data is that the number of genomic predictors 
greatly exceeds the number of patients ( p >> n ). In this 
situation, the number of genes associated with a clinical 
outcome, here time-to-event endpoint, is typically small. 
Important objectives in modeling high-dimensional data 
are good prediction performance and finding a sub-
set of predictors that are truly relevant to the outcome. 
A sparse model solution may reduce noise in estima-
tion and increase interpretability of the results. Another 

Open Access

*Correspondence:  madjar@statistik.tu-dortmund.de
Department of Statistics, TU Dortmund University, 44221 Dortmund, 
Germany

http://orcid.org/0000-0001-6169-8105
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01698-1&domain=pdf


Page 2 of 15Madjar and Rahnenführer ﻿BMC Medical Informatics and Decision Making          (2021) 21:342 

problem with high-dimensional data is that standard 
approaches for parameter estimation in regression mod-
els cannot handle such a large number of predictors; 
conventional regression techniques may not provide a 
unique solution to maximum likelihood problems or 
may result in an overfitted model. During the last years, 
different approaches have been proposed for handling 
the p >> n situation, often implying automatic variable 
selection, such as regularization [33, 38, 45] or boosting 
algorithms [4, 20, 21, 35].

In clinical practice, patient cohorts are typically small. 
However, when data of several patient cohorts or sub-
groups with the same or similar disease are available it 
can be reasonable to use this information and appropri-
ately combine the data. In multicenter studies, patients 
of all subgroups are often simply pooled. When sub-
groups are heterogeneous with regard to their relation-
ship between predictors and outcome, this combined 
analysis may suffer from biased results and averaging of 
subgroup-specific effects. Standard subgroup analysis, on 
the other hand, includes only patients of the subgroup of 
interest and may lead to a loss of power when the sample 
size is small.

We aim at providing a separate prediction model for 
each subgroup that allows for identifying common as 
well as subgroup-specific effects and has improved pre-
diction accuracy over both standard approaches. There-
fore, we propose a Cox proportional hazards model 
that allows sharing information between subgroups to 
increase power when this is supported by data. We use 
a lasso penalty for variable selection and a weighted ver-
sion of the Cox partial likelihood that includes patients of 
all subgroups but assigns them individual weights based 
on their subgroup affiliation. Patients who are likely to 
belong to the subgroup of interest obtain higher weights 
in the subgroup-specific model. We estimate individual 
weights for each patient from the training data following 
the idea of Bickel et al. [3].

We assume subgroups are pre-known and determined 
by multiple cancer studies or cohorts. However, our 
approach can be applied to any other type of subgroups, 
for example, defined by clinical covariates. Our proposed 
model is evaluated through simulations and application 
to real lung cancer cohorts, and compared to the stand-
ard subgroup model and the standard combined model.

Related work
Different approaches have been published recently sug-
gesting the use of weights in regression models to con-
sider subgroups. Weyer and Binder [39] aim at improving 
stability and prediction quality of a Cox model for a 
specific subgroup by including one additional weighted 
subgroup. The authors use a weighted and stratified Cox 

regression model based on componentwise boosting for 
automatic variable selection. They study the effects of a 
set of different fixed weights w ∈ (0, 1) for the additional 
subgroup, while all observations in the subgroup of inter-
est obtain a weight of 1 in the stratum-/subgroup-specific 
likelihood. In this paper, we compare a set of different 
fixed weights as suggested by Weyer and Binder [39] to 
our more flexible approach with individual weights for 
each patient from each subgroup estimated from the 
(training) data. However, we assume the same baseline 
hazard rate across all subgroups in contrast to the strati-
fied Cox model by Weyer and Binder [39].

Alternatively, subgroup weights can be considered as a 
tuning parameter in model-based optimization (MBO) 
to improve prediction performance in the Cox model. 
This approach by Richter et al. [29] is more flexible than 
the previously mentioned one by Weyer and Binder [39] 
since it allows different fixed weights for different sub-
groups in each subgroup model. However, it also makes 
the restriction that all weights for patients from the 
same subgroup must be the same, which is quite differ-
ent in terms of spirit from our proposed approach with 
individual weights for each patient from each subgroup. 
The major different idea of the MBO method is to quickly 
find a good set of fixed weights for the other subgroups in 
terms of prediction performance. Despite its difference in 
spirit, this alternative procedure could be an interesting 
outlook for further comparison studies.

Bayesian approaches for the estimation of subgroup 
weights were proposed by Bogojeska and Lengauer [7] 
and Simon [31]. However, they are not designed for our 
high-dimensional situation since they do not perform 
variable selection.

Weighted regression models are also used in local 
regression, however without predefined groups. For each 
individual, a local regression model is fitted based on 
its neighboring observations. The latter are weighted by 
their distances from the observation of interest. Penalized 
localized regression approaches for dealing with high-
dimensional data exist [5, 34]. Instead of using distance 
in covariate space, our proposed weights correspond to 
the relationship between covariates and subgroup mem-
bership. A drawback of localized regression is that it does 
not provide global regression parameters, making inter-
pretation difficult. Furthermore, only a small number of 
observations is used for each local fit in contrast to our 
approach, where the weighted likelihood is based on all 
training data.

We define subgroups by multiple cancer studies or 
cohorts and aim at appropriately combining them to 
increase power and simultaneously, considering hetero-
geneity among the subgroups. This idea of combining 
data from different data sources is similar to integrative 
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analysis. In high-dimensional settings with genomic pre-
dictors, different publications suggest the use of specific 
penalties in regularized regression for parameter estima-
tion and variable selection across multiple data types. 
For example, Liu et  al. [24] and Liu et  al. [25] propose 
composite penalties with two-level gene selection. In 
the first selection level represented by an outer penalty, 
the association of a specific gene in at least one study is 
determined. In the second level, inner penalties of ridge 
or lasso type are used to allow the selection of either the 
same set of genes or different sets of genes in all studies. 
Instead of aggregating multiple studies with the same 
type of (omics) data, Boulesteix et al. [8] perform an inte-
grative analysis of multiple omics data types available for 
the same patient cohort. The authors use a lasso penalty 
with different penalty parameters for the different data 
types. Bergersen et  al. [2] integrate external informa-
tion provided by another genomic data type by using a 
weighted lasso that penalizes each covariate individually 
with weights inversely proportional to the external infor-
mation. Gade et al. [15] use a bipartite graph to integrate 
miRNA and gene expression data from the same patient 
cohort into one prediction model to find a combined sig-
nature that improves the prediction. This graph is built 
by combining correlations between both data types and 
external information on target predictions.

Methods
Cox proportional hazards model
Assume the observed data of patient i consists of the 
tuple (ti, δi) , the covariate vector xi = (xi1, . . . , xip)

′ ∈ R
p , 

and the subgroup membership si ∈ {1, . . . , S} with S 
the number of subgroups in the complete data set, and 
i = 1, . . . , n . ti = min(Ti,Ci) denotes the observed time 
of patient i, with Ti the event time and Ci the censoring 
time. δi = 1(Ti ≤ Ci) indicates whether a patient experi-
enced an event ( δi = 1 ) or was (right-)censored ( δi = 0).

The most popular regression model in survival analysis 
is the Cox proportional hazards model [12]. It models the 
hazard rate h(t|xi) of an individual at time t as

where h0(t) is the baseline hazard rate, and 
β = (β1, . . . ,βp)

′ is the unknown parameter vector. The 
regression coefficients βj are estimated by maximizing a 
partial likelihood without having to specify the baseline 
hazard rate.

Penalized Cox regression model
We consider high-dimensional settings where the num-
ber of covariates p exceeds the sample size n. In this 

h(t|xi) = h0(t) · exp(β
′xi) = h0(t) · exp





p
�

j=1

βjxij



,

situation, the solution maximizing the Cox partial like-
lihood is not unique. One possibility to deal with this 
problem is to introduce a penalty term into the partial 
log-likelihood l(β) , referred to as regularization. This 
approach is also reasonable in p < n settings since it 
considers collinearity among the predictors and helps to 
prevent overfitting. We use a lasso penalty [32, 33] that 
performs variable selection and yields a sparse model 
solution. The resulting maximization problem of the 
penalized partial log-likelihood is given by

The parameter � controls the strength of penalization and 
is optimized by tenfold cross-validation. For parameter 
estimation, we use the implementation in the R package 
glmnet [14].

Weighted Cox partial likelihood
In the standard unweighted partial likelihood, all patients 
contribute to the same extent to the estimation of the 
regression coefficients. This might not be desirable when 
the cohort is heterogeneous due to known subgroups 
that are associated with different prognosis. In this situ-
ation, it is reasonable to fit a separate Cox model for 
each subgroup. This can be done by using only the data 
from the subgroup of interest or by including informa-
tion from the other subgroups. We include patients from 
all subgroups in the likelihood for one specific subgroup 
but assign them individual weights wi ≥ 0 , i = 1, . . . , n to 
account for the heterogeneity in the data. The size of each 
weight determines to which extent the corresponding 
patient contributes to the estimation.

In accordance with Weyer and Binder [39], the 
weighted version of the partial log-likelihood is defined 
as

Weyer and Binder [39] propose the use of fixed weights. 
The idea is to focus on a specific subgroup s of patients 
and assign each of these patients a weight of 1, while all 
other patients are down-weighted with a fixed weight 
w ∈ (0, 1):

Standard subgroup analysis is based only on the patients 
in the subgroup of interest s, which corresponds to w = 0 
for all patients not belonging to s. A combined model that 

β̂ = argmax
β


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1, if si = s
w, else.
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pools patients from all subgroups corresponds to w = 1 
for all patients. Alternatively to the idea of Weyer and 
Binder [39], we propose to estimate individual weights 
for each patient from the training data. This approach is 
described in the following section.

Estimation of weights
Individual weights for each patient in each subgroup-spe-
cific likelihood can be estimated from the training data 
following the idea of Bickel et al. [3]. The weights match 
the joint distribution of all subgroups to the target distri-
bution of a specific subgroup s, such that a patient who 
is likely to belong to the subgroup of interest receives a 
higher weight in the subgroup-specific model.

Assume the entire training data from all subgroups 
are summarized in the covariates x and a response y . In 
time-to-event settings, the response yi corresponds to 
the tuple (ti, δi) , with ti the observed time until an event 
or censoring and δi the event indicator. Let ℓ(y, fs(x)) 
be an arbitrary loss function and fs(x) the predicted 
response based on the observed covariates in subgroup s. 
fs(x) should correctly predict the true response and thus 
minimize the expected loss with respect to the unknown 
joint distribution p(y, x|s) for each subgroup s, given by 
Ep(y,x|s)[ℓ(y, fs(x))] . The following equation shows that 
this expected loss for each subgroup equals the expected 
weighted loss with respect to the joint distribution of the 
pooled data from all subgroups p(y, x)

The subgroup-specific weights for each patient are 
defined as

The last equation shows that the weights can be expressed 
in terms of p(s) and p(s|y, x) . p(s) can be estimated by the 
relative frequency of subgroup s in the overall training 
cohort, and p(s|y, x) can be considered as a multi-class 
classification problem [3]. We estimate p(s|y, x) by mul-
tinomial logistic regression or by random forest, using 
the implementation in the R packages glmnet [14] and 
ranger [43], respectively. Unlike Bickel et al. [3], we use 
tenfold cross-validation to estimate p(s|y, x) from the 
training data to prevent overfitting. As a result, for each 

Ep(y,x|s)[ℓ(y, fs(x))] =

∫

p(y, x|s)ℓ(y, fs(x))dydx

=

∫

p(y, x|s)

p(y, x)
p(y, x)ℓ(y, fs(x))dydx

= Ep(y,x)

[

p(y, x|s)

p(y, x)
ℓ(y, fs(x))

]

= Ep(y,x)[ws(y, x)ℓ(y, fs(x))].

ws(y, x) =
p(y, x|s)

p(y, x)
=

p(s|y, x)

p(s)
, p(s) > 0.

subgroup, we obtain an n-dimensional vector of esti-
mated individual weights.

Unlike the fixed weights by Weyer and Binder [39], our 
proposed estimated weights are not constrained to (0, 1) 
as the ratio p(s|y,x)p(s)  can take values larger than 1. The R 
package glmnet, which we use to fit the weighted penal-
ized Cox model, internally rescales the weights so that 
they add up to the sample size (see the vignette “An Intro-
duction to glmnet”). However, normalizing the weights 
to range from 0 to 1 is not necessary as all individuals 
contribute to the likelihood with a certain weight and 
rescaling all weights in the likelihood would not change 
the estimated Cox model.

Prediction performance
Prediction performance of all Cox models is evaluated 
by Harrell’s C-(concordance) index [17], implemented in 
the R package Hmisc [18]. The C-index is a measure of 
predictive discrimination and defined as the proportion 
of all usable pairs of patients with concordant predicted 
and observed survival times. For a concordant pair of 
patients, the survival time of the patient with larger risk 
score is known to be shorter than the survival time of the 
patient with lower risk score, such that the risk meas-
ure and the survival time lead to the same ordering of 
patients.

Let ti , ti∗ be the observed survival times of patients i and 
i∗ , and r̂(xi) = β̂

′
xi , r̂(xi∗) = β̂

′
xi∗ the corresponding risk 

scores (with ti, ti∗ , xi, xi∗ corresponding to the test data 
and β̂ estimated from the training data). A pair (i, i∗) is 
considered concordant if    ti ⋚ ti∗ ⇔ r̂(xi) � r̂(xi∗) . The 
C-index is defined as

where nc is the number of comparable pairs (i, i∗) that 
standardizes CI to [0,  1]. A patient pair is considered 
unusable, if both patients die at the same time, or both 
patients are censored, or if one is censored before the 
other one dies. CI ≈ 1 stands for a very good prediction 
and values around 0.5 suggest a random prediction.

While Harrell’s C-index is an easy to interpret and 
compute approach for quantifying the accuracy of prog-
nostic survival models, it depends on the censoring dis-
tribution. To overcome this shortcoming, Uno et al. [37] 
introduce inverse probability censoring weights to the 
C-index to adjust for right censoring. Instead of evaluat-
ing the “overall” prediction accuracy, it can be of interest 
to quantify the discriminative ability at each time point 

CI =
1

nc

∑

{i: δi=1}

∑

{i∗: ti∗>ti}

(

1(r̂(xi∗) < r̂(xi))

+
1

2
1(r̂(xi∗) = r̂(xi))

)

,
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under consideration. In this situation, time-dependent 
ROC analysis can be used to distinguish at each time 
point t > 0 between patients having an event at or up to 
t and those having an event after t. The corresponding 
area under the time-dependent ROC curve provides an 
estimator of incidence/dynamic or cumulative/dynamic 
AUC for right-censored time-to-event data [19, 36].

Model fitting and evaluation
We compare our weighted approach with the standard 
(unweighted) models, i.e. the combined model and the 
subgroup model, as well as a weighted Cox model with 
fixed weights as proposed by Weyer and Binder [39]. In 
the latter, patients belonging to a certain subgroup are 
assigned a weight of 1 in the subgroup-specific likelihood, 
while all other observations are down-weighted with a 
constant weight w ∈ (0, 1) . For our proposed approach 
we compare three different classification methods for 
weights estimation with respect to prediction perfor-
mance: Multinomial logistic regression with lasso (lasso) 
or ridge (ridge) penalty, and random forest (rf). All Cox 
models include a lasso penalty for variable selection. We 

compare the following Cox models concerning predic-
tion performance. The italic expressions in parentheses 
denote the abbreviations of the models in the following 
analyses:

•	 Weighted model with estimated weights (lasso, ridge, 
rf)

•	 Weighted model with fixed weights 
( w = 0.1, 0.2, . . . , 0.9)

•	 Standard subgroup model (sub), using only patients 
of a specific subgroup

•	 Standard combined model (all), using patients of all 
subgroups. The subgroup indicator is included as 
additional covariate.

Figure  1 provides a schematic representation of the 
analysis pipeline. First, we randomly generate training 
data sets for model fitting and test data sets for model 
evaluation and repeat this procedure 100 times. In the 
application example, we repeatedly randomly split the 
complete data into training (with proportion 0.632) and 
test sets. We perform subsampling stratified by subgroup 
and event indicator, to take different subgroup sizes and 

Complete data
(all subgroups)

Training set Test set

Subgroup weights

Subgroup
model

Combined
model

Weighted
model

1.

3. .3.3

Model evaluation

4.

2a. 2b.

Subsampling
stratified by subgroup and 
event indicator;
repeat 100x

1.

Weights estimation
multinomial logistic regression
with lasso/ ridge or random
forest, using 10-fold CV

2a.

Cox regression model
with lasso penalty

3.

Prediction performance
C-index

4.

2b. Fixed weights
w=0.1, 0.2, …, 0.9

Fig. 1  Simulation set-up. Analysis pipeline for the simulation study; Brighter regions in the training and test set indicate the observations of the 
subgroup
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censoring proportions into account. In the simulation 
study, we repeatedly randomly generate independent 
training and test sets of the same size and with the same 
distribution parameters. Second, we estimate individual 
subgroup weights from the training data using differ-
ent classification methods and 10-fold cross-validation 
(CV). Next, we fit the combined and weighted Cox mod-
els based on the training data of all subgroups, while the 
standard subgroup model is based on the training data of 
the respective subgroup only. Finally, we evaluate the pre-
diction performance of the estimated Cox models with 
respect to a certain subgroup using only the test data of 
this particular subgroup. The R package batchtools 
[23] is used for parallelization and the R package mlr [6] 
is used as a framework for weights estimation, Cox model 
fitting and evaluation by the C-index.

Results of the simulation study
Simulated data
We simulate four subgroups (1A, 1B, 2A, 2B) of equal 
size n from two differently distributed groups denoted by 
the index g∗ = 1, 2 : group 1 including subgroups 1A and 
1B, and group 2 including subgroups 2A and 2B. Within 
each group we use the same parameters for the simula-
tion of the data. We simulate the survival data from a 
Weibull distribution according to Bender et al. [1], with 
scale parameter ηg∗ and shape parameter κg∗ estimated 
from two independent lung cancer cohorts (GSE37745 
and GSE50081). For this purpose, we compute survival 
probabilities at 3 and 5 years using the Kaplan-Meier esti-
mator for both lung cohorts separately. The correspond-
ing probabilities are 57% and 75% for 3-years survival, 
and 42% and 62% for 5-years survival, respectively. Indi-
vidual event times in group g∗ are simulated as

with true effects βg∗ ∈ R
p , g∗ = 1, 2 . We randomly draw 

noninformative censoring times Cg∗ from a Weibull dis-
tribution with the same parameters as for the event 
times, resulting in approximately 50% censoring rates 
in both groups. The individual observed event indica-
tors and times until an event or censoring are defined as 
δg∗ = 1(Tg∗ ≤ Cg∗) and tg∗ = min(Tg∗ ,Cg∗).

Tg∗ ∼

(

−
log(U)

ηg∗ exp(xg∗βg∗)

)1/κg∗

, U ∼ U [0, 1],

For each subgroup we simulate p uncorrelated (genetic) 
covariates xg∗ from a multivariate normal distribution 
with mean vector µg∗ and covariance matrix � = Ip×p . 
In previous simulation studies we compared the results 
of different covariance structures, including realistic 
dependence structures estimated from real gene expres-
sion data, but found no remarkable differences [26]. 
Elements of µg∗ are defined by a linear function with 
parameter ǫ ∈ [0, 1] that reflects the degree of similar-
ity between the two groups. We assign µ = 4 + 4 · ǫ 
to genes with a strong effect on the outcome ( |β| = 1 ), 
µ = 4 + 2 · ǫ corresponds to genes with a moderate effect 
( |β| = 0.5, 0.75 ), and µ = 4 to genes with a weak or no 
effect ( |β| = 0, 0.25 ). This choice relies on the assumption 
that prognostic genes have a higher expression level than 
noise genes. The magnitude of µ is chosen following real 
gene expression data, where the expression values typi-
cally range from 4 to 12 after transformation to log2 scale.

In all simulated scenarios, we assume the first 12 genes 
to be prognostic in at least one of the two groups, with 
corresponding effects given in Table 1. We include sub-
group-specific effects (genes 1 to 4), opposite effects 
(genes 5 and 6), effects in the same direction but of dif-
ferent size (genes 7 and 8), and joint effects of varying 
sizes (genes 9 to 12). We choose these effects with alter-
nate signs so that they sum up to zero, resulting in rea-
sonable simulated survival times. In settings with p > 12 , 
we assume all remaining genes to represent noise and 
being unrelated to the survival times in both groups 
( β13 = · · · = βp = 0).

In our simulation study we focus on high-dimensional 
settings where the sample size n is small compared to the 
number of covariates (genes) p, a typical characteristic of 
gene expression data. Table 2 shows all parameters tested 

Table 1  Effects in the simulation study

Effects of the first 12 genes for the simulation of survival outcome

Gene 1 2 3 4 5 6 7 8 9 10 11 12

β1 1 1 0 0 − 0.5 0.5 0.75 0.25 − 1 − 1 − 0.75 − 0.25

β2 0 0 1 1 0.5 − 0.5 0.25 0.75 − 1 − 1 − 0.75 − 0.25

Table 2  Parameter combinations in the simulation study

All parameters tested in the simulation study with their respective values, 
resulting in 252 different combinations in total

Parameter Values (per subgroup)

n 20, 30, 40, 50, 60, 70, 80, 
90, 100, 200, 500, 1000

p 12, 100, 200

ǫ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1
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in the simulation study with their respective values, 
resulting in 252 different combinations in total.

Weights estimation
Our proposed subgroup model uses patients from all sub-
groups for training but assigns them individual weights in 
the Cox partial likelihood based on their subgroup mem-
bership. Weights for a specific subgroup are estimated by 
the individual predicted probabilities of belonging to this 
subgroup, obtained by classification, divided by the sub-
group proportion. Thus, a patient who is likely to belong 
to the subgroup of interest receives a higher weight in the 
subgroup-specific likelihood. We compare three differ-
ent classification methods that are appropriate for multi-
class problems and high-dimensional covariates with 
respect to their predictive quality and their ability to dis-
criminate between differing subgroups.

Figure  2 displays boxplots of the estimated weights 
for subgroup 1A across all training sets in two selected 
simulation scenarios with ǫ = 0 and ǫ = 0.5 . The x-axis 
represents the true subgroup membership of each obser-
vation, and the y-axis the individual weights estimated by 
random forest (rf) for subgroup 1A. Results of all three 
classification methods (lasso, ridge, rf) are relatively 
similar, altough rf tends to perform best for small ǫ and 
n, whereas for large sample size the discriminative abil-
ity of lasso and ridge is slightly better. The largest differ-
ence in results is obtained for different values of ǫ . When 
all subgroups are very similar ( ǫ = 0 ), multi-class classi-
fication fails to distinguish the two differing groups. All 
observations are assigned a weight of approximately  1 
in all subgroup models, similar to the standard com-
bined Cox model. The corresponding area under the 

ROC curve (AUC) for the distinction between group 1 
and 2 (computed based on test data and cross-validated 
training data) is approximately 0.5, indicating that pre-
diction performance is not much better than random 
(see Additional file 1: Figure S1). Increasing values of ǫ , 
meaning larger differences between the two groups, lead 
to improved prediction performance (see Additional 
file  1: Figure S1), and for ǫ = 0.5 classification succeeds 
in providing an almost perfect separation between both 
groups with AUC ≈ 1 . Larger sample size n and smaller 
number of covariates p also result in better prediction 
performance.

Parameter estimation and prediction performance
Weighted Cox models, including fixed or estimated 
weights (with different classification methods for weights 
estimation), are compared to the standard combined and 
subgroup model, first by estimated regression coefficients 
and second by prediction performance.

Figure  3 shows scatterplots of the mean estimated 
regression coefficients of the first 12 prognostic genes in 
group 1 (mean across all training sets and subgroups 1A 
and 1B) for simulated data with n = 50 , p = 12, 100 and 
ǫ = 0, 0.5 . For ǫ = 0 , the combined and weighted model 
with estimated weights provide very similar results, as 
expected. They identify joint effects better than the sub-
group model when the sample size is small ( n ≤ p ) and 
otherwise equally well. However, the subgroup model 
estimates subgroup-specific effects better, especially for 
increasing sample size, whereas the other two model 
approaches tend to average effects across all subgroups. 
For larger values of ǫ the estimated weights model detects 
subgroup-specific effects increasingly better than the 
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Fig. 2  Estimated weights in the simulation. Estimated weights for subgroup 1A obtained by random forest based on simulated training data with 
p = n = 100 and ǫ = 0, 0.5
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combined model, and similarly well or even better than 
the standard subgroup model when sample size is small. 
Results for fixed weights lie between the subgroup model 
and the combined model.

These findings agree with the corresponding mean 
inclusion frequencies (MIFs), defined as the propor-
tion of training data sets in which a specific covariate j is 
included in the model ( β̂j �= 0 ). For small sample size, the 
MIFs of the standard combined model and the estimated 
weights approach are larger than the MIFs of the stand-
ard subgroup model. This has a positive impact on the 
detection of joint effects, but subgroup-specific effects 
that are present in only one group may be more often 
erroneously selected in the other group. For increas-
ing sample size the MIFs of all models also increase. 
For larger values of ǫ , the MIFs of the estimated weights 
model move closer to the MIFs of the subgroup model 
regarding subgroup-specific effects and are still similar to 
the combined model for joint effects.

Finally, we assess the prediction performance of all 
Cox models in terms of the C-index. High values of the 
C-index (close to 1) indicate a good predictive perfor-
mance, whereas 0.5 corresponds to random prediction. 

Figure  4 displays the mean C-index (averaged across all 
test sets and subgroups). For ǫ = 0 the combined model 
and the weighted model with estimated weights exhibit 
a very similar predictive ability, that is better compared 
to the subgroup model when sample size is small. How-
ever, when the sample size increases the subgroup model 
outperforms the other methods. For larger values of ǫ , 
the estimated weights approach performs best when the 
sample size is small and otherwise equally well as the 
subgroup model. Estimated weights by lasso and ridge 
improve in comparison to rf (random forest) for larger 
n. Unsurprisingly, the prediction performance of fixed 
weights lies between the standard combined model and 
the subgroup model. Mean C-index values for all 252 
simulation scenarios and all 14 Cox model types can be 
found in Additional file 1: Table S2.

Results of the application to NSCLC cohorts
We apply all methods presented in the previous section 
to the following four non-small cell lung cancer (NSCLC) 
cohorts comprising in total n = 635 patients with avail-
able overall survival endpoint and Affymetrix microar-
ray gene expression data: GSE29013 ( n = 55 , 18 events), 
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GSE31210 ( n = 226 , 35 events), GSE37745 ( n = 194 , 
143 events), and GSE50081 ( n = 160 , 65 events). For the 
analysis, we use the total number of p = 54, 675 genetic 
covariates measured in each cohort, as well as two pre-
selected reduced gene sets. One gene filter is defined by 
the p = 1000 features with the highest variance in gene 
expression values across all four cohorts, referred to as 
top-1000-variance genes. The second gene filter is a lit-
erature-based selection of p = 3429 prognostic genes. 
More details on the data description and preprocessing 
can be found in Additional file 1.

Weights estimation
In the following, we consider four lung cancer cohorts 
as subgroups. We compare the estimated weights using 
three classification methods (lasso, ridge, rf) and three 
different pre-specified sets of genes (gene filters): all 
available genes ( p = 54, 675 ), top-1000-variance genes 
( p = 1000 ), and a literature-based selection of prognos-
tic genes ( p = 3429 ). Since all results are very similar, 
we only show them exemplary for the top-1000-variance 
genes and rf in Fig. 5. Boxplots of the estimated weights 
suggest that subgroups are very different from each other. 
Patients belonging to the subgroup of interest receive a 
relatively large weight in the respective subgroup-specific 

model, while the contribution of all other subgroups 
is close to zero. This resembles the standard subgroup 
model.

The estimated weights for patients from GSE29013 
are the highest in the corresponding subgroup model 
for GSE29013, and much higher compared to the other 
cohorts. The reason is that GSE29013 is by far the small-
est subgroup and when the estimated probabilities of 
belonging to s = GSE29013 p̂(s|y, x) are divided by the 
very small relative frequency p̂(s) , the resulting probabil-
ity ratio corresponding to the weights gets very large.

Parameter estimation and prediction performance
All analyses are based on probe set level of gene expres-
sion data, but for the illustration of the parameter esti-
mates in the Cox models, probe set IDs are translated 
into gene symbols using the R/Bioconductor annota-
tion packages hgu133plus2.db [10] and Annota-
tionDbi [28]. In case of missing gene symbols, original 
probe set IDs are retained. Corresponding gene anno-
tation is retrieved from the Ensembl website [44] to 
obtain gene-specific information on encoded proteins, 
related pathways, Gene Ontology (GO) annotations, 
associated diseases, and related articles in PubMed. This 

p = 12 p = 100

ε
=

0
ε
=

0.5

20 30 40 50 60 70 80 90 10
0

20
0

50
0

10
00 20 30 40 50 60 70 80 90 10

0

20
0

50
0

10
00

0.6

0.7

0.8

0.6

0.7

0.8

n

M
ea

n 
C

−i
nd

ex

Model type
sub

w=0.1

w=0.2

w=0.3

w=0.4

w=0.5

w=0.6

w=0.7

w=0.8

w=0.9

all

lasso

ridge

rf
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information is retrieved from the NCBI Gene [9] and 
GeneCards [16] databases.

Figure  6 shows, separately for each subgroup, the 
mean estimated regression coefficients of the most fre-
quently selected top-1000-variance genes (genes with a 
mean inclusion frequency (MIF) larger or equal than 0.5 
in any model type). Eight genes are in the overlap of all 
subgroups, among them immune-related genes (DEFB1, 
AOC1, JCHAIN) as well as genes (215780_s_at/SET, 
SPP1) that were reported in the literature to be associ-
ated with different types of cancer. Often they are most 
frequently selected by the combined model and the 
weighted model with large fixed weights. Subgroup-
specific genes with strong effects on overall survival and 
high MIFs in the proposed weighted model involve the 
following cancer-related genes: ADH1C, BMP5, LCN2 
and PLOD2 in GSE31210, CST1 in GSE37745, as well as 
AREG and COL4A3 in GSE29013.

For the other two gene filters (prognostic genes and 
all genes), parameter estimates of the most stable genes 
in all Cox models are displayed in Additional file 1: Fig-
ures S2 and S3. Cox models including all genes identify 
fewer genes compared to the other gene filters which is 
likely caused by the large number of noise genes. There 
are two cancer-related genes most frequently selected 
across all subgroups by the combined model and the 
weighted model with large fixed weights: CPNE8 and 

SPP1 MIFs and estimated regression coefficients of the 
subgroup model and the proposed weighted model are 
mainly close to zero, except for PTGER3 in GSE31210. 
PTGER3 induces tumor progression in different cancer 
types including adenocarcinoma of the lung. This may 
explain the specific association with GSE31210 being the 
only subgroup comprising exclusively adenocarcinoma.

Interestingly, almost all selected genes are either in 
the overlap of all subgroups or specific for only one sub-
group. There are hardly any genes selected by two or 
three subgroups, which may be due to the fact that these 
lung cancer studies are heterogeneous (see Additional 
file 1: Figure S4). There is one gene (SPP1) that is in the 
overlap of all four subgroups and all three gene sets. 
SPP1—also known as Osteopontin (OPN)—is involved 
in inflammatory response, osteoblast differentiation for 
bone formation and attachment of osteoclasts to the 
mineralized bone matrix for bone resorption. Further, 
SPP1 is associated with several malignant diseases and 
prognosis in NSCLC.

Finally, all Cox models are compared with regard to 
prediction performance. In Fig. 7 results of the C-index 
across all test sets are shown for the top-1000-variance 
genes. The combined model and fixed weights of increas-
ing size tend to have the highest predictive accuracy, 
while the estimated weights approach and the standard 
subgroup model perform similarly. Particularly in the 

Predicted GSE37745 Predicted GSE50081

Predicted GSE29013 Predicted GSE31210

GSE29
01

3

GSE31
21

0

GSE37
74

5

GSE50
08

1

GSE29
01

3

GSE31
21

0

GSE37
74

5

GSE50
08

1

0

3

6

9

12

0

3

6

9

12

Truth

W
ei

gh
t

Fig. 5  Estimated weights in the application. Estimated weights for all lung cancer cohorts using random forest and the top-1000-variance genes as 
gene filter



Page 11 of 15Madjar and Rahnenführer ﻿BMC Medical Informatics and Decision Making          (2021) 21:342 	

subgroup model for GSE29013 the performance of the 
estimated weights differs from the fixed weights because 
the estimated weights for GSE29013 are much higher 
compared to those for all other subgroups, which is simi-
lar to the standard subgroup model. The corresponding 
boxplots of the C-index for the prognostic gene filter and 
all genes are shown in Additional file 1: Figures S5 and S6. 
Random forest tends to be the best classification method 
in combination with prognostic genes and all genes, 
whereas ridge tends to perform slightly better than the 
other classification methods along with top-1000-vari-
ance genes. However, overall prediction performance is 
mostly moderate and not much better than random.

Discussion
We have focused on three major objectives: prediction 
of a patient’s survival, selection of important covari-
ates, and consideration of heterogeneity in data due to 
pre-known subgroups of patients. Specifically, we have 
aimed at estimating a separate risk prediction model for 
each subgroup using patient-level training data from all 
available subgroups and individually weighting patients 
according to their similarity to the subgroup of interest. 

Our approach should correctly identify common as well 
as subgroup-specific effects and have improved predic-
tion accuracy over standard approaches. As standard 
approaches, we consider standard subgroup analysis, 
including only patients from the subgroup of interest, and 
standard combined analysis that simply pools patients 
from all subgroups.

We have proposed a Cox model with lasso penalty for 
variable selection and a weighted version of the partial 
likelihood that includes patients from all subgroups but 
with individual weights. This allows sharing information 
between subgroups to increase power when this is sup-
ported by the data, meaning that subgroups are similar 
in their covariates and survival outcome. Weights for 
a specific subgroup are estimated by classification and 
cross-validation on the training data from all subgroups, 
such that they represent the probability of belonging to 
that subgroup given the observed covariates and survival 
outcome. These predicted conditional probabilities are 
divided by the a priori probability of the respective sub-
group to obtain the subgroup-specific weights for each 
patient. Patients who fit well into the subgroup of interest 
receive higher weights in the subgroup-specific model. 
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Fig. 6  Estimated effects in the application. Different types of Cox models including the top-1000-variance genes as covariates. Mean estimated 
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The estimated subgroup-specific model can then be 
applied to the test data from the corresponding subgroup 
to obtain predictions for that subgroup. Alternatively to 
our individual weights, one could restrict the model to 
the case where all weights for the patients from a sub-
group must be the same [29, 39].

We have considered three different classification meth-
ods for weights estimation (multinomial logistic regres-
sion with lasso or ridge penalty and random forest), 
and, based on simulated data and on real data, we have 
compared our proposed weighted Cox model to both 
standard Cox models (combined and subgroup), as well 
as a weighted Cox model with different fixed weights 
as proposed by Weyer and Binder [39]. Observations 
belonging to a certain subgroup were assigned a weight 
of 1 in the subgroup-specific likelihood, while all other 
observations were down-weighted with a constant weight 
w ∈ {0.1, 0.2, . . . , 0.9}.

Simulation results have shown that when subgroups 
were very similar and hardly distinguishable from each 
other in terms of their covariate values and only had a few 
different subgroup-specific effects, classification methods 
failed to discriminate between distinct subgroups and all 
observations were assigned a weight around one corre-
sponding to the standard combined model. In this situ-
ation, results of the combined model and the proposed 

weighted model were very similar as intended. Both 
models had better prediction performance and larger 
power to correctly identify joint effects than the stand-
ard subgroup model when the sample size was small 
( n ≤ p ). The potential bias introduced in the estima-
tion of subgroup-specific effects (tendency to average 
subgroup-specific effects across subgroups) is, however, 
not very likely in the situation of very similar subgroups. 
For increasing sample size, the standard subgroup model 
outperformed the other models regarding prediction and 
selection accuracy, in particular in terms of unbiased 
estimation of subgroup-specific effects.

When differences between subgroups became larger, 
classification succeeded in discriminating between dif-
ferent subgroups, and our proposed weighted model 
improved over the combined model in correctly identi-
fying subgroup-specific effects and resulted in higher 
prediction accuracy. It clearly outperformed the stand-
ard subgroup model when the sample size was low, and 
otherwise performed similarly well. Results with fixed 
weights, as expected, always lay between the standard 
subgroup model and the combined model. However, 
they cannot flexibly adapt to different degrees of heter-
ogeneity between subgroups as our proposed estimated 
weights do.
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In the application example, we considered four lung 
cancer studies as subgroups comprising overall survival 
outcome, and gene expression data as covariates. Three 
different gene filters were used: all available genes, top-
1000-variance genes, and a literature-based selection of 
prognostic genes. The real data application demonstrated 
the case of strongly differing subgroups where adding 
data from other subgroups is not appropriate as reflected 
by the small estimated weights. Our proposed weighted 
approach resembled the standard subgroup model, where 
only the subgroup of interest is assigned a high weight 
and all other subgroups have weights close to zero. The 
results of all three classification methods were similar. 
Prediction performance of Cox models indicated that 
logistic regression with ridge penalty and top-1000-var-
iance genes outperformed the other two classification 
methods, while random forest tended to perform best in 
combination with all genes and with prognostic genes. 
However, the prediction performance of all Cox models 
was mainly moderate and not much better than random 
prediction. The combined model and the weighted model 
with fixed weights of increasing size tended to have 
slightly higher predictive accuracy, while the estimated 
weights approach and the standard subgroup model per-
formed similarly. Genes identified most frequently by the 
former models were often present in all subgroups and 
some of them were reported in the literature to be asso-
ciated with prognosis in various cancers. However, the 
corresponding estimated regression coefficients were 
often relatively small suggesting weak effects on survival 
outcome. Few candidate genes with reported cancer rela-
tion and relatively strong subgroup-specific effects were 
selected most frequently by either the subgroup model or 
the proposed weighted model.

A major reason for the overall moderate prediction accu-
racy in the application example may be that the present 
lung cancer studies are too heterogeneous. On the one 
hand, they comprise different histological subtypes that 
are known to be associated with a different prognosis. One 
could think of using only patients belonging to the same 
histological subtype such as adenocarcinoma. However, this 
would make the sizes of the patient subgroups even smaller. 
On the other hand, tissue processing and RNA extraction 
for generating gene expression data as well as patient inclu-
sion criteria vary between studies. In GSE29013 genome-
wide expression profiling was based on formalin-fixed 
paraffin-embedded (FFPE) tissues rather than fresh frozen 
tissues like in GSE37745 and GSE50081, which might influ-
ence expression levels. GSE31210 and GSE50081 include 
only patients with stage I and II, and GSE31210 is addition-
ally restricted to lung adenocarcinomas.

In Madjar [26] we studied the influence of fur-
ther parameters for weights estimation on prediction 

performance: the inclusion of interactions between 
genomic covariates and survival time in the classifica-
tion model, as well as replacement of the survival time 
by the Nelson–Aalen estimator of the cumulative hazard 
rate in the set of covariates in the classification model. 
The latter was proposed by White and Royston [40] in 
the context of multiple imputation. We also considered 
a simulation with uneven sample sizes across subgroups 
and compared standard classification without sampling 
techniques with two oversampling techniques (random 
oversampling and synthetic minority oversampling tech-
nique). Oversampling increases the sample size of the 
small subgroup so that it is balanced with respect to the 
other subgroups. However, we found no considerable 
influence of the further parameters for weights estima-
tion on prediction performance and also oversampling 
seemed to have no effect. Simulations with uneven 
sample sizes showed that the predicted probabilities of 
belonging to a specific subgroup p̂(s|y, x) were smaller 
for the subgroup with smaller sample size compared to 
the other subgroups having the same large sample size. 
However, this effect was compensated for when p̂(s|y, x) 
was divided by the relative frequency of each subgroup 
p̂(s) to obtain the weights ratio. This resulted in simi-
lar prediction accuracies for all subgroups, whereas the 
standard subgroup model clearly showed a worse predic-
tion performance for the small subgroup.

We make the important assumption that subgroups are 
pre-known with the subgroup affiliation of each patient 
being unique and fixed, which is generally the case when 
patients from different clinical centers are considered. 
However, in  situations with unknown subgroups the 
latent subgroup structure would first need to be deter-
mined using methods such as clustering. A wide vari-
ety of approaches have been proposed for the clustering 
of molecular data [13, 27, 42] with extensions to sparse 
clustering [30, 41] and integrative clustering of multiple 
omics data types [11, 22].

Conclusions
Predicting cancer survival risk based on high-dimen-
sional molecular measurements for patients combined 
from heterogenous subgroups/cohorts is an important 
problem. The central motivation and idea of our pro-
posed approach is to improve the prediction for a specific 
selected subgroup when also data from other subgroups 
are available, however, when it is not a priori clear which 
other subgroups can help to improve the prediction for 
the subgroup of interest. By adding data from other sub-
groups in a penalized weighted Cox model we aim at 
increasing the power through larger sample size com-
pared to the classical subgroup analysis that ignores the 
information from all other individuals. Weights are based 
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on the probability of belonging to the subgroup of inter-
est and are estimated from the (training) data instead 
of having to determine them a priori. In the situation 
of small sample sizes, simulation results clearly demon-
strated the benefit of our proposed approach, suggesting 
that incorporating information from other subgroups 
in the estimation of a subgroup-specific risk model can 
improve the prediction performance and variable selec-
tion accuracy over standard approaches.

Abbreviations
MBO: Model-based optimization; C-index: Concordance index; CV: Cross-
validation; AUC​: Area under the ROC curve; MIF: Mean inclusion frequency; 
NSCLC: Non-small cell lung cancer.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​021-​01698-1.

Additional file 1: Additional supporting information referenced in the 
Results Sections: Description of the NSCLC data preprocessing, Supple-
mentary Figures 1-6, Supplementary Tables 1-2).

Acknowledgements
Not applicable.

Author’s contributions
KM implemented the analyses, generated the results and wrote the manu-
script. KM and JR contributed to the study design and the interpretation of 
results. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
The preprocessed lung cancer data analyzed in this paper and the R code 
implementing our method are publicly available on GitHub, https://​github.​
com/​Katri​nMadj​ar/​Weigh​tedCo​xRegr​ession.​git.

Declarations

 Ethics approval and consent to participate
Only published data that are publicly available online were used in this paper. 

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 27 January 2021   Accepted: 23 November 2021

References
	1.	 Bender R, Augustin T, Blettner M. Generating survival times to simulate 

Cox proportional hazards models. Stat Med. 2005;24(11):1713–23. https://​
doi.​org/​10.​1002/​sim.​2059.

	2.	 Bergersen LC, Glad IK, Lyng H. Weighted lasso with data integration. Stat 
Appl Genet Mol Biol. 2011. https://​doi.​org/​10.​2202/​1544-​6115.​1703.

	3.	 Bickel S, Bogojeska J, Lengauer T, Scheffer T. Multi-task learning for HIV 
therapy screening. In: Proceedings of the 25th international conference 

on machine learning. ICML ’08, pp. 56–63. ACM, New York, USA (2008). 
https://​doi.​org/​10.​1145/​13901​56.​13901​64.

	4.	 Binder H, Schumacher M. Allowing for mandatory covariates in 
boosting estimation of sparse high-dimensional survival models. BMC 
Bioinform. 2008;9:14. https://​doi.​org/​10.​1186/​1471-​2105-9-​14.

	5.	 Binder H, Müller T, Schwender H, Golka K, Steffens M, Hengstler JG, 
Ickstadt K, Schumacher M. Cluster-localized sparse logistic regression 
for SNP data. Stat Appl Genet Mol Biol. 2012. https://​doi.​org/​10.​1515/​
1544-​6115.​1694.

	6.	 Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalic-
chio G, Jones ZM. mlr: machine learning in r. J Mach Learn Res. 
2016;17(170):1–5.

	7.	 Bogojeska J, Lengauer T. Hierarchical Bayes model for predicting effec-
tiveness of HIV combination therapies. Stat Appl Genet Mol Biol. 2012. 
https://​doi.​org/​10.​1515/​1544-​6115.​1769.

	8.	 Boulesteix A-L, De Bin R, Jiang X, Fuchs M. IPF-LASSO: integrative l1
-penalized regression with penalty factors for prediction based on 
multi-omics data. Comput Math Med. 2017; 2017: Article ID 7691937. 
https://​doi.​org/​10.​1155/​2017/​76919​37.

	9.	 Brown GR, Hem V, Katz KS, Ovetsky M, Wallin C, Ermolaeva O, Tolstoy I, 
Tatusova T, Pruitt KD, Maglott DR, Murphy TD. Gene: a gene-centered 
information resource at NCBI. Nucl Acids Res. 2015;43(D1):36–42. 
https://​doi.​org/​10.​1093/​nar/​gku10​55.

	10.	 Carlson M. Hgu133plus2.db: affymetrix human genome U133 Plus 2.0 
array annotation data (chip Hgu133plus2). 2016. R package version 
3.2.3

	11.	 Chalise P, Koestler DC, Bimali M, Yu Q, Fridley BL. Integrative cluster-
ing methods for high-dimensional molecular data. Transl Cancer Res. 
2014;3(3):202–16. https://​doi.​org/​10.​3978/j.​issn.​2218-​676X.​2014.​06.​03.

	12.	 Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Meth-
odol). 1972;34(2):187–220.

	13.	 de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A. Clustering 
cancer gene expression data: a comparative study. BMC Bioinform. 
2008;9:497. https://​doi.​org/​10.​1186/​1471-​2105-9-​497.

	14.	 Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw, 2010;33(1), 1–22. 
Vignette “An Introduction to glmnet”: https://​glmnet.​stanf​ord.​edu/​artic​
les/​glmnet.​html (accessed September 2021)

	15.	 Gade S, Porzelius C, Fälth M, Brase JC, Wuttig D, Kuner R, Binder H, Sült-
mann H, Beißbarth T. Graph based fusion of miRNA and mRNA expres-
sion data improves clinical outcome prediction in prostate cancer. BMC 
Bioinform. 2011;12:488. https://​doi.​org/​10.​1186/​1471-​2105-​12-​488.

	16.	 GeneCards: GeneCards®: the human gene database. https://​www.​
genec​ards.​org. Accessed: June 2018.

	17.	 Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues 
in developing models, evaluating assumptions and adequacy, and 
measuring and reducing errors. Stat Med. 1996;15(4):361–87.

	18.	 Harrell Jr FE, with contributions from Charles Dupont, many others. 
Hmisc: Harrell Miscellaneous. 2018. R package version 4.1-1. https://​
CRAN.R-​proje​ct.​org/​packa​ge=​Hmisc

	19.	 Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC 
curves. Biometrics. 2005;61(1):92–105. https://​doi.​org/​10.​1111/j.​0006-​
341X.​2005.​030814.x.

	20.	 Hothorn T, Bühlmann P. Model-based boosting in high dimensions. 
Bioinformatics. 2006;22(22):2828–9. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​btl462.

	21.	 Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival 
ensembles. Biostatistics. 2006;7(3):355–73. https://​doi.​org/​10.​1093/​
biost​atist​ics/​kxj011.

	22.	 Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian cor-
related clustering to integrate multiple datasets. Bioinformatics. 
2012;28(24):3290–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts595.

	23.	 Lang M, Bischl B, Surmann D. batchtools: tools for r to work on batch 
systems. J Open Source Softw. 2017. https://​doi.​org/​10.​21105/​joss.​
00135

	24.	 Liu J, Huang J, Ma S. Integrative analysis of cancer diagnosis studies with 
composite penalization. Scand J Stat Theory Appl. 2014;41(1):87–103. 
https://​doi.​org/​10.​1111/j.​1467-​9469.​2012.​00816.x.

	25.	 Liu J, Huang J, Zhang Y, Lan Q, Rothman N, Zheng T, Ma S. Integrative 
analysis of prognosis data on multiple cancer subtypes. Biometrics. 
2014;70(3):480–8. https://​doi.​org/​10.​1111/​biom.​12177.

https://doi.org/10.1186/s12911-021-01698-1
https://doi.org/10.1186/s12911-021-01698-1
https://github.com/KatrinMadjar/WeightedCoxRegression.git
https://github.com/KatrinMadjar/WeightedCoxRegression.git
https://doi.org/10.1002/sim.2059
https://doi.org/10.1002/sim.2059
https://doi.org/10.2202/1544-6115.1703
https://doi.org/10.1145/1390156.1390164
https://doi.org/10.1186/1471-2105-9-14
https://doi.org/10.1515/1544-6115.1694
https://doi.org/10.1515/1544-6115.1694
https://doi.org/10.1515/1544-6115.1769
https://doi.org/10.1155/2017/7691937
https://doi.org/10.1093/nar/gku1055
https://doi.org/10.3978/j.issn.2218-676X.2014.06.03
https://doi.org/10.1186/1471-2105-9-497
https://glmnet.stanford.edu/articles/glmnet.html
https://glmnet.stanford.edu/articles/glmnet.html
https://doi.org/10.1186/1471-2105-12-488
https://www.genecards.org
https://www.genecards.org
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://doi.org/10.1111/j.0006-341X.2005.030814.x
https://doi.org/10.1111/j.0006-341X.2005.030814.x
https://doi.org/10.1093/bioinformatics/btl462
https://doi.org/10.1093/bioinformatics/btl462
https://doi.org/10.1093/biostatistics/kxj011
https://doi.org/10.1093/biostatistics/kxj011
https://doi.org/10.1093/bioinformatics/bts595
https://doi.org/10.21105/joss.00135
https://doi.org/10.21105/joss.00135
https://doi.org/10.1111/j.1467-9469.2012.00816.x
https://doi.org/10.1111/biom.12177


Page 15 of 15Madjar and Rahnenführer ﻿BMC Medical Informatics and Decision Making          (2021) 21:342 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	26.	 Madjar K. Survival models with selection of genomic covariates in hetero-
geneous cancer studies. Dissertation. Faculty of Statistics, TU Dortmund 
University (2018). https://​doi.​org/​10.​17877/​DE290R-​19140

	27.	 Oyelade J, Isewon I, Oladipupo F, Aromolaran O, Uwoghiren E, Ameh 
F, Achas M, Adebiyi E. Clustering algorithms: their application to gene 
expression data. Bioinform Biol Insights. 2016;10:38316. https://​doi.​org/​
10.​4137/​BBI.​S38316.

	28.	 Pagès H, Carlson M, Falcon S, Li N. AnnotationDbi: manipulation of 
SQLite-based annotations in bioconductor. 2019. R package version 
1.46.0. https://​bioco​nduct​or.​org/​packa​ges/​Annot​ation​Dbi

	29.	 Richter J, Madjar K, Rahnenführer J. Model-based optimization of sub-
group weights for survival analysis. Bioinformatics. 2019;35(14):484–91. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz361.

	30.	 Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic 
data types using a joint latent variable model with application to breast 
and lung cancer subtype analysis. Bioinformatics. 2009;25(22):2906–12. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btp543.

	31.	 Simon R. Bayesian subset analysis: application to studying treatment-by-
gender interactions. Stat Med. 2002;21(19):2909–16. https://​doi.​org/​10.​
1002/​sim.​1295.

	32.	 Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc 
Ser B (Methodol). 1996;58(1):267–88.

	33.	 Tibshirani R. The Lasso method for variable selection in the Cox model. 
Stat Med. 1997;16(4):385–95.

	34.	 Tutz G, Binder H. Localized classification. Stat Comput. 2005;15(3):155–66. 
https://​doi.​org/​10.​1007/​s11222-​005-​1305-x.

	35.	 Tutz G, Binder H. Generalized additive modeling with implicit variable 
selection by likelihood-based boosting. Biometrics. 2006;62(4):961–71. 
https://​doi.​org/​10.​1111/j.​1541-​0420.​2006.​00578.x.

	36.	 Uno H, Cai T, Tian L, Wei LJ. Evaluating prediction rules for t-year survivors 
with censored regression models. J Am Stat Assoc. 2007;102(478):527–37.

	37.	 Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for 
evaluating overall adequacy of risk prediction procedures with censored 
survival data. Stat Med. 2011;30(10):1105–17. https://​doi.​org/​10.​1002/​sim.​
4154.

	38.	 Verweij PJ, Van Houwelingen HC. Penalized likelihood in Cox regression. 
Stat Med. 1994;13(23–24):2427–36.

	39.	 Weyer V, Binder H. A weighting approach for judging the effect of patient 
strata on high-dimensional risk prediction signatures. BMC Bioinform. 
2015;16:294. https://​doi.​org/​10.​1186/​s12859-​015-​0716-8.

	40.	 White IR, Royston P. Imputing missing covariate values for the Cox model. 
Stat Med. 2009;28(15):1982–98. https://​doi.​org/​10.​1002/​sim.​3618.

	41.	 Witten DM, Tibshirani R. A framework for feature selection in clustering. J 
Am Stat Assoc. 2010;105(490):713–26. https://​doi.​org/​10.​1198/​jasa.​2010.​
tm094​15.

	42.	 Wiwie C, Baumbach J, Röttger R. Comparing the performance of bio-
medical clustering methods. Nat Methods. 2015;12(11):1033–8. https://​
doi.​org/​10.​1038/​nmeth.​3583.

	43.	 Wright M.N, Ziegler A. ranger: a fast implementation of random forests 
for high dimensional data in C++ and R. J Stat Softw. 2017;77(1):1–17. 
https://​doi.​org/​10.​18637/​jss.​v077.​i01.

	44.	 Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J. 51 other 
authors: Ensembl 2018. Nucl Acids Res. 2018;46(D1):754–61. https://​doi.​
org/​10.​1093/​nar/​gkx10​98.

	45.	 Zou H, Hastie T. Regularization and variable selection via the elastic net. 
J R Stat Soc Ser B (Stat Methodol). 2005;67(2):301–20. https://​doi.​org/​10.​
1111/j.​1467-​9868.​2005.​00503.x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.17877/DE290R-19140
https://doi.org/10.4137/BBI.S38316
https://doi.org/10.4137/BBI.S38316
https://bioconductor.org/packages/AnnotationDbi
https://doi.org/10.1093/bioinformatics/btz361
https://doi.org/10.1093/bioinformatics/btp543
https://doi.org/10.1002/sim.1295
https://doi.org/10.1002/sim.1295
https://doi.org/10.1007/s11222-005-1305-x
https://doi.org/10.1111/j.1541-0420.2006.00578.x
https://doi.org/10.1002/sim.4154
https://doi.org/10.1002/sim.4154
https://doi.org/10.1186/s12859-015-0716-8
https://doi.org/10.1002/sim.3618
https://doi.org/10.1198/jasa.2010.tm09415
https://doi.org/10.1198/jasa.2010.tm09415
https://doi.org/10.1038/nmeth.3583
https://doi.org/10.1038/nmeth.3583
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1093/nar/gkx1098
https://doi.org/10.1093/nar/gkx1098
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

	Weighted Cox regression for the prediction of heterogeneous patient subgroups
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Related work

	Methods
	Cox proportional hazards model
	Penalized Cox regression model
	Weighted Cox partial likelihood
	Estimation of weights
	Prediction performance

	Model fitting and evaluation
	Results of the simulation study
	Simulated data
	Weights estimation
	Parameter estimation and prediction performance

	Results of the application to NSCLC cohorts
	Weights estimation
	Parameter estimation and prediction performance

	Discussion
	Conclusions
	Acknowledgements
	References


