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Abstract

When listening to speech, low-frequency cortical activity tracks the speech envelope. It remains controversial,
however, whether such envelope-tracking neural activity reflects entrainment of neural oscillations or superpo-
sition of transient responses evoked by sound features. Recently, it is suggested that the phase of envelope-
tracking activity can potentially distinguish entrained oscillations and evoked responses. Here, we analyze the
phase of envelope-tracking in humans during passive listening, and observe that the phase lag between corti-
cal activity and speech envelope tends to change linearly across frequency in the 6 band (4-8 Hz), suggesting

that the 6-band envelope-tracking activity can be readily modeled by evoked responses.
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ignificance Statement

\plained by a linear-system model.

During speech listening, cortical activity tracks the speech envelope, which is a critical cue for speech rec-
ognition. It is debated, however, what is the neural mechanism generating the envelope-tracking responses.
Previous work has shown that 6-band envelope tracking responses recorded during music listening cannot
be explained by a simple linear-system model. Here, however, we demonstrate that #-band envelope track-
ing responses recorded during speech listening shows the linear phase property, which can be well ex-
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Introduction

The speech envelope, i.e., temporal modulations below
20Hz, is critical for speech recognition (Drullman et al.,
1994; Shannon et al., 1995; Shamma, 2001; Elliott and
Theunissen, 2009; Ding et al., 2017), and large-scale cort-
ical activity measured by MEG and EEG can track the
speech envelope (Lalor et al., 2009; Ding and Simon,
2012b; Wang et al., 2012; Peelle et al., 2013; Doelling et
al., 2014; Harding et al., 2019). Since the slow temporal
modulations in speech are highly related to the ~5-Hz syl-
labic rhythm in speech, it has been hypothesized that
#-band neural synchronization to temporal modulations
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in speech provides a plausible mechanism to segment
continuous speech into the perceptual units of syllables
(Giraud and Poeppel, 2012; Poeppel and Assaneo, 2020).

Although low-frequency neural synchronization to slow
temporal modulations has been extensively studied and is
hypothesized to play a critical role in auditory perception,
there is considerable debate about how it is generated (Ding
and Simon, 2013; Doelling et al., 2014; Ding et al., 2016b;
Haegens and Zion Golumbic, 2018; Zoefel et al., 2018;
Alexandrou et al., 2020). On the one hand, it has been hy-
pothesized that the low-frequency neural response to
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speech is generated by resetting the phase of intrinsic neu-
ral oscillations (Kayser et al., 2008; Lakatos et al., 2008,
2009; Schroeder et al., 2008; Kayser, 2009). On the other
hand, it has been hypothesized that it is a sequence of tran-
sient responses evoked by sound features in speech (Lalor
et al., 2009; Ding and Simon, 2012a,b). Distinguishing these
two hypotheses, however, turns out to be extremely hard.
For example, early studies have shown that the phase
but not power of #-band cortical activity is synchronized to
speech (Luo and Poeppel, 2007; Howard and Poeppel,
2010), which supports the phase resetting hypothesis. It has
been argued, however, that the same phenomenon can be
observed for evoked responses, attributable to the different
statistical sensitivity of response phase and power (Ding
and Simon, 2013; Shah et al., 2004; Yeung et al., 2004).
Furthermore, later studies observe consistent power and
phase changes in the # band during speech listening
(Howard and Poeppel, 2012).

The phase resetting hypothesis and the evoked re-
sponse hypothesis motivate different computational mod-
els for the neural responses to speech. Based on the
evoked response hypothesis, the speech response can
be simulated based on a linear time-invariant system, in
which the phase lag between stimulus and response dramat-
ically varies across frequency. A recent study, however,
shows that neural synchronization to music violates the
phase lag property predicted by the evoked response
model, when listeners perform a pitch judgment task
(Doelling et al., 2019). Instead, the response phase is
more consistent with the prediction of a nonlinear os-
cillator model. This result suggests that cortical syn-
chronization to music is potentially generated by more
complicated nonlinear mechanisms than superposition
of evoked responses. Since the evoked response model
and the nonlinear oscillator model in Doelling et al. (2019)
are computationally explicit, here we focus on these two
models and test which model can better describe the neural
response to speech.

The study by Doelling et al. (2019) questions the validity
of using evoked response models to analyze neural activ-
ity synchronized to sound rhythms, since such models fail
to predict the neural response phase during music listen-
ing. It remains possible, however, that the neural encod-
ing scheme depends on the properties of sound. For
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example, the nonlinear oscillator models may be more ap-
propriate for music, which is highly rhythmic, while the
evoked response models may be sufficient to model the
response to less rhythmic sound such as speech. It is
also possible that the neural encoding scheme depends
on the modulation frequency and appears to be different
for music, which contains strong temporal modulations
below 2 Hz, and speech, which contains strong temporal
modulations around 5Hz (Ding et al., 2017). Finally, it is
also possible that active listening engages phase reset-
ting mechanisms more than passive listening. Therefore,
the primary goal of the current study is to quantify the
phase lag property of the cortical response to speech dur-
ing passive listening, and test whether it is more consist-
ent with the prediction of the evoked response model or
the nonlinear oscillator model in Doelling et al. (2019).

Materials and Methods

Participants

This study involved 15 healthy individuals (five males;
54.6 = 10.12 years), who were right-handed with no his-
tory of neurologic diseases. Written informed consent
was provided by participants.

Stimuli

Natural speech included two chapters from a novel, The
Supernova Era by Cixin Liu (chapter 16, Fun country, and
chapter 18, Sweet dream period). The story was narrated
in Mandarin by a female speaker and digitized at 48 kHz.
The speech was clear and highly intelligible. The two
chapters were 34 min and 25 min in duration, respectively.
Recordings of the two chapters were concatenated.

Procedures

All participants listened to speech while EEG responses
were recorded. Speech was presented binaurally through
headphones at a comfortable sound level. The experi-
ment was separated into 2d. On each day of the experi-
ment, the spoken narrative was presented once. The
59-min speech stimulus was presented twice and there-
fore the total speech stimulus was almost 2 h, which was
longer than the stimulus duration in most studies. The
purpose of having the long stimulus was to reliably esti-
mate the response phase. No other tasks were given, and
therefore the participants listened passively.

EEG recording and signal preprocessing

EEG signals were recorded using a 64-electrodes
BrainCap (Brain Products GmbH) in the international 10—
20 system, and one of the 64 electrodes was placed
under the right eye to record electrooculogram (EOG).
EEG signals were referenced online to FCz, but were ref-
erenced offline to a common average reference (Poulsen
et al., 2007). The EEG signals were filtered online with a
50-Hz notch filter to remove line noise (12th order zero-
phase Butterworth filter), a low-pass antialiasing filter
(70-Hz cutoff, eighth order zero-phase Butterworth filter),
and a high-pass filter to prevent slow drifts (0.3-Hz cutoff,
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eighth order zero-phase Butterworth filter). The signals
were sampled at 1kHz. The EEG signal was processed
following the procedure in Zou et al. (2019). All prepro-
cessing and analysis in this study were conducted in the
MATLAB software (The MathWorks).

EEG recordings were low-pass filtered below 50Hz
with a zero-phase anti-aliasing FIR filter (implemented
using a 200-ms Kaiser window) and down-sampled to
100Hz. EOG artifacts were regressed out based on the
least-squares method. Similar to previous studies (Ding
and Simon, 2012a,b), the speech response was averaged
over the two representations on two recording days to in-
crease the signal-to-noise ratio.

The envelopes of stimuli reflected how sound intensity
fluctuated over time and were extracted by applying full-
wave rectification to the stimulus. Similar to the prepro-
cessing of EEG recordings, the envelopes were further
low-pass filtered below 50 Hz with a zero-phase anti-ali-
asing FIR filter (implemented using a 200-ms Kaiser win-
dow) and down-sampled to 100 Hz.

Phase coherence analysis

To characterize the stimulus-response phase lag,
the stimulus and response were both transformed into
the frequency domain. Specifically, the acoustic enve-
lope and EEG response were segmented into non-
overlapping 2-s time bins, and all segments were
converted into the frequency domain using the fast
Fourier transform (FFT) algorithm. The response phase
and stimulus phase were denoted as an and By, re-
spectively, for frequency bin f and time bin t, and the
stimulus-response phase lag was calculated as 05 =
ais — B The coherence of the phase lag across time
bins, also known as the cerebro-acoustic phase coher-
ence (Peelle et al., 2013), was calculated using the fol-
lowing equation:

o O costoay+(Y . sinon)”

T )

where C(f) was the phase coherence in frequency bin f,
and T is the total number of time bins. The phase coher-
ence was independently calculated for each electrode
and then averaged using the arithmetic mean. The phase
coherence is in the range of 0-1, and higher phase coher-
ence indicated that the response phase was more pre-
cisely synchronized to the stimulus phase.

In the response topography analysis, we considered a
signed phase coherence. Specifically, we chose channel
Fz as a reference. For each electrode, if the phase differ-
ence between this electrode and electrode Fz was larger
than 90°, the phase coherence was negated. Otherwise,
the phase coherence was kept positive. The signed phase
coherence could illustrate the phase relationship between
electrodes on top of showing the phase coherence. Since
the phase coherence was strongest in central-frontal
electrodes, fourteen centro-frontal electrodes, i.e., Fz, F1,
F2, F3, F4, FC1, FC2, FC3, FC4, Cz, C1, C2, C3, and
C4, were used to characterize the phase-frequency
relationship.
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Phase-frequency relationship

The stimulus-response phase lag at frequency f, i.e., 0y,
was calculated by averaging 65 over electrodes and all
2-s time bins using the circular average (Fisher, 1993).
The group delay is defined based on the first-order deriva-
tive of the stimulus-response phase lag over frequency,
i.e., dif) = (6() — o(f + AN/2wAf, which reflects how
quickly a change in the stimulus is reflected in the re-
sponse (Oppenheim et al., 1997). To calculate the group
delay, we unwrapped the phase lag, fitted the phase lag
with a straight line, and divided the slope of the straight
line by 2.

To evaluate the linearity of the phase-frequency curve,
we defined a linearity measure as L(f)=1/|6(f) + 6(f +
2Af) —20(f + Af)|. This measure was the reciprocal of the
absolute value of the second-order derivative of the
phase-frequency curve and different electrodes was
pooled with averaging. If phase lag linearly changed with
frequency, the second-order derivative was 0 and the lin-
earity measure was positive infinity. A large d»(f) indicated
aroughly linear phase-frequency curve.

Since the phase-frequency curve was approximately
linear in the # band, we fitted the actual phase-frequency
curve in this frequency range using a linear function: 6, (f)
= kf + b, 4 <f<8. The slope parameter k and the inter-
cept parameter b were fitted using the least-squares
method, and the slope parameter k denoted the mean
group delay between 4 and 8 Hz.

Statistics
Phase coherence

To evaluate whether the phase coherence at a fre-
quency was significantly higher than chance, we esti-
mated the chance-level phase coherence with a
permutation strategy (Peelle et al., 2013; Harding et al.,
2019). After the speech envelope and EEG response were
segmented into 2-s time bins, we shuffled all time bins for
the speech envelope so that the envelope and response
were randomly paired. We calculated the phase coher-
ence for the phase lag between the EEG response and
randomly paired speech envelope. This procedure was
repeated 5000 times, creating 5000 chance-level phase
coherence. We averaged the phase coherence value over
electrodes and participants, for both the actual phase co-
herence and the 5000 chance-level phase coherence. The
significance level of the phase coherence at a frequency
was (N + 1)/5001, if it was lower than N out of the 5000
chance-level coherence at that frequency (one-sided
comparison).

Linearity

The chance-level linearity measure of the phase-fre-
quency curve was estimated using a similar procedure.
The linearity measure was significantly larger than chance
with the significance level being (N + 1)/5001, if it was
smaller than N of the 5000 chance-level values (one-sided
comparison).

For the comparisons of the linearity measure of different
frequency bands, statistical tests were performed using
bias-corrected and accelerated bootstrap (Efron and
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Model Simulation
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Figure 1.

Simulated phase-frequency curve. The curve shows the stimulus-response phase lag as a function of response fre-

quency. Panels A, B separately show the results simulated based on the evoked response model and the nonlinear oscillator model
proposed in Doelling et al. (2019). These two models are based on the evoked response hypothesis and the phase resetting hypoth-
esis, respectively. In the current evoked response model, the response evoked by a unit change in stimulus is a delayed impulse
and the function of the model is to delay the stimulus by 150 ms. Such a model predicts that the stimulus-response phase lag
changes linearly across frequency. Consequently, the phase-frequency curve appears to have a sawtooth shape. The nonlinear os-
cillator model, in contrast, predicts that the stimulus-response phase lag only changes in a very limited range across frequency.

Tibshirani, 1994). In the bootstrap procedure, the differen-
ces between two frequency bands were resampled with
replacement 5000 times. Each time the data sampled
were averaged across participants, therefore a total of
5000 mean values were produced. If N out of the 5000
mean values were greater (or smaller) than 0, the signifi-
cance level was 2(N + 1)/5001 (two-sided comparison).

Correlation between phase coherence and phase linearity

For significance test of correlation between phase co-
herence and phase linearity, we used two-tailed Student’s
t test. When multiple comparisons were performed, the p
value was further adjusted using the false discovery rate
(FDR) correction (Amini and Hochberg, 1995).

Model simulation

We simulated the neural response to speech using two
models. One was the evoked response model, in which the
simulated neural response was simply the speech envelope
convolving the response evoked by a unit change in the
speech envelope. This model was formulated as follows:

r(t) —/h(T)A(t — 7)dr,

where r(t) and A(f) were the simulated neural response
and the speech envelope, respectively. The h(t) described
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the neural response evoked by a unit change in the
stimulus. In the illustration in Figure 1A, h(t) was a
unit impulse function with 150-ms response latency,
i.e., h(t) 5(t—150ms), and in this case r(t) = A
(t —150 ms). The simulation results would not be af-
fected as long as h(t) had a symmetric waveform cen-
tered at 150 ms.

The other model was the nonlinear oscillator model pro-
posed by Doelling et al. (2019). The oscillator model was
formulated as follows:

di(t)
TTat

where A(t) was the speech envelope. E(t) and /(t) simulated
the responses from an excitatory and an inhibitory neural
population, respectively. The output of this model was the
difference between excitatory and inhibitory populations,
i.e., E(t) — I(t). S denoted the sigmoid function. All the pa-
rameters were the same as in Doelling et al. (2019), i.e.,
a=b=c=10,d=-2, pe=2.3, p;=-32, « 1.5, and
T 66 ms. Interpretations of the parameters could be
found in Doelling et al. (2019). The model was simulated
using the ode3 method in MATLAB Simulink (The
MathWorks) and the time step was 1 ms.

In the simulations, the input was the envelope of the en-
tire 59-min speech stimulus, and the input-output phase
lag was calculated the same way it was calculated in the
EEG analysis.

—I(t)+S(p, +bE(t) — (1),
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EEG Response to Speech
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Figure 2. Phase analysis of the envelope-tracking response. A, The phase coherence spectrum shows how precisely the response
phase is phase locked to the stimulus. The dashed black line shows the 99% confidence interval of the chance-level phase coher-
ence. The pink line on top denotes the frequency bins in which phase coherence is significantly higher than chance (p <0.01, per-
mutation test, FDR corrected). The topography shows the signed phase coherence averaged between 0.5 and 9 Hz. The dark dots
denote the 14 centro-frontal electrodes selected for the further phase analysis. B, The phase-frequency curve. The phase lag ap-
pears to linearly decrease over frequency in the frequency band where the phase coherence was higher than chance. The black dot-
ted lines are fitted based on the phase lag in the 6 band. Each red dot denotes a participant.

Results response phase lag was separately calculated in each

We first analyzed in which frequency bands and frequency bin. Significant phase coherence was most
EEG electrodes reliable cortical synchronization to  reliably observed below 9Hz. The topography of the
speech was observed. The coherence of the stimulus-  low-frequency neural responses (<9Hz) showed a

Linearity of the Phase-Frequency Curve
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Figure 3. Linearity of the phase-frequency curve. A, Phase linearity as a function of frequency. The dashed black line shows the
99% confidence interval of the chance-level phase linearity. The pink lines on top denotes the frequency bins in which the phase lin-
earity is significantly higher than chance (p <0.01, permutation test, FDR corrected). Each red dot denotes a participant. B, The
comparison of phase linearity across frequency bands. Error bars represent 1 standard error of the mean across participants.
Significant differences between frequency bands are indicated by stars; *p < 0.05, **p < 0.001 (bootstrap, FDR corrected). C, The
relationship between phase coherence and phase linearity. The phase coherence and the phase linearity are both averaged within
the 6 band. Each red marker denotes a participant. Participants with higher phase coherence generally show better linearity
(R=0.805, p=3 x 107, two-tailed Student’s t test).
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centro-frontal
corner).

We next analyzed how the stimulus-response phase lag
varied across frequency. The phase lag appeared to
change linearly over frequency in the frequency range
where the phase coherence was higher than chance (Fig.
2B). We then evaluated the linearity of the phase-fre-
quency curve (see Materials and Methods). As shown in
Figure 3A, the linearity measure was significantly higher
than chance in the low-frequency bands (p <0.01, per-
mutation test, FDR corrected) and peaked in the # band.
We compared the averaged phase linearity across 6 (1-
4Hz), 6, « (8-183Hz), B (13-30Hz), and y (30-45Hz)
bands. As shown in Figure 3B, the phase linearity was sig-
nificantly higher in the # band than other frequency bands
(6 band vs 6 band: p=0.043; # band vs «, B, or y band:
p=4x10"% bootstrap, FDR corrected). In order to esti-
mate the group delay in the # band, we used a straight
line to fit the linear trend, which was shown by the dotted
gray line in Figure 2B. The mean group delay in the @
band, i.e., slope of the linear fit in Figure 2B, was
156 = 50 ms.

Additionally, we investigated whether the phase-fre-
quency curve tended to be more linear for participants
who showed higher phase coherence. As the 6 band
shows significant and highest phase linearity (Fig. 3A,B),
we compared the averaged phase linearity and the aver-
age phase coherence in the # band (Fig. 3C). The phase
linearity and the phase coherence were significantly cor-
related at the individual level (R=0.805, p =3 x 1074, two-
tailed Student’s t test).

distribution (Fig. 2A, upper right

Discussion

The current study investigates the phase property of
the EEG response to speech during passive listening. It is
shown that the stimulus-response phase lag is approxi-
mately a linear function of frequency in the 6 band. This
linear phase property can be easily explained by the
evoked response model and therefore does not require
more sophisticated nonlinear oscillator models.

Based on systems theory (Oppenheim et al., 1997), if the
stimulus-response phase lag changes linearly across fre-
quency, it indicates that the evoked response has a finite du-
ration and has a symmetric waveform centered at the group
delay (Fig. 1A for a delay system, for example). The current
results suggest that the EEG response resembles the speech
envelope but delayed, which supports the evoked response
hypothesis. It is possible that cortical activity tracks the
speech envelope or related features (Ding and Simon, 2014),
and it is also possible that discrete acoustic landmarks that
are extracted using nonlinear mechanisms drive the evoked
responses (Doelling et al., 2014).

The group delay observed here is around 150 ms.
Above 8 Hz, neural activity is not precisely synchronized
to the speech envelope. Below 4 Hz, the phase linearity
was weaker, suggesting more complex generation mech-
anisms. A previous MEG study finds similar group delay
for the response to amplitude modulated tones: the group
delay is 131 and 147 ms in the left and right hemispheres
respectively, in the frequency range between 1.5 and 8 Hz
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(Wang et al., 2012). The 150- to 200-ms group delay also
corresponds to the latency of the N1 and P2 responses in
the temporal response function derived from the envelope
tracking response (Aiken and Picton, 2008; Lalor et al.,
2009; Ding and Simon, 2012a; Horton et al., 2013).

The current study finds that the stimulus-response phase
lag changes approximately linearly across frequency (Figs.
2B, 3A), and participants who have higher stimulus-re-
sponse phase coherence generally showed the better
phase linearity (Fig. 3B). A previous MEG study, however,
has shown that the stimulus-response phase lag cannot be
explained by simple evoked responses (Doelling et al., 2019)
but is more consistent with the prediction of a nonlinear os-
cillator model (illustrated in Fig. 1B). These two studies, how-
ever, focus on the neural responses in different frequency
bands and during different tasks. The study by Doelling et
al. (2019) analyzes cortical activity synchronized to auditory
rhythms at 0.5, 0.7, 1, 1.5, 5, and 8 Hz. Four of the 6 frequen-
cies considered in the study are below the 6 band, and the
current study also finds that the stimulus-response relation-
ship is complicated below the 6 band. Therefore, the results
from these two studies do not conflict but reveal different
neural mechanisms in different frequency ranges.

During speech processing, the neural response below the
0 band can encode higher-level linguistic structures, e.g.,
phrases and sentences, on top of slow acoustic modula-
tions, even if these linguistic structures are mentally con-
structed based on syntactic rules instead of prosodic
information (Ding et al., 2016a). These results suggest that
multiple factors could drive very low-frequency neural syn-
chronization to speech. The analysis in this study character-
izes neural synchronization to the speech envelope and
cannot capture purely syntactic-driven response compo-
nents. In other words, the neural response shown here is the
response to acoustic modulations in speech, instead of the
response to linguistic structures. The slow acoustic modula-
tions below the 6 band, however, could serve as a prosodic
cue for mental construction of phrasal-level linguistic struc-
tures (Frazier et al., 2006). It is possible that distinct mecha-
nisms are employed to encode syllabic-level and higher-
level speech information: a roughly linear code is employed
to encode syllabic-level speech features while more com-
plex neural mechanisms are employed to prosodic features,
which allows for frequent interactions with the syntactic and
semantic processing systems.

In sum, by analyzing the stimulus-response phase lag, we
show that the speech response in the 6 band was approxi-
mately a delayed version of the speech envelope in the
same frequency range. A time-delay system can be readily
implemented using a linear time-invariant system, which is
consistent with the evoked response hypothesis. Future
studies, however, are needed to study whether the response
phase property is modulated by attention and whether simi-
lar results could be obtained when listening to other sound.
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