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Abstract: Background: The association between high-sensitivity C-reactive protein (hsCRP)
and activities of daily living (ADL) disability remains unclear. Our study aimed to com-
prehensively explore the relationship between hsCRP concentrations and the risk of ADL
disability, while also identifying potential modifiers of this association in middle-aged and
older adults. Methods: We conducted a prospective study involving 16,342 participants
aged 50 years and older (mean age: 64 ± 10 years) from the Health and Retirement Study.
To investigate the longitudinal association between hsCRP and the risk of ADL disability,
we employed Cox proportional hazard regression models, adjusting for a wide range of
potential confounders. Subgroups analyses were further conducted to examine interactions
across factors such as gender, age, body mass index, smoking status, and drinking status.
Results: This study involved a follow-up of 125,858 person-years (median of 8 years;
interquartile range: 4–12 years), revealing a total of 4579 incidents of ADL disability. The
highest hsCRP concentration was significantly associated with ADL disability after ad-
justment for covariates (hazard ratio [HR] = 1.25; confidence interval [CI] = 1.14–1.36).
The associations between hsCRP and the risk of ADL disability seemed to be somewhat
stronger among individuals aged < 65 years and with a BMI ≥ 30 kg/m2 (both p for inter-
action < 0.05). Conclusions: Our findings indicated that elevated hsCRP concentrations
are associated with an increased risk of ADL disability in middle-aged and older adults.
HsCRP appears to serve as a biomarker for ADL disability, particularly among individuals
with obesity and middle-aged adults.

Keywords: high-sensitivity C-reactive protein; ADL disability; inflammation

1. Introduction
High-sensitivity C-reactive protein (hsCRP) is an acute-phase protein synthesized by

the liver during inflammatory responses [1]. It has emerged as a reliable biomarker for
systemic inflammation due to its relatively stable concentrations, cost-effective detection,
and high sensitivity [2]. Previous research has indicated that hsCRP is associated with
various adverse health outcomes, including an increased risk of mortality, cardiovascular
disease, and higher rates of disability [3–6].
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Physical functional impairment is one of the most common health problems among
the elderly in the United States, imposing a considerable burden on both individuals and
society [7]. Specifically, activities of daily living (ADL) disability, as the core manifestation
of physical functional impairment, has become a crucial factor affecting the quality of life of
the elderly [8]. ADL disability is defined as the inability of an individual to independently
perform basic tasks in daily life, including essential activities such as dressing, eating, doing
laundry, and walking [9]. Current studies mainly focus on the clinical state of ADL disabil-
ity, which is irreversible and leaves little opportunity for interventions to delay the process;
it is valuable to explore the predictable factors to delay the onset and reduce the severity of
ADL disability. Recent studies have demonstrated that elevated hsCRP concentrations are
associated with the pathogenesis of sarcopenia, frailty, and functional limitations, which
are critical determinants of ADL disability [6,10,11]. Despite several investigations into the
association between hsCRP and the risk of ADL disability, the findings remain inconsis-
tent [12–16]. For instance, a cross-sectional study conducted among elderly individuals
in Chinese communities revealed an inverse association between serum hsCRP and ADL
performance (n < 3500) [12]. In addition, a cohort study conducted among a community-
residing population aged 70 and older explored the relationship between hsCRP and ADL
decline, showing that elevated hsCRP levels were associated with an increased risk of ADL
disability (n = 624) [13]. Another study involving 2610 men and women aged 65 and older
identified a link between hsCRP levels and ADL disability; however, this association was
not significant in women [17]. Furthermore, prior studies have demonstrated a significant
positive link between obesity and inflammatory markers like hsCRP [18,19]. Research also
indicates that the body’s inflammatory response capability declines with age, leading to
notable differences in hsCRP levels across age groups [20]. However, there are certain
limitations in the current related research. Most studies adopt a cross-sectional research
design, and the sample sizes are generally small. Several confounding factors, such as
chronic diseases and lifestyles choices, have not been adequately controlled, which are
highly likely to interfere with the determination of the relationship between hsCRP and
ADL performance. Additionally, there is a lack of understanding regarding whether the
associations between hsCRP and ADL disability differ based on the body mass index (BMI),
gender, or age subgroups within population studies.

Therefore, we conducted a prospective cohort study using data from the 2006–2016
Health and Retirement Study (HRS) community cohort. By controlling for confounding
factors from multiple aspects, we aimed to explore the association between hsCRP and the
risk of ADL disability in individuals aged 50 and above. Additionally, we performed a
series of subgroup analyses to explore the modifying effects of various factors, such as age,
BMI, smoking status, and drinking status, among others.

2. Methods and Materials
2.1. Study Design and Population

This study used data from the HRS, a nationally representative, community-based,
prospective cohort study sample of the United States population aged 50 and older. In-
formation on the study participants and its design has been reported before [19]. In brief,
interviews with the participants were conducted in 1992 and then repeated at two-year
intervals. From 1994 to 2016, six new groups of participants were incorporated in stages.
Commencing in 2006, as part of the HRS, an upgraded face-to-face interview, which in-
volved a biomarker assessment, was carried out. In all the HRS research activities, the
Declaration of Helsinki guidelines were adhered to, and procedures were approved by the
University of Michigan Health Sciences/Behavioral Sciences Institutional Review Board
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(IRB) (Protocol: HUM00061128). Before enrolling any participants, written informed con-
sent was collected.

In the present study, we used data from the 2006 to 2016 waves of the HRS. The partic-
ipants who had missing data on hsCRP and those with hsCRP concentrations of greater
than 10 were excluded due to association with acute illness and major trauma; furthermore,
individuals with limitations in any of the six ADLs at the baseline were not included in the
study. A total of 16,342 individuals, comprising 7178 men and 9164 women, were deemed
eligible for inclusion in the study. Figure 1 presents a flowchart of participant enrollment.

Figure 1. Flowchart of the sample selection process.

2.2. Measurement of hsCRP

The plasma hsCRP concentration was measured in serum using a latex-particle-
enhanced immunoturbidimetric assay kit. The minimum detectable value for the hsCRP
concentration stood at 0.035 mg/L. The within-assay variability was 8.1%, and the between-
assay variability was 11.0%. All the participants were categorized into four groups accord-
ing to quartiles. These quartiles were defined as follows: quartile 1 (Q1), with values of less
than 0.61 mg/L; quartile 2 (Q2), ranging from 0.61 to 1.29 mg/L; quartile 3 (Q3), from 1.30
to 2.73 mg/L; and quartile 4 (Q4), with values of greater than 2.73 mg/L.

2.3. Assessment of ADL Disability

The ability to perform ADLs was ascertained by a questionnaire that asked the partici-
pants of the HRS whether they had any difficulty with the following six tasks: (1) dressing,
including putting on shoes and socks; (2) eating, such as cutting your food; (3) using the
toilet, such as getting up; (4) bathing or showering; (5) getting into or out of bed; and
(6) walking across a room. The respondents were asked to exclude any difficulties expected
to last less than 3 months. Following previous studies [21,22], we dichotomized ADL
disability into “no limitation = 0” or “at least one limitation = 1”. All the respondents were
free of ADL disability at baseline. The participants were defined as having “ADL disability”
if one or more limitations emerged during the follow-up period.
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2.4. Covariates

We selected a wide range of potential confounders for inclusion in this study by
drawing on evidence from prior epidemiological investigations [23,24]. Covariates encom-
passed sociodemographic details such as age, sex, and race/ethnicity. Lifestyle-related
covariates, such as the body mass index (BMI), smoking status, and drinking status, were
included. Clinical measures included the concentrations of total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), and hemoglobin A1c (HbA1c). Additionally, the
score from the 8-item Center for Epidemiologic Studies Depression Scale (CES-D 8) was
included. Moreover, chronic conditions, like hypertension, diabetes, cancer, and arthritis,
were among the covariates. The BMI was calculated from body weight and height mea-
surements calculated by trained personnel. A BMI < 18.5 kg/m2 was defined as low, a BMI
between 18.5 and 24.9 kg/m2 was considered normal, a BMI between 25.0 and 29.9 kg/m2

was classified as overweight, and a BMI ≥ 30.0 kg/m2 was regarded as obese, according
to the World Health Organization [25]. The entirety of the data associated with covariates
was procured from the structured questionnaire and the biochemistry examinations that
were executed at the baseline. The original contributions presented in the study are pub-
licly available. These data can be found here (http://hrsonline.isr.umich.edu, accessed on
25 September 2024).

2.5. Statistical Analysis

Descriptive data were used to summarize the participant characteristics, with continu-
ous variables presented as the means (standard deviation, SD) and categorical variables
presented as counts (percentage) stratified by hsCRP quartiles. Cox proportional haz-
ard models were applied to estimate hazard ratios (HRs), and 95% confidence intervals
(95% CIs) were applied to estimate the risk of ADL disability according to the hsCRP
quartiles, using the lowest quartile as the reference. We also evaluated the HRs for the
risk of ADL disability for each 1 mg/L increase in hsCRP. To evaluate potential nonlinear
associations, restricted cubic splines (RCSs) with 3 knots were incorporated into the Cox
models, and the linearity assumption was tested via likelihood ratio tests comparing the
models with linear and spline terms. We used two Cox hazard regression models, which
were adjusted for different sets of variables and evaluated using Schoenfeld residual plots.
Model 1 tested the association between hsCRP and the risk of ADL disability controlled for
age and sex; Model 2 further adjusted for ethnicity, BMI, smoking status, drinking status,
regular exercise, HDL-C, TC, HbA1c, CES-D 8 scores, hypertension, diabetes, cancer, and
arthritis. To increase the statistical power, we utilized the multiple imputation through
chained equations to fill in the missing covariate data [26]. The effect modifications of the
associations between each 1 mg/L increase in hsCRP and the risk of ADL disability by
sex (men or women), age (<65 or ≥65 years), BMI (obese or non-obese), current smoking
status, and current drinking status were assessed by calculating and comparing likelihood
ratios for their statistical fit with interaction terms in the multivariable adjusted models.
To address any potential Type I error from multiple testing, we adjusted p-values for in-
teraction effects in the subgroup analyses using two methods: (1) Bonferroni correction
(dividing α = 0.05 by 2, the number of tests); (2) False Discovery Rate (FDR) control via
Benjamini-Hochberg method.

To ensure the robustness of our findings, we performed a series of sensitivity analyses,
including excluding all the participants who died within the 2 years prior to follow-up;
stratifying individuals by tertiles, quintiles, and clinically relevant categories of hsCRP [27].
All the analyses were conducted using R 4.3.2, and a significant difference was defined as
p < 0.05.

http://hrsonline.isr.umich.edu
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3. Results
3.1. Baseline Characteristics

Table 1 provides the details of the participants’ characteristics, with the participants
stratified by the quartiles of hsCRP measured at baseline. We followed a cohort of 16,342 par-
ticipants, with a median age of 64 years old (standard deviation: 10 years), of whom 56%
were women. The median value of hsCRP was 1.27 mg/L. The participants with higher
hsCRP levels were more likely to be women, of white ethnicity, and current drinkers and to
have a higher BMI (all p < 0.05). Compared to the participants without limitation, those who
with ADL disability were older, predominantly female, engaged in less regular exercise,
and had higher incidences of hypertension, diabetes, cancer, and arthritis (all p < 0.05,
Table S1).

Table 1. Characteristics of study participants.

Characteristics Overall
HsCRP Concentrations Quartiles (mg/L)

Q1
(<0.61)

Q2
(0.61–1.29)

Q3
(1.30–2.73)

Q4
(>2.73)

No. of participants 16,342 4071 4110 4078 4083
Age, years 64.48 (10.20) 65.40 (10.45) 65.50 (10.29) 64.27 (10.08) 62.72 (9.72)
Women (%) 9164 (56%) 2087 (51%) 2119 (52%) 2346 (58%) 2612 (64%)
Race (%)

White 12,244 (75%) 3237 (80%) 3247 (79%) 3051 (75%) 2709 (66%)
Black 2765 (17%) 521 (13%) 528 (13%) 695 (17%) 1021 (25%)
Other 1333 (8%) 313 (7%) 335 (8%) 332 (8%) 353 (8%)

BMI, kg/m2 (%)
<30 11,100 (68%) 3399 (83%) 3021 (74%) 2638 (65%) 2042 (50%)
≥30 5242 (32%) 672 (17%) 1089 (26%) 1440 (35%) 2041 (50%)

Current smoker (%) 2482 (15%) 479 (12%) 529 (13%) 695 (17%) 779 (19%)
Current drinker (%) 9645 (59%) 2541 (62%) 2465 (60%) 2401 (59%) 2238 (55%)
Regular exercise (%) 14,041 (86%) 3633 (89%) 3589 (87%) 3485 (85%) 3334 (82%)
HDL-C, mg/dL 63.72 (21.20) 64.48(21.56) 64.80 (21.37) 63.03 (20.93) 63.58 (20.92)
HbA1c, mg/dL 5.79 (0.91) 5.67 (0.75) 5.75 (0.85) 5.80 (0.90) 5.93 (1.07)
TC, mg/dL 225.19 (66.22) 212.91 (59.38) 221.16 (62.91) 228.71 (67.71) 238.24 (71.75)
CES-D 8 score 1.24 (1.80) 1.11 (1.68) 1.14 (1.74) 1.27 (1.79) 1.43 (1.95)
Hypertension (%) 8818 (54%) 1876 (46%) 2205 (54%) 2246 (55%) 2491 (61%)
Diabetes (%) 3127 (19%) 653 (16%) 742 (18%) 767 (19%) 965 (24%)
Cancer (%) 2016 (12%) 519 (13%) 498 (12%) 495 (12%) 504 (12%)
Arthritis (%) 8202 (50%) 1948 (48%) 2060 (50%) 2110 (52%) 2084 (51%)

Continuous variables are shown as mean (SD); categorical variables are shown as the number of cases (%).

3.2. HsCRP and the Risk of ADL Disability

The total number of person-years comprising the follow-up was 125,858, and the
median follow-up time was 8 years (interquartile range [IQR] = 4–12 years); we recorded
4579 incidents of ADL disability events. The multivariable-adjusted HRs with 95% CIs
for ADL disability from the lowest to the highest quartiles of the hsCRP level were 1 (ref-
erence), 1.08 (95% CI, 0.99–1.17), 1.24 (95% CI, 1.14–1.35), and 1.52 (95% CI, 1.40–1.65) (p
for trend < 0.001) (Table 2). Further analysis demonstrated that each 1 mg/L increment
of hsCRP was significantly associated with a 3% increased risk of ADL disability, with an
HR (95% CI) of 1.03 (1.01–1.04) (Figure 2). Additionally, a nonlinear and positive associa-
tion between the hsCRP concentration and the risk of incident ADL disability events was
identified using a restricted cubic spline regression (p for nonlinearity < 0.001) (Figure 3).
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Table 2. HRs (95% CI) for ADL disability stratified by baseline hsCRP concentration quartiles.

HsCRP
ADL Disability

Model 1 a p Model 2 b p

No. of
participants 16,342

No. of events 4579
Q1 1.00 (reference) - 1.00 (reference) -
Q2 1.08 (0.99, 1.17) 0.086 1.02 (0.94, 1.11) 0.597
Q3 1.24 (1.14, 1.35) <0.001 1.10 (1.01, 1.19) 0.022
Q4 1.52 (1.40, 1.65) <0.001 1.23 (1.13, 1.34) <0.001
p for trend <0.001 <0.001

a Model 1: adjusted for age and sex. b Model 2: adjusted for age, sex, race, current smoking status, current drinking
status, regular exercise, BMI, TC, HDL-C, HbA1c, CES-D 8 score, hypertension, diabetes, cancer, and arthritis.

Figure 2. Subgroup analyses for the hazard ratios (HRs) of ADL disability. Adjusted for age, sex, race,
current smoking status, current drinking status, regular exercise, BMI, TC, HDL-C, HbA1c, CES-D 8
score, hypertension, diabetes, cancer, and arthritis.

Figure 3. Hazard ratios (HRs) of hsCRP concentration on ADL disability. The results are from the
restricted cubic spline Cox proportional hazard regression model.
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3.3. Subgroup Analyses

Subgroup and interaction analyses were performed to identify potential modifying
factors. The positive associations between hsCRP and the risk of ADL disability were
stronger among those aged < 65 years (p for interaction < 0.001, Figure 2) and those
with a BMI ≥ 30 kg/m2 (p for interaction = 0.002; Figure 2). After considering multiple
comparisons, the interactions between hsCRP and age, as well as between the CRP and
BMI groups, remain significant (p < 0.05) under both the Bonferroni correction and the FDR
control (Table S6). However, no significant interaction effects were found for the other four
predefined subgroups (all p for interactions > 0.05).

3.4. Sensitivity Analyses

The associations between hsCRP and ADL disability remained consistent when partic-
ipants who died within 2 years of follow-up were excluded (Table S2). Moreover, when
categorizing hsCRP levels as tertiles or quintiles, the results were similar (Tables S3 and S4),
and when using clinically relevant categories (Table S5) based on hsCRP, the results re-
mained materially unchanged.

4. Discussion
In this prospective cohort study, we observed that elevated levels of hsCRP were

associated with a higher incidence of ADL disability among middle-aged and elderly
individuals. Even after thorough adjustment for sociodemographic factors, metabolic
biomarkers, lifestyle choices, and chronic disease history, these associations persisted as
robust, suggesting that hsCRP levels may play an independent role in the decline of ADL
performance. Moreover, our findings highlight that the risk of hsCRP contributing to
ADL disability is significantly heightened among obese individuals and those aged under
65 years.

Several studies have assessed the relationship between hsCRP and ADL disability
events, and most indicate that individuals who have higher hsCRP levels are likely to
have deficits in ADL performance [12–16,28]. Moreover, a prospective study conducted
in a Japanese population indicates that hsCRP is favorably associated with physical per-
formance, even within a very low range (<1.0 mg/L) [15]. In addition, these associations
have also been found in special populations. In chronic kidney disease patients, higher
hsCRP levels increase the risk of ADL disability [29]. Among stroke survivors, baseline
hsCRP levels predict ADL recovery [6]. In elderly patients with cognitive impairment,
elevated hsCRP is linked to faster ADL decline. By overcoming the sample size and design
limitations of previous studies, our study also found a significant association between ele-
vated hsCRP levels and the risk of ADL disability using a large, community-based cohort
of middle-aged and older adults. These findings affirm the significant utility of hsCRP, a
highly sensitive and readily measurable biomarker, in the early prediction and detection of
ADL disability [30]. By identifying individuals with elevated hsCRP levels at an early stage,
healthcare professionals can implement evidence-based, proactive interventions. These
interventions may encompass personalized exercise regimens designed to enhance physical
function, targeted nutritional counseling aimed at modulating inflammatory pathways, and
weight management programs aimed at halting the progression of functional impairment
and potentially deferring or even preventing the onset of ADL disability.

Moreover, our study found that the association between hsCRP and ADL disability
was more pronounced in individuals with obesity. Prior studies have indicated that
obesity is known to relate to the length of a life with a disability before death or an
increase in the severity of the disability occurs [31,32]. Similarly, a study noted that obese
individuals with elevated inflammatory levels experience a faster decline in muscle strength
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and physical function compared to non-obese individuals, thereby increasing the risk of
impaired physical performance [33]. A potential explanation for this is that excessive energy
intake may lead the body into a pro-inflammatory state, amplifying the adverse effects of
inflammation on physical function and significantly raising the risk of ADL disability [34].
While some studies suggest a higher risk of ADL disability among women, possibly due to
relatively lower physical fitness compared to men [35], this pattern was not evident in our
study. This discrepancy may be attributed to our focus on individuals aged 50 and above,
who are typically in the perimenopausal stage, where female sex hormones may have less
influence on ADL disability outcomes [36].

The mechanisms by which hsCRP is associated with the development of functional
limitations are not fully understood. They may be mediated through several biological
pathways [37–39]. First, chronic inflammation, as indicated by elevated hsCRP, can lead
to muscle degradation through increased protein catabolism and oxidative stress [39,40].
This process may result in sarcopenia, a condition characterized by the loss of muscle mass
and strength, which is a critical determinant of ADL disability among older adults. Second,
hsCRP is also linked to the development of various chronic diseases, such as diabetes,
cardiovascular disease, and cognitive decline [41]. The inflammation-induced hepatic
acute-phase response prioritizes the synthesis of inflammatory proteins such as hsCRP,
while inhibiting the production of nutrition-related proteins like albumin and prealbumin,
thereby exacerbating malnutrition [42,43]. Inadequate protein intake leads to insufficient
nutrient intake in older adults, which in turn activates inflammatory pathways. This
process impairs muscle repair capacity, thereby accelerating functional decline [44]. Despite
these proposed mechanisms, further research is needed to fully elucidate the complex
interplay between hsCRP and functional decline. Future studies should prioritize exploring
interventions like dietary changes and lifestyle modifications, which can safeguard muscle
function and uphold seniors’ independence. Such efforts are crucial for improving their
quality of life and reducing the healthcare burden tied to ADL disability.

5. Strengths and Limitations
This investigation offers several methodological strengths, including a population-

based design with adequate power to detect moderate effect sizes. The incorporation
of longitudinal biomarker data enhances clinical translatability while controlling for key
confounders. Nevertheless, our findings should be considered in the context of several
limitations. First, our reliance on single-timepoint hsCRP measurements may not fully
capture chronic inflammatory exposure. Second, our study did not consider other potential
confounding factors that could influence both hsCRP concentrations and the risk of ADL
disability. Third, there may have been a selection bias relating to our participants, as
healthier individuals were more likely to be followed-up for a longer period, which could
have introduced a healthy survivor bias. Finally, although our study involved a relatively
large sample size, it was conducted in a specific geographic region, which may have
introduced a regional bias and limits the generalizability of the results to other populations.

6. Conclusions
Our study demonstrates a significant association between elevated hsCRP and the

risk of ADL disability among middle-aged and older individuals. The findings highlight
the importance of considering inflammation as a potential risk factor for functional decline
and suggest that targeted interventions to reduce inflammation may help preserve ADL
function in vulnerable populations.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nu17101732/s1. Table S1. Demographic and clinical characteristics
of study participants with varying status of ADL disability; Table S2. HRs (95% CI) for ADL
disability stratified by hsCRP quartiles excluding participants who died within 2 years of follow-
up; Table S3. HRs (95% CI) of ADL disability by tertiles of high-sensitivity C-reactive protein;
Table S4. HRs (95% CI) of ADL disability by quintiles of high-sensitivity C-reactive protein; Table
S5. HRs (95% CI) of ADL disability according to clinical categories of high-sensitivity C-reactive
protein; Table S6. Subgroup analyses for the HRs (95% CI) of ADL disability for each 1 mg/L increase
in high-sensitivity C-reactive protein.
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