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Abstract: The bottom-up assembly of nanowires facilitates the control of their dimensions, structure,
orientation and physical properties. Surface-guided growth of planar nanowires has been shown
to enable their assembly and alignment on substrates during growth, thus eliminating the need for
additional post-growth processes. However, accurate control and understanding of the growth of the
planar nanowires were achieved only recently, and only for ZnSe and ZnS nanowires. Here, we study
the growth kinetics of surface-guided planar GaN nanowires on flat and faceted sapphire surfaces,
based on the previous growth model. The data are fully consistent with the same model, present-
ing two limiting regimes—either the Gibbs–Thomson effect controlling the growth of the thinner
nanowires or surface diffusion controlling the growth of thicker ones. The results are qualitatively
compared with other semiconductors surface-guided planar nanowires materials, demonstrating the
generality of the growth mechanism. The rational approach enabled by this general model provides
better control of the nanowire (NW) dimensions and expands the range of materials systems and
possible application of NW-based devices in nanotechnology.
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1. Introduction

Semiconductor nanomaterials, in the form of nanotubes, nanowires (NWs) and
nanoparticles, exhibit intrinsically unique physical properties due to size-confinement
and geometric effects [1], which make them attractive building blocks for various ap-
plications in nanoscience and nanotechnology [2,3], NWs already play an essential role
in optoelectronics [4,5], logic circuits [6,7] and quantum computing [8,9], owing to the
possibility of controlling their size, structure, composition and morphology. One of the
most common methods for fabrication of semiconductor NWs is the vapor–liquid–solid
(VLS) growth process, where a metal catalyst on the substrate surface forms a liquid al-
loy droplet with the semiconductor material in the vapor phase and promotes the axial
NW growth under it [10]. This process usually produces NWs with vertical or random
out-of-plane orientations. Assembly of these nonplanar NWs into ordered planar arrays
is one of the technical barriers toward their large-scale integration into practical devices.
This can be achieved using several post-growth methods [11–14]. An alternative approach
is the surface-guided growth of planar NWs, which is based on the assembly, alignment
and positioning of the NWs in one step during their growth. Within this approach, the
NWs’ growth is directed by the substrate, which can be achieved in different techniques
including epitaxy, graphoepitaxy and artificial epitaxy [15–18].
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As wide bandgap semiconductor nanomaterials [19], gallium nitride (GaN) NWs are
of great interest because of its unique electronic properties, specifically for light-emitting
diodes (LEDs) [20,21], lasers [22,23] and high-electron-mobility transistors (HEMTs) [24,25].
NW heterostructures based on GaN and its alloys present improved electrical and optical
performance due to energy bandgap tuning [26–29]. Surface-guided GaN NWs were grown
on different substrates and were guided by the three mentioned above modes, and were
structurally, optically and electrically characterized [15,30,31]. However, fabrication of
devices based on GaN and other semiconductor NWs is still challenging since the planar
NWs have different lengths, and it might be difficult to have an optimal array with the
required performance. Therefore, controlling the growth of the planar GaN NWs and
understanding their growth mechanism is mandatory. Surprisingly, despite the large
number of reports on GaN NWs, both nonplanar and planar, only a few studied the
growth mechanism of GaN NWs. Maliakkal et al. [32] showed that for Ni-catalyzed GaN
non-planar NWs, the Gibbs–Thomson (GT) effect controls the growth of thin NWs, while
the diffusion-induced growth dominates for thicker NWs. The results were fitted by the
common models established earlier for vertical NWs [33,34] which shows, in particular, the
inverse correlation between the NW growth rate and its radius. Lim et al. [35] showed that
the formation of vertical GaN NWs might be controlled by competition of a mono-nuclear
versus poly-nuclear growth rather than the GT effect, where nucleation of NW monolayers
occurs at the vapor–liquid–solid triple-phase line. Their model was successfully confirmed
through experiments; however, it did not refer to any concrete mechanism of the material
transport, such as direct impingement or surface diffusion of Ga atoms.

Despite in-depth research of different surface-guided semiconductor NWs over the
last decade [36–44], the kinetics and mechanism of catalyst-assisted planar NW growth
were studied comprehensively only recently and revealed the effect of dimensionality on
the diffusion transport of the semiconductor materials into the droplet [45–47]. In particular,
the model of Rothman et al. [47] fitted well the data on planar growth of ZnSe and ZnS
NWs. The model of [47] considers different kinetic pathways of material transport into the
planar NWs and shows that the planar growth is led by the two main effects—the GT effect
for thinner NWs and the surface diffusion for thicker ones. The resulting expression for the
NW growth rate dL/dt is given by [47]:

dL
dt

= 2ΩI
{

1− θlveRGT/R +
(

1− θlseRGT/R
)( λ

R

)m}
, (1)

Here, I is the vapor flux of the element which limits the growth, Ω is the elementary
volume per pair in solid, θlv = n∞

l /(Iτl) and θls = n∞
l /(Iτs) are the ratios of liquid (l)-to-

vapor (v) and liquid-to-surface (s) activities, respectively, τl and τs are the characteristic
lifetime of adatom in the droplet and the surface, respectively, n∞

l is the activity of the
infinite liquid phase (at R→ ∞ ), RGT is the characteristic GT radius, λ is the effective
diffusion length of the adatoms, R is the NW radius. The power exponent m represents
the dimensionality of the dominant diffusion pathway and can vary between 1 and 2,
depending on the planar or non-planar configuration and the growth conditions. By fitting
experimental data of the growth rates of differently sized NWs by Equation (1), one can
deduce the GT radius RGT, the diffusion length λ and the power exponent m. The obtained
value of m indicates the dominant diffusion pathway during the NW growth [47]. For
m = 1, the main diffusion-induced contribution originated from atoms that impinge directly
onto the NW side facets from the vapor and diffuse to the droplet, while the collection of
the adatoms from the substrate surface is negligible. For m = 1.5 or m = 2, the adatoms are
mainly collected from the substrate. The data for surface-guided ZnSe and ZnS surface-
guided NWs grown on flat and faceted sapphire surfaces at different growth temperatures
were well fitted to the model and revealed that planar NW growth was dominated by
surface diffusion from the substrate with no significant effect of the surface morphology.

Here, we report the kinetics and growth mechanism of Ni-catalyzed surface-guided
GaN NWs grown on flat and faceted sapphire surfaces based on the previous growth
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model. The results clearly show that the dimensionality of surface diffusion is close to 2, as
predicted by the model for planar growth, and suggest that the main diffusion pathway is
the adatom collection from the substrate. These results corroborate the generality of the
proposed model and the critical role of the substrate within the guided growth approach.

2. Materials and Methods
2.1. NW Synthesis

Surface-guided GaN NWs were synthesized on R- and M-plane sapphire wafers
(Roditi International, Inc., London, UK). The M-plane wafer was annealed at 1600 ◦C in air
atmosphere using a high-temperature furnace (Nabertherm, Lilienthal, Germany), creating
V-shape nanogrooves of the more thermodynamically stable S and R planes [48]. The cata-
lyst pattern was defined using a standard photolithography process (MA/BA6 Karl-Suss
mask aligner, Garching, Germany), a negative photoresist (NR-9 1000PY) and a suitable
mask. Ni catalyst was deposited by electron-beam evaporation of a thin (~0.5 nm) film
(Telemark, Battle Ground, WA, USA), followed by lift-off in acetone. Heating the substrate
to 550 ◦C in air for 7 min was done before the synthesis to produce Ni nanoparticles with a
variety of sizes to catalyze the subsequent VLS growth of GaN NWs.

The GaN NWs were grown by a chemical vapor deposition (CVD) method in a 3-
zone tube furnace (Lindberg Blue M; Thermo Scientific, Waltham, MA, USA). The source
materials were 0.3 gr Ga2O3 powder and 3.8 sccm of ammonia gas (99.999%, Maxima,
Ashdod, Israel). The sapphire substrates were placed downstream on a quartz slide, and
the tube was purged with a mixture of N2 and H2 1300 and 90 sccm, respectively, at
400 mbar. The temperature of the source powder was held at 980–1000 ◦C, while the
sapphire substrates were maintained at 950 ◦C. Typical growth time was 20 min.

2.2. NW Characterization

The synthesized GaN NWs were characterized using optical microscopy (Olympus
BX-51, Tokyo, Japan) and field-emission SEM (LEO Supra 55 VP and Sigma 500 Zeiss,
Oberkochen, Germany) over the working voltage range of 3–5 kV. The thicknesses of NWs,
related to their radius, were measured using AFM (Veeco/Bruker, Multimode Nanoscope
7.30, Berlin, Germany) by applying the tapping mode and using 70 kHz Si-etched tips
(Nanoprobes), while the lengths were measured using the SEM. The investigated NWs
were examined throughout the entirety of their lengths to ensure they are not merged with
others.

3. Results and Discussion

The study of surface-guided GaN NWs growth mechanism was carried out with Ni
catalyst on flat and faceted sapphire substrates surfaces: the flat plane R

(
1102

)
demon-

strated the epitaxial guided growth while the faceted plane M
(
1100

)
demonstrated the

graphoepitaxail guided growth. The Ni catalyst was patterned as 3 × 30 µm rectangles
by standard lithography including evaporation of a nominally 0.5-nanometer-thick Ni
layer, followed by liftoff. The thin Ni films were thermally dewetted and converted to Ni
nanoparticles before the growth. These nanoparticles were randomly dispersed within
the pattern edges. The planar GaN NWs grow on flat R-plane sapphire along the

[
1101

]
direction of the sapphire substrate, presenting wurtzite crystal structure with an axial
growth direction of

[
1010

]
(Figure 1a–c). Planar GaN NWs on the faceted annealed M-

plane sapphire substrate grew along the
[
1210

]
direction of the substrate, with the same

wurtzite crystal structure, presenting graphoepitaxial growth along the nanogrooves with
an axial growth direction of

[
1453

]
(Figure 1d–f). The NW densities are similar for both

substrates (M-plane and R-plane sapphire). Our previous work provides comprehensive
details about the crystal phases, epitaxial relations, and crystallographic orientations for
similar GaN planar NWs grown under the same conditions [15]. We checked that the GaN
NWs in the present work were similar to those previously characterized. Therefore, these
characterizations are not presented here. The NWs have a Ni droplet at their ends, as
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seen in Figure 1c,f, which is a characteristic of the VLS tip-growth mechanism. A clear
morphological difference between the GaN NWs on annealed M- and R-sapphire planes is
in their thickness, as seen in the atomic force micrsocope scans shown in Figure 2. GaN
NWs grown on the faceted M-plane are thinner (10–25 nm) than those on the flat R-plane
(20–50 nm), as shown in Figure 3a,c. The reason for that difference should be attributed to
the fact that for the faceted surface the NWs are confined by the annogrooves with a width
of ~30 nm, which do not exist in the flat surface; hence, the NWs can grow thicker on the
flat R-plane.
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substrate and on (e,f) faceted annealed M-plane sapphire substrate.
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Figure 3. Growth rate versus radius of planar GaN NWs. (a) Data of NWs growth on faceted annealed M-plane sapphire
substrate and (b) fitting of the envelope of the data by Equation (1). (c) Data of NWs growth on flat R-plane sapphire
substrate and (d) fitting of the envelope of the data by Equation (1).

The growth rates of the planar GaN NWs were calculated by dividing the NW length
by the growth time in the first approximation. The investigated NWs were examined
throughout the entirety of their lengths to ensure they were not merged with others. The
growth rates versus their radius of about 50 NWs are presented in Figure 3a,c for GaN
NWs on annealed M-plane and R-plane sapphire substrates, respectively. The data present
no clear correlation between the growth rate and the NW radius due to a large scatter.
The large variance of the NW lengths can be attributed to different incubation times of
individual NW, as discussed in depth in our previous work [47].

One way to overcome the large scatter of the data is to consider only the envelope
of the upper points that represents the maximum NW length for a given radius and
corresponds to NWs which have emerged earlier than the others. Such analysis reveals a
clear trend: increasing of the growth rate with the radius of the thinnest NWs, reaching the
maximum growth rate at an optimal radius corresponding to the longest NWs, followed by
a long decreasing tail, as shown in Figure 3b,d. Fitting the envelope data by Equation (1) is
presented in the same figures, with the parameters summarized in Table 1. The growth
rates for both GaN NW samples does not start from 0, meaning that the Ni-catalyst droplets
are larger than the minimum size dictated by the GT effect [34]. The fitted dimensionalities
of surface diffusion are m = 2.03 ± 0.2 for GaN NW growth on the faceted surface and
m = 1.93 ± 0.2 for growth on the flat surface. The values are close to 2, as predicted by the
model, and suggest that the main diffusion pathway is the collection of Ga adatoms from
the substrate, with the Ga diffusion lengths on the substrate and the NW sidewalls being
on the same order of magnitude.



Nanomaterials 2021, 11, 624 6 of 9

Table 1. Fitting parameters of GaN NWs.

NWs Sapphire Substrate Source Temp., ◦C
Fitting Parameters

I, µm/min θlv θls RGT, nm λ, nm m

GaN AnnealedM-plane 980 0.63 ± 0.12 1.00 ± 0.05 0.47 ± 0.03 6.02 ± 0.13 40.93 ± 2.71 2.03 ± 0.15

GaN R-plane 1000 5.67 ± 0.78 1.00 ± 0.05 0.69 ± 0.02 5.34 ± 0.09 46.85 ± 0.55 1.93 ± 0.17

The deduced values of the m for planar GaN NW appears very similar to those re-
ported for ZnS planar NWs grown on flat and faceted sapphire substrates [47] (m = 1.9 ± 0.2
and m = 1.8 ± 0.1, respectively). This comparison suggests that planar growth of GaN
NWs follows the same diffusion pathway as for ZnSe and ZnS NWs. Furthermore, we
may conclude that surface-guided growth of planar NWs is general and is dominated by
two-dimensional surface diffusion. This mechanism is different from the one controlling
the growth of non-planar NWs, which was shown to be predominantly one-dimensional
surface diffusion [34,47]. This important difference can be explained as follows. In non-
planar VLS NW growth, adatoms need to diffuse along the NW sidewalls to reach the
catalyst droplet at the tip. This process is one-dimensional, which is why the dimensionality
of the dominant diffusion pathway is close to m = 1. In planar VLS NW growth, adatoms
do not need to climb along the NW sidewalls to reach the droplet as they are able to arrive
directly from the two-dimensional substrate. Therefore, the dimensionality of the dominant
diffusion pathway is close to m = 2.

The deduced values of the diffusion lengths λ for NWs grown on the flat and faceted
surfaces are 41 and 47 nm, respectively. The collection area from which Ga adatoms diffuse
toward the sidewalls of each individual NW is far from all the neighboring NWs, and
hence the NW growth kinetics is not affected by the NW spacing. The maximum NWs
growth rate is ~1.3 µm/min for both NWs grown on the flat and faceted surfaces. The
optimal radius corresponding to this maximum growth rate is around 15 and 30 nm for
the growth of planar GaN NWs on annealed M-plane and R-plane sapphire, respectively.
The nominal growth rates ΩI deduced from the fits appear different for the two types of
substrates—it equals only 0.63 µm/min for the faceted M-plane substrate and is much
higher (5.67 µm/min) on the flat R-plane substrate. This large difference can be easily
understood through the different temperatures of the source material, which is lower when
the NWs are grown on the annealed M-plane. The characteristic GT radii RGT are very
close in both cases, around 5–6 nm, which seems reasonable because this parameter is
determined by the surface energy of the droplet [47]. This cut-off radius can also be seen
in Figure 2b. Short NWs with catalyst size of ~5 nm can be observed in the center of the
AFM scan. These NWs could appear from Ni residue particles during the lift-off outside
the lithography-defined Ni.

4. Conclusions

In this article, the growth kinetics of Ni-catalyzed planar GaN NWs on flat and faceted
sapphire substrates is investigated and quantified using a model, which considers the GT
effect and surface diffusion of adatoms as the dominant effects influencing the NW growth
rate. The NWs growth rate presents a low power dependence on the inverse NW radius.
The power exponent m represents the dimensionality of the dominant diffusion pathway
and equals 2.03 for growth on the faceted surface and 1.93 for growth on the flat surface.
This indicates two-dimensional diffusion of Ga adatoms as the main pathway for material
transport. The fact that the VLS growth of planar GaN NWs is governed by the same
diffusion pathway for different substrates morphologies, and that very similar results were
previously obtained for planar NWs of other semiconductor materials, strongly supports
the generality of the growth mechanism of planar NWs. Competition between the GT
effect and surface diffusion yields an optimum NW radius corresponding to the maximum
length under a given set of growth conditions, which enables one to obtain the longest
NWs with a better size uniformity.
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These conclusions are remarkably similar to those drawn from our studies on the
kinetics and mechanism of planar ZnS and ZnSe NW growth, recently reported, Ref. [47]
despite notable differences between these two types of materials and their growth processes:
ZnS and ZnSe NW grew from Au catalyst and metal chalcogenide vapors. Those chalco-
genide NWs were prone to direct vapor–solid (VS) growth, which causes NW thickening
in competition with the VLS elongation, and lead to relatively short NWs. In the present
study, GaN NW grow from Ni catalysts and Ga vapor reacting with NH3, and elongate to
much larger lengths without thickening, owing to the virtual absence of direct VS growth.
The fact that such different processes follow similar kinetics and quantitatively fit the
same theoretical model is very significant, regarding the generality and robustness of the
proposed mechanism and theoretical model. This significantly raises the expectation that
planar NWs of other materials will grow by a similar mechanism following this kinetics
where two-dimensional surface diffusion plays a critical role. Specifically, GaN NWs are
important nanomaterials ZnS and ZnSe NW and hence understanding the kinetics of their
planar growth has an intrinsic value independently of analogous studies previously done
on planar ZnS and ZnSe NWs.

This work shows that understanding the kinetics of the guided growth allows for
better control over the dimensions of planar NWs and fine-tuning of their morphology.
The obtained knowledge about the surface-guided GaN NWs can lead to regular arrays
of NWs by using a single-size Ni nanoparticle catalyst that will enhance growth with the
controlled and uniform lengths. This may help to extend the range of materials systems
and possible applications of NW-based devices.
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28. Lim, S.K.; Brewster, M.; Qian, F.; Li, Y.; Lieber, C.M.; Gradečak, S. Direct Correlation between Structural and Optical Properties of
III−V Nitride Nanowire Heterostructures with Nanoscale Resolution. Nano Lett. 2009, 9, 3940–3944. [CrossRef]

29. Armitage, R.; Tsubaki, K. Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-
beam epitaxy. Nanotechnology 2010, 21, 195202. [CrossRef]

30. Tsivion, D.; Joselevich, E. Guided Growth of Epitaxially Coherent GaN Nanowires on SiC. Nano Lett. 2013, 13, 5491–5496.
[CrossRef]

31. Tsivion, D.; Joselevich, E. Guided Growth of Horizontal GaN Nanowires on Spinel with Orientation-Controlled Morphologies. J.
Phys. Chem. C. 2014, 118, 19158–19164. [CrossRef]

32. Maliakkal, C.B.; Hatui, N.; Bapat, R.D.; Chalke, B.A.; Rahman, A.A.; Bhattacharya, A. The Mechanism of Ni-Assisted GaN
Nanowire Growth. Nano Lett. 2016, 16, 7632–7638. [CrossRef] [PubMed]

33. Fröberg, L.E.; Seifert, W.; Johansson, J. Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 2007, 76, 153401.
[CrossRef]

34. Dubrovskii, V.G.; Sibirev, N.V.; Cirlin, G.E.; Soshnikov, I.P.; Chen, W.H.; Larde, R.; Cadel, E.; Pareige, P.; Xu, T.; Grandidier,
B.; et al. Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B
2009, 79, 205316. [CrossRef]
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